Algebra Exam Jun, 2005

Do all the 6 problems.

We use the follow notations:

 \mathbb{R} : the field of real numbers.

 \mathbb{Z} : the ring of integers.

 \mathbb{F}_q : the finite field of q elements (where $q = p^n$ is a prime power).

 C_n : cyclic group of order n.

- (1) Determine how many irreducible polynomials are there of degree n over \mathbb{F}_p . And verify your answer.
- (2) Determine the conjugacy classes of 8×8 matrices with minimal polynomial $(x^2 + 4)(x 1)^2$
 - (a) over \mathbb{R} ;
 - (b) over \mathbb{F}_5 .
- (3) Describe the following as explicit as possible:
 - (a) $Hom_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z})$
 - (b) $\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/m\mathbb{Z}$
- (4) Give examples of polynomial $f(x) \in k[x]$ (and its ground field k) so that the Galois group of the polynomial f(x) is
 - (a) $C_5;$
 - (b) S_5 .

And verify your examples.

- (5) Let k be an algebraically closed field. Let f(x, y) be an irreducible polynomial in k[x, y]. Describe prime ideals of the ring k[x, y]/(f(x, y)), where (f(x, y)) denotes the principal ideal generated by f(x, y).
- (6) Suppose that we have the following commutative diagram of abelian groups

$$\begin{array}{cccc} A_1 & \stackrel{\phi_1}{\longrightarrow} & A_2 & \stackrel{\phi_2}{\longrightarrow} & A_3 \\ f_1 & & f_2 & & f_3 \\ B_1 & \stackrel{\psi_1}{\longrightarrow} & B_2 & \stackrel{\psi_2}{\longrightarrow} & B_3. \end{array}$$

That is, all the above maps are group homomorphisms and $f_3\phi_2 = \psi_2 f_2, f_2\phi_1 = \psi_1 f_1$. Suppose furthermore that $im(\phi_1) \subset ker(\phi_2)$ and $im(\psi_1) \subset ker(\psi_2)$. Show that there is a natural map from $ker(\phi_2)/im(\phi_1)$ to $ker(\psi_2)/im(\psi_1)$