SPECIAL VALUES OF ANTICYCLOTOMIC RANKIN-SELBERG L-FUNCTIONS

MING-LUN HSIEH

ABsTrACT. In this article, we construct a class of anticyclotomic p-adic Rankin-Selberg L-functions for
Hilbert modular forms, generalizing the construction of Brakocevi¢, Bertolini, Darmon and Prasanna in the
elliptic case. Moreover, building on works of Hida, we give a necessary and sufficient criterion for the vanishing
of the Iwasawa p-invariant of this p-adic L-function vanishes and prove a result on the non-vanishing modulo
p of central Rankin-Selberg L-values with anticyclotomic twists. These results have future applications to
Iwasawa main conjecture for Rankin-Selberg convolution and Iwasawa theory for Heegner cycles.
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INTRODUCTION

The purpose of this article is to (i) construct a class of anticyclotomic Rankin-Selberg p-adic L-functions for
Hilbert modular forms and study the vanishing/non-vanishing of the associated Iwasawa p-invariant, (ii) prove
a result on the non-vanishing modulo p of central Rakin-Selberg L-values with anticyclotomic twists. Let F
be a totally real algebraic number field of degree d over Q and K be a totally imaginary quadratic extension
of F. Denote by z — Z the non-trivial element in Gal(C/F). Let 7w be an irreducible cuspidal automorphic
representation of GLy(A ) with unitary central character w. Let mx be a lifting of 7 to K constructed in
[Tac72], Thm.20.6]. Then 7 is an irreducible automorphic representation of GLa(Ax), which is cuspidal if
7 is not obtained from the automorphic induction from KC/F. Let A : Ag/K* — C* be a unitary Hecke
character of K* such that

(01) /\|A;_ :w_l.

The automorphic representation mi ® A is therefore conjugate self-dual. For each place v of F, we can associate
a local L-function L(s,mc, ® Ay) and a local epsilon factor e(s, e, ® Ay, %,) (which depends on a choice of
non-trivial character ¢, : F, — C*) to the local constituent mc, ® A, of mc ® A (JJL70, Thm.2.18 (iv)]).
Denote by L(s,mc ® A) the global L-function obtained by the meromorphic continuation of the Euler product
of local L-functions at all finite places. In this paper, we study the p-adic variation of the central value
L(%,mc ® A) with anticyclotomic twists under certain hypotheses.

To introduce our hypotheses precisely, we need some notation. Fix a CM-type X of K. Namely, X' is a
subset of Hom(/C, C) such that

YUY =Hom(K,C); ¥nX = 0.
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2 M.-L. HSIEH

Then ¥ induces an identification K ®q R ~ C*. We shall identify X with the set of archimedean places
of F via the restriction. For each k = Y koo € Z[X], we write T's(k) = [[,cx '(ks) (T is the usual
Gamma function), and if 2 = (z,) € (A*)* for an algebra A, we let z* := [] . 2% . For a Hecke character
X AZ/K* — C*, we denote by xs : (K ®q R)* — C* its archimedean component, and we say x is of
infinity type (kl, ]{12) for ki, ko € 271Z[2] such that k1 — ko € Z[Z] if
Xoo(2) = 2F17F2(22)k2 for all 2 € (K ®q R)* =~ (C*)*.

For each ideal a of F (resp. ideal 2 of K), we have a unique factorization a = a*a™ (resp. % = A+2~), where
at (resp. A1) is only divisible by primes split in K and a~ (resp. 27) is divisible by primes inert or ramified
in K. Let n =n*n~ be the conductor of 7. We define the normalized local root number attached to mx, and
A, for each place v by

1
(7, , Av) 1= 5(5,7TICU ® Aps Pu) - wy(—1).

We remark that the value 8(%, 7K, ® Ay, Py) does not depend on the choice of ¥,,.

We assume that 7 has infinity type k = ) k,0 € Z-o[X] and X has infinity type (g, —%) In other
words, 7, is a discrete series or limit of discrete series of weight k, with unitary central character at every
archimedean place o. In particular, this implies that {k,} .y, have the same parity and the local root number
e*(m,, \v) = +1 at every archimedean place. We further assume the following local root number hypothesis

for (m, A):
Hypothesis A. The local root number e*(nic,, \y) = +1 for each v |n~.

In particular, the above hypothesis holds if n= = (1). o
We prepare some notation in Iwasawa theory. Let p be an odd rational prime. Fix an embedding ¢, : Q —
C and isomorphism ¢ : C = C,, once and for all. Throughout this article, we make the following assumption

(ord) X is p-ordinary.
Let X, be the set of p-adic places of K induced by Y. Then the ordinary assumption means that X,
and its complex conjugation X, gives a full partition of the set of p-adic places of K. If L is a number field,
we write G = Gal(Q/L) for the absolute Galois group. Denote by recx : A — G the geometrically
normalized reciprocity law. Recall that we say a continuous character <$ : G%’ — C} is locally algebraic of
weight (k1, ko) with ki, ke € Z[X] if x(reck(a)) = a*1@*2 for every a € (K ® Q,)* close to 1 (See also [Ser68,
Chapter III, §2]). Let K, be the maximal anticyclotomic ZI[)FQ]—extension of K. Let I'™ = Gal(K,~/K)
and let A = Z,[I'"] be the Iwasawa algebra of [F : QJ-variables. To each locally algebraic p-adic character
(5 : '™ — C of weight (m,—m), we can associate a Hecke character ¢ : AZ/K* — C* of infinity type
(m, —m) defined dy

¢(a) == 1" (p(recx(a))a, ", )aa ",
where a, € (K ®q Q,)* and ax € (K ®q R)* are the p-component and the archimedean component of a
respectively. We say (E is the p-adic avatar of ¢. We shall call %Icfit the set of critical specializations, consisting
of locally algebraic p-adic characters on I'™ of weight (m, —m) with m € Z>o[X] (See .

