臺灣大學數學系

九十學年度第二學期碩博士班資格考試試題

代數

[回上頁]

1.

(15 points) Let $\mathbb N$ denote the set of positive integers. Let F_i be a fields of characteristic

 $p_i > 0$, for all $i \in \mathbb{N}$. Suppose that $p_i \neq p_j$, for all $i, j \in \mathbb{N}$. Let $F = \prod_{i \in \mathbb{N}} F_i$ and $K = \bigoplus_{i \in \mathbb{N}} F_i$.

a. Show that K is an ideal of F. Is K a prime ideal of F?

b. Show that there exists a maximal ideal M of F such that $K \subseteq M$ and F/M is a

field.

What is the characteristic of the field?

2.

(15 points) Show that there are no simple groups of order 1000. Find a non-abelian group of order 1000.

3.

(15 points) Let A be a complex $n \times n$ matrix. Show that there exist complex polynomials

p(t) and q(t) with p(0) = q(0) = 0 with the properties such that p(A) is

diagonalizable, q(A) is nilpotent and A = p(A) + q(A).

4.

(15 points) Let R be a ring with identity and let $M_n(R)$ denote the ring of all n imes n

matrices with entries in R. a. Find the center of $M_n(R)$.

b. Let I be a 2-sided ideal of R. Show that $M_n(I)$ is a 2-sided ideal of $M_n(R)$.

c. Describe all 2-sided ideals of $M_n(R)$.

5.

(15 points) Let \overline{A} be matrices over a field K with entries indexed by positive integers \mathbb{N} i.e. an element in \overline{A} is a matrix (a_{ij}) , $i, j \in \mathbb{N}$. Let A be the subset of \overline{A} consisting of

those matrices that have only finitely many non-zero entries.

a. Show that A is a simple algebra over K.

b. Show that A is algebraic over K.

6.

(15 points) Let R be a commutative Noetherian ring and X an indeterminate. Prove that

the power series ring R[[X]] is Noetherian.

7.

(15 points) Let \mathbb{F}_q denote the finite field of $q = p^m$ elements, where p is a prime. Let $\operatorname{GL}_n(\mathbb{F}_q)$ denote the group of non-singular $n \times n$ matrices over \mathbb{F}_q .

a. What is the order of $\operatorname{GL}_n(\mathbb{F}_q)$.

b. What is the order of a p-sylow subgroup of $\operatorname{GL}_n(\mathbb{F}_q)$? Find such a p-sylow

- subgroup.
- 8.

(15 points) Show that the following polynomials are irreducible over \mathbb{Q} and find their Galois groups.

a. $x^3 - 3x + 1$.

b. $x^3 - 3x - 1$.

[回上頁]