臺灣大學數學系

八十九學年度第二學期碩博士班資格考試試題

代數

[回上頁]

選作6題. Z: integers; R: real numbers; $GL_n(\mathbb{R})$: the group of invertible matrices; $SL_n(\mathbb{R})$: the group of matrices with determinant 1.

1.

Consider a system of linear equations,

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1,$$

...
$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n,$$

 $a_{ij}, b_k \in \mathbb{Z}$. Prove or disprove:

(1)

This system has a rational solution if det $A \neq 0$.

(2)

If the system has a rational solution, then it also has an integer solution.

2.

Let $\phi : F^n \to F^m$ be left multiplication: $X \mapsto AX, A \in M_{m \times n}(F)$. Prove the following are equivalent:

(1)

A has a right inverse B such that AB = I.

 ϕ is surjective.

(3)

(2)

There is an $m \times m$ minor of A whose determinant is not zero.

3.

Let G be a group containing cyclic normal subgroups of order 10 and 21 respectively. Prove that G contains a cyclic normal subgroup of order 210.

4.

Prove that the matrices $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ are conjugate elements in the group

 $GL_n(\mathbb{R})$, but that they are not conjugate when regarded as elements of $SL_n(\mathbb{R})$.

Determine all ideals of the ring $\mathbb{R}[[t]]$ of formal power series with real coefficients.

6.

Let p be a prime, and $A \in M_n(\mathbb{Z})$ such that $A^p = I$, but $A \neq I$. Prove that $n \ge p-1$.

7.

Let a, b be complex numbers of degree 3 over \mathbb{Q} , and let $K = \mathbb{Q}(a, b)$. Determine the possibilities for $[K : \mathbb{Q}]$.

8.

Let G be a finite group. Prove that there exist a field F and a Galois extension K of F whose Galois group is G.

[回上頁]