Our first result is the construction of the anticyclotomic p-adic L-function attached to mx ® A. We need
more notation. Let Dx be the different of 7 and Dy, r be the relative different of X/F. Let 91 be the prime-
to-p conductor of mx ® A. We have a unique decomposition 91 = 91791~ and fix a decomposition N = FF
with (§,S) = 1 such that M~ is only divisible by prime inert or ramified in X/F and § is only divisible by
primes split in IC/F. We choose § € K such that

o =6,

e Imo(d) >0foralloe X,

e The polarization ideal ¢(Ox) := D;' (26Dx/7) is prime to pMN.
Let (2o, £2,,) be the complex and p-adic periods attached to (K, X) defined in [HT93| (4.4a), (4.4b)]. For each
Hecke character x of K, we define the p-adic multiplier ex, (7, x) by

1 1 _9 _
02) enm0 =[] e(hom @ o)Ly  xg)252(-20).
%GEP,P:mQ
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The shape of this modified p-Euler factor ex, (7, x) has been suggested by J. Coates [Coa89].
Theorem A. In addition to (ord|) and Hypothesis we further assume that

(sf) n" is square-free.

Then there exists an element Lx, (7, \) € A such that for every $ € X5 of weight (m, —m), we have

$(Ls, (7, N)?)

Q?)(k+2m)

Ts(k+m)Ts(m+1) L, mc @A) L
(Im 6)F+2m (47 )k+2m+1.5 ’ Qz(k+2m) “HEF ),
K

=[O0 : O] - ex, (1, A0) -

where Qe = (271) 1 Q0, (Im ) = (Im(8))oex and (47) means the diagonal element (47)y ex in (C*)*.

If 7 is attached to a Hilbert new form f and y is a Hecke character of Ag, then the L-function L(s, 7x ® x)
can be identified with the Rankin-Selberg L-function L(f, x,s) of f and the theta series associated to x by

kme — 1
L(577T)C®X):L(faX7S+T) (kmx = meagkO')'

Therefore, Ly, (7, A) is the p-adic L-function that interpolates the square root of Rankin-Selberg central L-
values. We shall call Ly, (7, \) := Zx (m,\)? the anticyclotomic p-adic L-function for 7x ® A with respect to
the p-ordinary CM type X. If 7 is obtained from the automorphic induction of a Hecke character of X*, one
can see, by comparing the interpolation formulas on both sides, that Ly, (7, A) is a product of two p-adic Hecke
L-functions for CM fields constructed by Katz [Kat78| and Hida-Tilouine [HT93| up to an explicit unit in A.

Remark. When F = Q, 7 arises from an elliptic new form f of weight k and level n, the construction of
Ly, (m,A\) can be recovered from [BDP13, Theorem 5.4] under some extra assumptions p { n and n™ is only

divisible by ramified primes. In their notation, L(f,x™%,0) = L(:5E, mc @ 1) for x € @ (M) defined in
. ~ _k

the page 1094 loc.cit.,and our set X5 corresponds to Zg)(fﬂ) by ¢ — A_1¢_1|-|A;, where |-| . is the adelic
absolute value of Ag H Note that Hypothesis |A| on local root numbers is also imposed in the bottom of
page 1903 loc.cit.. This kind of p-adic L-function with some extra Euler factors removed is also considered in
[Brallal under different hypotheses.

Our second theorem is to prove the vanishing of the Iwasawa p-invariant i, 5. of Zx (m, A) under certain
hypothesis. Recall that the p-invariant u_, y, is defined by

fir sy =f {r € Qx| p~ "Ly, (7, A) #0(mod m,A)},

where m,, is the maximal ideal of Zp. To explain our hypothesis, we recall that thanks to the works of Deligne,
Carayol, Blasius-Rogawski and Taylor et.al ([BR93|, [Tay89], [Jar97]), there exists a finite extension L/Q,
and the p-adic Galois representation p,(m) : Gr — GL2(Op) such that p,(7) is unramified outside pn; for
each finite place v { pn,

1- kmz vV

LS, pp(m)lws, ) = Lis + —5, 7)),

where Wz, is the Weil group of F,. Let ¢y be the conductor of X\. For each v | ¢}, let Ay, be the finite group
AOK,)-

Theorem B. With the assumptions in Theorem [A] suppose further that

(1) p is unramified in F,
(2) the residual Galois representation

Pp(Tic) == pp(m)|Gy (mod my,) is absolutely irreducible,

(3) p f Hv(c?\):l Ti(A>\,7J)'
Then p; y 5 =0.

