臺灣大學數學系

八十六學年度第二學期碩博士班資格考試試題

分析

[回上頁]

There are problems A to F. You have to do Problems B, E, F, and 2 Problems out of A, C, and D.

Α.

Let $f : [0,1] \times [0,1] \to \mathbb{R}$, f = f(x,y). If f is measurable with respect to x for each fixed y, and f is continuous in y for almost everywhere fixed x, prove that f is measurable. Is the conclusion true if we only assume that f is measurable in x and y separartely?

Β.

Let $E\subseteq \mathbb{R}^n$ be measurable, and $f_m(m=1,2,\cdot\cdot\cdot)$ be a sequence of functions in

 $L^{p}(E)$ with $1 \leq p \leq \infty$. For an $f \in L^{p}(E)$, we have the following 4 possible ways of convergence:

 $f_m
ightarrow f$ a.e. ;

(b)

 $f_m o f$ in measure ;

(C)

$$f_m \to f$$
 in L^p , i.e., $\lim_{m \to \infty} \int_E |f_m(x) - f(x)|^p dx = 0;$

(d)

 $f_m
ightarrow f$ weakly, i.e. for all

$$g\in L^q(E), \lim_{m\to\infty}\int_E f_m(x)g(x)dx = \int_E f(x)g(x)dx,$$
 where $\frac{1}{p}+\frac{1}{q}=1.$

(1)

Prove that $(a) \Rightarrow (b)$, $(c) \Rightarrow (b)$, and $(c) \Rightarrow (d)$. In each case, show by example that the converse implication is false.

(2)

If
$$\lim_{m\to\infty} \int_E |f_m(x)|^p dx = \int_E |f(x)|^p dx$$
. Prove that $(b) \Leftrightarrow (c)$ and
 $(a) \Leftrightarrow (d)$.

Determine which of the following conditions implies that

$$f(x) = \int_{a}^{x} f'(t)dt + f(a), \text{ for all } x \in [a, b]$$

where $f:[a,b] \to \mathbb{R}$ is a function of bounded variation.

$$|f(x) - f(y)| \le L\sqrt{|x - y|}$$
 for all $x, y \in [a, b]$

(2)

(1)

f is differentiable at every point of (a, b), and $|f'(x)| \le L$ for all a < x < b.

(3)

f is differentiable at every point of [a, b), f' is bounded in $[a, b - \epsilon]$ for all small $\epsilon > 0$, and the improper Riemann integral of f' on [a, b] exists.

Here L is a positive constant.

D.

Let $f \in L^p(\mathbb{R}^n)$ with $1 \le p \le \infty$. Define

$$u(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{y^2 + (x-t)^2} f(t) dt, \quad y > 0.$$

Prove that u(x, y) is C^{∞} in the upper half plane y > 0, $u_{xx} + u_{yy} = 0$ in y > 0, and $\lim_{y\to 0+} u(x, y) = f(x)$ for a.e. $x \in \mathbb{R}^n$.

Ε.

Let $E \subset \mathbb{R}$ be a compact set with |E| > 0. Define

$$f(z) = \int_E \frac{1}{t-z} dt, \quad z \in \Omega$$

where Ω is the complement of E in the complex plane.

(1)

Prove that f is analytic in Ω .

(2)

Is $z = \infty$ a regular point, or a pole, or an essential singularity of f?

(3)

Compute $\int_{\Gamma} f(z) dz$, where Γ is a positvely oriented simple closed curve in the plane which contains *E* in its interior.

F.

Determine the range of t > 0 such that the improper integral $\int_0^\infty \frac{\log(1+x^2)}{x^t} dx$ exists. If it exists, find its value.