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[回上頁]

There are problems A to F. You have to do Problems B, E, F, and 2 Problems out of A, C, and
D.

A.
Let , . If  is measurable with respect to  for each

fixed , and  is continuous in  for almost everywhere fixed , prove that  is

measurable. Is the conclusion true if we only assume that  is measurable in  and 

separartely?
B.

Let  be measurable, and  be a sequence of functions in

 with . For an , we have the following 4 possible ways of

convergence:
(a)

 a.e. ;

(b)
 in measure ;

(c)
 in , i.e. , 

(d)
 weakly, i.e. for all

,

where .

(1)
Prove that , , and . In each case, show by

example that the converse implication is false.
(2)

If . Prove that  and

.

C.



Determine which of the following conditions implies that

where  is a function of bounded variation.

(1)
 for all .

(2)
 is differentiable at every point of , and  for all .

(3)
 is differentiable at every point of ,  is bounded in  for all small

, and the improper Riemann integral of  on  exists.

Here  is a positive constant.
D.

Let  with . Define

Prove that  is  in the upper half plane ,  in ,

and  for a.e. .

E.
Let  be a compact set with . Define

where Ω is the complement of  in the complex plane.
(1)

Prove that  is analytic in Ω.

(2)
Is  a regular point, or a pole, or an essential singularity of ?

(3)
Compute , where Γ is a positvely oriented simple closed curve in the

plane which contains  in its interior.
F.

Determine the range of  such that the improper integral  exists. If it

exists, find its value.
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