LOur conventions for the infinity type are opposite to each other
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Let ¢ # p be a rational prime. We next consider the problem of the non-vanishing modulo p of L-values
twisted by anticyclotomic characters of /-power conductor. This problem has been studied in the literature in
various settings (cf. [Vat03], [Hid04a), [Fin06], [Hsil2]). To state our result along this direction, we introduce
some notation. Let [ be a prime of F above ¢ and let K. be the anticyclotomic pro-¢ extension in the ray
class field over K of conductor I°°. Let ', := Gal(K,../K) and let X? be the set consisting of finite order
characters ¢ : I'| — pg~. Let x be a Hecke character of infinity type (g + m, —% —m) and of conductor ¢,
with m € Z>o[X] as before.

Theorem C. In addition to (ord), and Hypothesis we further assume that

(1) (p[a ncXD)C/f) = ]-7
(2) the residual Galois representation p,(7x) is absolutely irreducible,

(3) P Ly(er ) HAx)-

Then for almost all characters ¢ € X9, we have

Ts(k+m)Te(m+1)  L(, 7 @ x9)
2. Lz s
[0k - OF]"- (Im 0)+2m (4 )k+2m+1.5 ?22(k:+2m) # 0 (mod my).
K

Here almost all means "except for finitely many ¢ € X " if dimq, Fi = 1 and "for ¢ in a Zariski dense subset
of X0 " if dimq, Fy > 1 ([Hid04al p.737]).

Note that Theorem [C] in particular implies a simultaneous non-vanishing of central L-values with anticy-
clotomic twists. This has application to the non-vanishing of Bessel models of theta lifts of GSp(4) in view of
[PTBI11, Thm. 3] and the existence of some explicit theta lifts [Narl3]. In addition, we would like to mention
several future applications of these results in Iwasawa theory.

I. Iwasawa main conjecture for Rankin-Selberg convolution. The congruences between Eisenstein
series and cusp forms on unitary groups provide a general strategy to construct elements in Selmer groups in
terms of L-values and has been used to prove one-sided divisibility in Greenberg-Iwasawa main conjectures for
GL3 and CM fields ([SUL4] [Hsildal). Usually the most difficult part in the method of Eisenstein congruence is
to prove the non-vanishing modulo p of certain Eisenstein series, where the non-vanishing modulo p of L-values
always play an important role. For example, Skinner and Urban use results of Finis and Vatsal to show the
non-vanishing modulo p of certain Klingen-Eisenstein series on U(2,2). In a recent work [Wan13b|, Xin Wan
applies the method of Eisenstein congruence on the unitary group U(3,1) to obtain a one-sided divisibility
result towards Greenberg-Iwasawa main conjecture for certain Rankin-Selberg convolution, and Theorem [C]is
used to prove the non-vanishing modulo p of Fourier-Jacobi coefficients of certain Siegel-Eisenstein series on
U(3,1). His results along this direction lead to C. Skinner’s work on the converse of Gross-Zagier and Koly-
vagin. Moreover, combining our Theorem [B] he is able to deduce Perrin-Riou’s main conjecture for Heegner
points [Wanl3al in some cases.

I1. Iwasawa theory for Heegner cycles. An immediate consequence of Theorem [C]is the non-vanishing of
the p-adic L-function .Zs, (7, A). Combined with the work [BDP13] relating the p-adic logarithm of Heegner
points and the values of £ (7, A) outside the range of interpolation, this gives a new proof of Cornut-Vatsal
theorem on Mazur conjecture for higher Heegner points when p is split in the imaginary quadratic field. In
our forthcoming work [CHI4] on the Perrin-Riou’s explicit reciprocity law for Heegner cycle Euler system
with connection to s, (7, \) when 7 is associated with an elliptic new form f € Sp(I'o(NV)) with Deligne’s
p-adic Galois representation V¢, we also use this result to obtain the rank-zero case of Bloch-Kato conjecture
for the Galois representation Vf(g) ® A as well as the analogue of Mazur conjecture for the image of higher
Heegner cycles under the p-adic Abel-Jacobi map (the ¢-adic case with ¢ # p is proved by Howard [How06]).

The key ingredients in this article are the use of normalized toric cusp forms and the explicit calculations of
their period integral formula. In representation theory, toric cusp forms are Gross-Prasad test vectors [GP91]
in the space of cuspidal automorphic forms on GLa(A £). It seems they often serve the optimal choice in the
application of toric period integrals to arithmetic. For example, Afalo and Nekovar [AN10] used Gross-Prasad
test vectors in the setting of definite quaternion algebras to give an extension of the work of Cornut-Vatsal
on Mazur conjecture. For the reader’s convenience, we recall the definition here. Let x be a Hecke character
of K* such that x|ax = w™! and let 7 C Ag be the subgroup consisting of ideles z = (z,) € [], K with
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2y/ %y € O,é“ for all primes v split in K. Fixing an embedding ¢ : £* < GLo(F), we say an automorphic form
¢ : GL2(F)\ GL2(Ax) — C is a toric form of character y if

e(gu(t)) = x ' (t)p(g) for all t € T.

In addition, to obtain the optimal p-integrality, we will need to normalize toric forms so that their Fourier
coefficients are not all congruent to zero modulo p. This is equivalent to choosing a normalized Gross-Prasad
test vector in the local Whittaker model of 7, at each place v. The reader will find later that the normalization
of toric forms is the most subtle and important part of this paper.

We give a rough sketch of the proofs. We begin with an outline the construction of Zx (7, \) as follows.

