臺灣大學數學系

八十八學年度第一學期碩博士班資格考試試題

代數

[回上頁]

- 1. Show that every group of order 175 is abelian.
- 2. Show that the additive groups of \mathbb{R} and \mathbb{C} are isomorphic.
- 3. If R is a ring (with 1), then the ideals I and J are called coprime if I + J = R. If I_i (i=1,2,3,4,5) are coprime in pairs, show that I_1I_2 and $I_3I_4I_5$ are also coprime.
- 4. If $f : A \to A$ is an R-module homomorphism such that $f \circ f = f$, show that $A = \text{Ker } f \oplus \text{Im } f$.
- 5. Let $\sigma_1, \sigma_2, \dots, \sigma_n$ be distinct nonzero homomorphisms from a field K into a field L. Show that the $\sigma_i's$ are linearly independent over L, i.e. that if $a_1, a_2, \dots, a_n \in L$ and

 $a_1\sigma_1(x) + a_2\sigma_2(x) + \dots + a_n\sigma_n(x) = 0$ for all $x \in K$, then $a_1 = a_2 = \dots = a_n = 0.$

- 6. Show that there is no automorphism of R other than the identity mapping.
- 7. Let V be a vector space of dimension 20. If V_1, V_2, V_3, V_4 are subspaces of dimension

9, 12, 10, 13 respectively, and $W = (V_1 \cap V_2) + (V_3 \cap V_4)$,

- 1. find max{dim W} and the conditions for the max to be attained.
- 2. same for min{dim W}.
- 8. Find the rational canonical form of the matrix

0	1	0	0
0	0	1	0
0	0	0	1
4	0	0	0

(i) over \mathbb{Q} , (ii) over \mathbb{R} , (iii) over $\mathbb{Z}/(17)$.

[回上頁]