臺灣大學數學系

九十學年度第一學期碩博士班資格考試試題

代數

[回上頁]

1

Let $M_{n \times n}(\mathbb{C})$ denote the space of complex $n \times n$ matrices. Let $A \in M_{n \times n}(\mathbb{C})$ with A diagonalizable. Consider the linear map $T_A : M_{n \times n}(\mathbb{C}) \to M_{n \times n}(\mathbb{C})$ given by

$$T_A(X) = AX - XA, \quad X \in M_{n \times n}(\mathbb{C}).$$

Show that T_A is diagonalizable. What are the eigenvalues of T_A ? What are the eigenvectors of T_A ?

2

Let A and B be $n \times n$ matrix over \mathbb{R} . Suppose that B is invertible and $A^tBA = B$. Prove that λ is an eigenvalue of A if and only if $\frac{1}{\lambda}$ is an eigenvalue of A.

3

Let A be an $n \times n$ complex matrix. Let Tr denote the trace of a matrix. Suppose that $Tr(A) = Tr(A^2) = \cdots = Tr(A^n) = 0$. Prove that A is nilpotent.

4

Let G be a finite group and $g \in G$. Let C_g denote the conjugacy class of g and

 $Z_g = \{x \in G | gx = xg\}$. a. Show that $|C_g| = \frac{|G|}{|Z_g|}$.

b. Suppose $G = S_n$ is the symmetric group in n letters. Describe the conjugacy classes of G.

c. Suppose that $n \geq 3$ and g = (1, 2, 3). What is $|C_g|$?

5

Let G be a finite group and H a subgroup of index n such that H contains no non-trivial normal subgroup of G. Prove that G may be embedded into S_n .

6

Let R be a commutative Noetherian ring and X an indeterminate. Prove that R[X] is Noetherian.

7

Let R be a commutative ring with 1 and I_1, I_2, \cdots, I_n be ideals of R such that

 $I_i + I_j = R$, for $i \neq j$. Prove that the canonical map $R \to \bigoplus_{i=1}^n R/I_i$ is a surjective ring homomorphism.

8

Let *F* be a field and *K* a field extension of *F* such that [K : F] = 2. Prove that if **char** $F \neq 2$, then *K* is a normal field extension of *F*.

9

Compute the Galois groups of the following polynomials over \mathbb{Q} :

a. $x^3 - 3x + 1$.

b. $x^3 - 3x + 3$.

[回上頁]