(1) Construct a toric Hilbert modular form ¢y4 of character A\¢ for each q/b\ € %;m as above by a care-
ful choice of toric local Whittaker functions in local Whittaker models of 7 (See Definition
Lemma .

(2) Make an explicit calculation of the Fourier expansion of ¢yg.

(3) Via the p-adic interpolation of the Fourier expansion, construct a p-adic distribution ¥ on I'™ valued
in the space of p-adic modular forms, which interpolates toric forms ¢4 for gg € x;f“. The p-adic L-
function Zx, (7, A) is obtained by a weighted sum of the evaluation of this distribution Fy at a finite
set of CM points.

The evaluation of ¢, with x = A¢ at CM points in the step (3) is essentially the toric period integral P, (¢,)
given by

Py (py) = / @y (L(t))x(t)dt.
AXIC\AL

To prove the formula in Theorem [A] we have to express the square Py (¢,)? in terms of the central L-value
L(%, T ®X). This is usually referred to as an explicit Waldspurger formula. Such a formula has been exploited
widely in the literature based on either explicit theta lifts ([Murl0], [Mur08], [Xue07], [Hid10a] and [BDP13])
or the technique of relative trace formula ([MWO09]). In this paper we adopt a different approach, making use of
a formula of Waldspurger which is indeed proved but not stated explicitly in [Wal85]. This formula decomposes
the square P, (¢) of the global period toric integral into a product of local period integrals involving local
Whittaker functions of ¢. Explicit computation of these local integrals shows that Px(gp)2 is essentially equal
to the central value of the L-function L(s, 7 ® A). We emphasize that this explicit formula does not depend
on the choices of special Bruhat-Schwartz functions in the classical approach of theta lifting but on choices
of local Whittaker functions which reflect the arithmetic of modular forms directly via the Fourier expansion.
Now with the above construction of toric forms and explicit period integral formulas, the proofs of Theorem [B]
and Theorem [C| when combined with fundamental works of Hida ([Hid10b] and [Hid04al]) are reduced to a
study the vanishing/non-vanishing modulo p properties of the Fourier expansions of the toric cusp form ¢y
at cusps (a,b) such that ab=! is the polarization of an abelian variety with CM by Ox. We give an explicit
computation of Fourier coefficients of toric forms ¢y, with which we can study the non-vanishing modulo p
property of these Fourier coefficients. These calculations are elementary but quite tedious and lengthy. Finally,
the connection between the Fourier coefficients of Hilbert modular forms and the trace of Frobenius of the
associated Galois representations enables us to relate the non-vanishing modulo p of Fourier coefficients of ¢
at these cusps and the irreducibility of the residual Galois representation p,(7)|cy -

We end this introduction by making a few remarks on our assumptions. The restriction @ is merely
due to the computational difficulty on the local period integrals and the local Fourier coefficients, and it is
expected to be unnecessary. The global assumption on the irreducibility of residual Galois representation
assures that the new form associated to 7 is not congruent to theta series arising from K. This assumption
prevents the vanishing modulo p of £y (m, A) from the possibility that £ (, \) is congruent to a product of
two anticyclotomic Katz p-adic L-functions attached to self-dual Heck characters of the root number —1. The
local assumption (3) is equivalent to saying that the local residual character A, (mod m,,) is ramified for all
v|c . This hypothesis is used to avoid the vanishing of L-values due to sign change phenomenon. For example,
if A, = 1 (mod m,,) is unramified at some prime q|c, with w4 special, then one can construct A’ = A (mod m,)
such that A has the conductor q ’1c; and the same infinity type with A. This implies that mx ® X’ has global
root number —1, and hence the algebraic part of L(3,mc ® A) is congruent to L(1,7c ® A') = 0. The above
assumptions might be weaken with exceptional effort. However, Hypothesis [A] is fundamental, the failure of
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which makes the period integral P, (¢,) vanish for all x (and hence make the results null) by a well-known
theorem of Saito-Tunnell ([Sai93], [Tun83|).

This paper is organized as follows. After fixing notation and definitions in we derive a key formula of
Waldspurger on the decomposition of global toric period integrals into local toric period integrals (Proposi-
tion in The bulk of this article is where we give the choices of local toric Whittaker functions
W,.,» and calculate explicitly these local period integrals attached to W, ,. The explicit Waldspurger formula
is proved in Theorem [3.14] and a non-vanishing modulo p of these toric Whittaker functions is proved in
Proposition After reviewing briefly theory of complex and geometric Hilbert modular forms in §4 we
prove Theorem E in The key ingredient is Proposition the construction of a p-adic measure J . on
'~ with values in the space of p-adic modular forms, and the p-adic L-function .Zs, (7, ) is thus obtained
by evaluating Fy . at suitable CM points. The precise evaluation formula of Zx (, A\)? is established in
Theorem In we study the g-invariant of Zs (7, A) and prove Theorem [B|in Theorem ﬂ Finally, the
non-vanishing of central L-values modulo p is considered in §7] and Theorem [C|is proved in Theorem [7.1}

Acknowledgments. The author thanks Prof. Atsushi Murase for sharing his preprint [Mur0§|, from which the
author learnt many useful computations about local toric period integrals. He also thanks the referee for the
suggestions and improvements.

1. NOTATION AND DEFINITIONS

1.1. Measures on local fields. We fix some general notation and conventions on local fields through this
article. Let ¢q : Aq/Q — C* be the additive character such that ¥q(zs) = exp(2mizo) With 2z € R.
Let ¢ be a place of Q and let F' be a finite extension of Q,. Let 14 be the local component of i at ¢ and let
Yp =1y 0Tp/q,, where Tr/q, is the trace from F to Q. Let dz be the Haar measure on F' self-dual with
respect to the pairing (x,2’) — ¥r(z2’). Let |-, be the absolute value of F normalized by d(az) = |a| dz
for a € F*. We often simply write |-| = || if it is clear from the context without possible confusion. We
recall the definition of the local zeta function (r(s). If F is non-archimedean, let @wr be a uniformizer of F

and let

o
1—|wrl}p

Cr(s)

If F' is archimedean, then
(r(s) = 7 */*T'(s/2); Co(s) = 2(2m) "*T'(s).

The Haar measures d*z on F'* is normalized by
¥z = ¢p(1) |z|5" da.

In particular, if F' = R, then dz is the Lebesgue measure and d*xz = |gc|;t1 dz, and if F = C, then dz is twice
the Lebesgue measure on C and d*z = 27~ 1r~1drdf (z = re?).

Suppose that F' is non-archimedean. Let O be the ring of integers of F' and let Dy be the absolute different
of F'. Then D;l is the Pontryagin dual of Or with respect to g, and vol(Op,dx) = |’DF|§. Ifp: F* - C*
is a character of F'*, define the local conductor a(u) by

a(p) =inf {n € Z>o | p(z) =1forall v € (1 + @pOp) NOF}.

1.2. If L is a number field, the ring of integers of L is denoted by O, Ay is the adele of L and Ay f is the
finite part of Ay. For a € A}, we put

il (a) := a(OL, ®Z) N L.
Denote by G, the absolute Galois group and by recy, : A} — G% the geometrically normalized reciprocity
law. We define ¢z, : A} /L — C* by ¥ (z) = ¥q o Tr/q(x).
Let v, be the p-adic valuation on C, normalized so that v,(p) = 1. We regard L as a subfield in C (resp.
C,) via Lo : Q = C (resp. 1, = 171 01 : Q = C,) and Hom(L, Q) = Hom(L, C,).
Let Z be the ring of algebraic integers of Q and let Z, be the p-adic completion of Z in C,. Let Z be the
ring of algebraic integers of Q and let Z, be the p-adic completion of Z in C,, with the maximal ideal m,,.
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1.3. Local L-functions. Let F' be a non-archimedean local filed. Let u,v : F* — C* be two characters of
F>*. Denote by I(u,v) the space consisting of smooth and GLy(Op)-finite functions f : GLg(F') — C such
that

15 5o =stam@ |5 s

Then I(u,v) is an admissible representation of GLa(F'). Denote by m(u,v) the unique infinite dimensional
subquotient of I(u,v). We call m(u,v) a principal series if v~ # ||~ and a special representation if
-1
pr=t ="
Let E be a quadratic extension of F' and let x : E* — C* be a character. We recall the definition of local
L-functions L(s, 7 @ x) ([Jac72, §20]) when m = 7(u, v) is a subrepresentation of I(u,v). If E = F @ F, then
we write x = (x1,x2) : F* & F* — C* and put

+

)

L(Saﬂ-®X1)L(8vﬂ-®X2) if /-“/_1 7é |

|
L(s, pxa) L(s, px2) if =t = ||

L(Sa T © X) = {
If F is a field, then

L(s, f/x)L(s, ') if pr=' # |7,
L=l

L(s, T ® x) =
(s ) {L(S,u’x) if =" =

Here p/ = poNpg,p, v/ = voNg,p are characters of E*.

1.4. Whittaker and Kirillov models. Let F' be a local field. Let 7 be an irreducible admissible represen-
tation of GLo(F') and let ¢ : F' — C* be a non-trivial additive character. We let W(w, 1) be the Whittaker
model of w. Recall that W(m, ) is a subspace of smooth functions W : GLz(F') — C such that

(1) w( ((1) T) g) = ()W (g) for all z € F.
(2) If v is archimedean, W((a 1)) = O(|a|™) for some positive number N.

(¢f. [JLT0, Thm.6.3]). Let K(m, 1) be the Kirillov model of w. If F is non-archimedean, then K(m, 1) is a
subspace of smooth C-valued functions on F'*, containing all Bruhat-Schwartz functions on F*. A function in
K (7, 1)) shall be called a local Fourier coefficient of 7. In addition, it is well known that we have the following
GLy(F)-equivariant isomorphism

W(m,1p) = K(r, )

(1.1) mm%m@:W(aJY

2. WALDSPURGER FORMULA

Let F be a number field and K be a quadratic field extension of F. Let A = Az. Let G = GLy /7. Let
be an irreducible cuspidal automorphic representation of G(A) with unitary central character w. Denote by
A(m) the realization of 7 in the space Ag(G) of cusp forms on G(A). Let x be a unitary Hecke character of
K* such that x|ax = w™!. Let mc be the quadratic base change of 7 to the quadratic extension K/F. The
existence of 7 is established in [Jac72]. The goal of this section is to deduce from results in [Wal85| a formula
(Proposition which expresses the central value L( %, T ® x) in terms of a product of local toric period
integrals of Whittaker functions.

Let ¢ := ¥ : A/F — C* be the standard non-trivial additive character. For a place v of F, we let
G, = G(F,) and let x, : K — C* (resp. ¢, : F, — C*) denote the local constituent of x (resp. v).

2.1. Forz € K, let T(z) := x4+ 7 and N(x) = 2. Let {1,9} be a basis of K over F. We let ¢ : L — Mz (F)
be the embedding attached to 9 given by

(2.1) s(ad +b) = (“T(i)” “12(1”) (a,b € F).
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. <_01 T(119)> |
(

Then My (F) = +(K) @ +(K)J. Tt is clear that J* =1 and «(t)J = Ju(t) for all t € K.

Put

2.2. The local bilinear form and toric integral. For each place v of F, denote by m, (resp. 1,) the local
constituent of 7 (resp. 1) at v. Define a C-bilinear form b, : W(m,, 9, ) xW(my, 1,) — C by

o0

5L (0 o

n=-—oo

/f W1(<“ 1))%((‘” 1))w1(a)dxa.

It is known that this series converges absolutely as m, is a local constituent of a unitary cuspidal automorphic
representation. Moreover, the pairing b,, enjoys the property:

(2.2) b, (m(g)W1,m(g)Ws) = w(det )b, (W1, Ws).

b, (W1, Wa) :

\

The pairing b, thus gives rise to an isomorphism between the contragredient representation 7V and 7 @ w™".

The local toric period integral for Wy, Wy € W(m,,1,) is given by

L(1,7¢,/7,)

P(Wy, Wa, xo) i= /;CUX/]:VX by, (m(u(t)) W, m(J)Wa)x,(t)dt - o)

The above integral converges as X, is unitary ([Wal85, LEMME 7]).

2.3. A formula of Waldspurger. Let A(s, mc ® x) be the completed L-function of m¢ ® x given by
Als, mc ®@ x) := HL(S,?TK;,U ® xv) = L(s,mc ® X) - H L(s,mic, ® Xo)-
v v]oo
It is well known that A(s, 7 ® x) converges absolutely for Re s > 0 and has meromorphic continuation to all
s € C. Moreover, it satisfies the functional equation
A(s, e @ X) = e(s,mc @ X)A(1 — s, m¢ @ x ).
The global toric period integral for ¢ € A(r) is defined by

Po(p) = / () x(D)dt.
KX AX\A%

The following proposition connects the global toric periods and central L-values of mx ® x.

Proposition 2.1 (Waldspurger). Let p1,p2 € A(mw) and let W, , W, be the associated global Whittaker
functions. We suppose that W, = [[, Wi ., where Wy, € W(my, 1) such that W; (1) = 1 for almost v
(i =1,2). Then there exists a finite set Sy of places of F including all archimedean places such that for every
finite set S D Sy, we have

1 1
Po(o1)Py(g2) = AG.me @) - [ T axy T W Wawo o).
veS ? i v

PROOF. The proof is the combination of various formulae established in [Wal85]. We first recall some
important local integrals. Let D = GxG. For each place v of F, let S, = S(Ma(F,)) @ S(F) and let
D, = GyxG,. Let r = r'xr" : G,xD, — EndS, be the Weil representation of G, x D, defined in [Wal85|
§1.3 p.178]

Let ¢ € A(m) be an automorphic form in the automorphic realization of 7. Recall that the global Whittaker

function of ¢ is defined by
1 =z
Woto) = [ el 7)ot
F\Agp



SPECIAL VALUES OF ANTICYCLOTOMIC RANKIN-SELBERG L-FUNCTIONS 9
Write W, = W(my,%,). We further assume that W, has the factorization W, = [[, W, ., € ®, W, such that

Wy »(1) =1 for almost v. For each v, let U : S, = W, @ W,,, f, = Uy, be the G, xG-equivaraint surjective
morphism associated to W, introduced in [Wal85, COROLLAIRE, p.187]. Define the following local integrals:

ot = [ (" 1),(‘“ e @a

B(fy,1) /Z\GN /}_X Wy o(o)r' (o) folz, ™ )dxda,
Pl )= [ OG0 0 Dl

The convergence and analytic properties of these local integrals are studied in [Wal85, LEMME 2, LEMME
3, LEMME 5|. Moreover, we have

1
vaal :Cfv RN
oD =C0) 210
For each v, we take a special test function f, € S, such that
(2.3) Us, = Wi @7(J)Wa,.

Note that f, can be chosen to be the spherical test function f2 :=1 My(05,) ® Ho; for all but finitely many

v. With this particular choice of f,, we have

1 7 1
P(fu o 3) = /F o (OO s
1
(2.4) = /;x \KX by, (m(1(1)) W, m(J)Wa)xo (t)dE - ¢x, (1)

1
L(l,7e,/7,)
Let § = ®S, be the restricted product with respect to spherical test functions { fg}v. Define the theta
kernel for f:=®f, € S by

Os(o,9) := > r(0,9)f(x,u) (0 € G(A), g € G(A)xG(A)),

(z,u)EMa(F)xFX*

= P(Wl,mWQ,vaXv) '

and define the automorphic form 6(f, ¢,g) on G(A)xG(A) b

of.0.9) = [ o(0)65(0,g)do
G(FI\G(A)
Note that according to (2.3), we have

0(f,¢,91,92) = 1(g1)p2(92J).
We define the toric period integral P(f,x) b

P(f,x) = / B(F. o 1(t2), (t2))x (b2 x (o) Aty .
[ICX AX \A)é]2

By the relation Ji(t2)J = i(t2) and the automorphy of @9, we find that

P(f,x) = Py(¢1)Py(p2)-

Let Sy be a finite set of places of F such that W, ., W, , and f, are spherical for all v ¢ Sy. From [Wal85,
Prop. 4, p.196 and LEMME 7, p.219|, we deduce the following formula for every finite set S D Sp:

1 L(L7e,7)
. P(fy, Yo, =) - —mmet el
e @ X) };[9 (fus x 2) L(%JTKU ® x)

We thus establish the desired formula in virtue of ([2.4). a

Po(p1)Pli2) = A,
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3. TORIC PERIOD INTEGRALS

3.1. Notation. Throughout we suppose that F is a totally real number field and K is a totally imaginary
quadratic extension of 7. We retain the notation in the introduction and Let X' be a fixed CM type
of K. Let 7 be an irreducible automorphic cuspidal representation of GLa(A). Let n be the conductor of .
Suppose that 7 has infinity type k = Y .5, koo € Z>1[X]. Let m =) my0 € Z>o[X] and let x be a Hecke
character of infinity type (k/2 4+ m, —k/2 —m) such that x|ax = w™!. Let h be the set of finite places of F.
Recall that the set of infinite places of F is identified with the CM-type X.

In this section, we will choose a special local Whittaker function at each place v of F in §3.6]and calculate
their associated local toric period integrals in §3.7 and §3.8] Finally, we prove in a non-vanishing modulo
p result of these local Whittaker functions. This result plays an important role in the later application to the
calculation of the p-invariant.

Let €, (resp. ¢,) be the conductor of x (resp. w). Let ¢, = €, N F. We further decompose n= =n_n,,
where n is prime to ¢, and n; is only divisible by prime factors of ¢,,. Put

cy(x) =inf {n €Zsy|x=1on(1 er"OE)X},

(31) () =eu(x) — v(n-).

It is clear that ¢, (x) = v(cy). We put
A(x) ={veh| K, is a field, 7, is special and ¢,(x) = 0}.

Let p > 2 be a rational prime satisfying . The assumption in particular implies that every prime
factor of p in F splits in K. Let X, be the p-adic places induced by X via ¢,. Thus X, and its complex
conjugation X, give a partition of the places of K above p. Let 0N be the prime-to-p conductor of T ® x. We
fix a decomposition M+ = FF such that (F,T) = 1.

3.2. Galois representation attached to m. Let p,(7) : Gp — GL2(OL,) be the p-adic Galois representa-
tion associated to 7 as in the introduction. Let v {p and let Wz, be the local Weil group at v. Suppose that
Ty = Ty, Vy) is a subquotient of the induced representations. By the local-global compatibility ([Car86],
[Tay89|] and [Jar97]), we have

it *
(3.2) pp(m)wr, = (77 1 kg (kmz = max ko).

0 vt
In particular, this implies that u,(wz,) and v, (wr,) are p-adic units in (’)ZW.

3.3. Open compact subgroups. For each finite place v, we put

ng{gz (Ccl Z) €Gy|a,de Ox,, beD;vl, ceD;v,detger:U},

and for an integral ideal a of F, we put

Kg(a):{g: (Z Z) €K3|ceuDE,a—1€a},
Uy(a) ={g € GL2(Ox,) | g =1(mod a)}.
Let KO =[],cn K9 and U(a) = [],cp Un(a) be open compact subgroups of GLa(Aj).

3.4. The choices of ¥ and ¢,. We fix a finite idele dr = (dr,) € A% ; such that dr, is a generator of the
absolute different Dz, at each finite place v and dx, = 1 for v { Dr. Fixing an integral ideal v C anD,2C of F,
we choose ¥ € K such that

(d1) Imo(¥) >0 for all 0 € X,

(d2) {Ld}iﬂ} is an O, -basis of Ok, for all v | pr,

(d3) d}iﬂ is a uniformizer of I, for every v ramified in K.
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The existence of such ¥ is guaranteed by strong approximation theorem. Then ¢ is a generator of K over F
and determines an embedding K < M>(F) in (2.1)). Let

=271 —-19) ek*.

The condition (d2) allows us to choose dz, = 2§ at split v | pr. For each finite place v, we also fix an Oz, -basis
{1,86,} of Ok, such that 8, = 9 except for finitely many v and

6, = dz ' for v|pr.

Write 0., = a,9 + b, with a,, b, € F,.

For every v split in K, we shall fix a place w of I above v throughout, and decompose K, := K ®@r F, =
Foew @D Fyey, where e, and ez are the idempotents attached to w and w respectively. If v|pDT, we further
require that w|§X,, i.e. w|F or w € X,. We identify § € K,, = F, and write ¢, = Ugew + Fyey for split v.

For each place v, we define ¢, € GLy(F,) as follows:

Sy = <Img(19) Rei(ﬁ)) forv=0¢€ X,

(9 __ —1 d]:v 19@ ﬂu) . I
(3.3) G =(Vz — V) ( dr. 1 for split v = ww,

Gy = <_agv d;) for non-split finite v.
For t € K,,, we put

L, (t) := gv_lb(t)gw
It is straightforward to verify that if v = o € X is archimedean and t = x + iy € C*, then
(3.4 =5 ).

y €T

and if v = ww is split and t = t ez + tae,,, then

(3.5) v, (t) = (tl t2> .

Moreover, for all finite places v
1, (0%,) = 1, (KF) N K.

3.5. Running assumptions. In this section, we will assume Hypothesis [A| for (7, x) and
(sf) n~ is square-free.

The assumption implies that 7, is an unramified special representation if v|n; and m, is a ramified
principal series if v|n, . In particular, for every place v inert or ramified in I, 7, is a sub-quotient of induced
representations and the local L-function L(s,m,) # 1. We shall write 7, = 7(y, V) such that L(s,m,) =
L(s, pty) for vin~. By the local root number formulas [JL70, Prop. 3.5, Thm. 2.18], under the assumption @
Hypothesis [A] on the sign of local root numbers is equivalent to the following condition:

(R1) Each v € A(x) is ramified in K and p,x,(wr,) = — |w|%
(tty := po © N, /7,)-

In what follows, we fix a place v of F. Let F' = F, and E = K,,. If v is finite, let O = Op and let w = wyg,
and wg be uniformizers of @ and Op respectively. We shall suppress the subscript v and write 7 = m,
X = Xus S = S and ¢ = 1),. For a € F*, we put

d(a) = (“ 1) € GLy(F).
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3.6. The choice of local toric Whittaker functions. If v is finite, we let W? denote the new Whittaker
function in W(mr, ). In other words, WY is the unique Whittaker function which is invariant by K?(n) and
WI(1) = 1. The existence and uniqueness of W2 are a consequence of the theory of new vectors [Cas73]. Now
we introduce some special local Whittaker functions.

3.6.1. The archimedean case. Suppose that v = ¢ € X is an archimedean place and F' = R. Then 7, =

kg — kg
(|| 1,|-\1 2 sgnke) is the discrete series of minimal SO(2, R)-type k,. Let Wi, € W(m,,%,) be the
Whittaker function given by

ko

(3.6) Wi, (2d(a)kg) = a2 6727”1]11;{+ (a) - kot sgn(z)k",

cosf) sinf
—sinf cosf
operators in [JL70], p.165] given by

Vi = (1 0 ) ®1+ (0 1) ® i € Lie(GLy(R)) ®g C.

where z € R* and kg = > Let V4 and V_ be the weight raising and lowering differential

0 -1 1 0

Define the normalized weight raising differential operator IN/+ by

= 1
(3.7) Vi= &) Vi
Then we have
(3.8) VI Wy, (gre) = VI Wy, (g)eihet2me)d

3.6.2. The split case. Suppose that v = ww is split with w|X,F if v[pN*. We introduce some smooth functions
ay, on F* in the Kirillov model K(m, ). Write x = (Xw, Xw) : F'* & F* — C*. If the local L-function
L(s, 7 ® xw) = 1, we simply put
Ay v (a) =Iox (Q)Xﬁ(a_l)'
Suppose that L(s, 7T ® xu) # 1. Then m = 7(u,v) is a principal series or ™ = 7(p, ) is special with puv=! = ||
and pxw is unramified. If 7 ® x,, is unramified, we set
EETIE i ;
ayo(a) =lo(a) - xg' |17 (@) Y mxw(@ wxw(=’).
i+j=v(a),i,j>0
If p;xw is unramified and ;). is ramified for {p1, o} = {u, v}, we set
1
ayv(a) = pil-|* (a)lo(a).
If 7 is special, we set
1
ay(a) = pl-|? (a)lo(a).
These functions a,, indeed belong to the Kirillov model (7, ) in virtue of the description of the Kirillov

models [Jac72, Lemma 14.3]. For each § € K(m, 1), by the isomorphism (1.1)) we denote by W € W(m, ) the
unique Whittaker function such that We(d(a)) = £(a). We put
Wy = Ay,
It follows from the choice of W, , that
Wygo = Wy if ¢ : EX — C* is unramified.

Recall that the zeta integral (s, W, xz) for W € W(r, ) is defined by
o1
V(s Woxw) = [ Wd@)xala) o da
FX
Then the zeta integral for W, , satisfies the following equation:

(3.9) U(s, Wy v, xw) = L(s,7 ® xw) |Dr|?  (vol(Of,d*a) = |Dp|?).

Suppose that v = ww with w € X,,. We define some p-modified Whittaker functions as follows. For each
u € OF, we put
ay,(a) == ]IU(HWO)(a)XE(a_l) and Wy .o = Wa, -
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Let aiyv(a) = lpx(a)Xw(a™?!) and let W;U be the p-modified Whittaker function given by
b —
(310) Wx,v T a';(wv - Z WXV“/JM
u€EUy,

where U, is the torsion subgroup of O*. It is easy to verify that

a b _ _
(3.11) W W) = 17l )W = @ @,

for a,d € O*, beD;l.

3.6.3. The inert and ramified case. Suppose that v is an inert or ramified finite place. Then FE is a non-
archimedean local field. Define the operators R, and P, on W € W(w,v) by

Note that
1 1 1 if v is inert
Ve = vol(EX JF*,dt) = e, - [Dp|4 [Dp| ¥, e, =4 | OEME
2 if v is ramified.
We define the Whittaker function W, , by
(3.12) Wy = Py RO,
3.6.4. Define the subgroup 7T, of E* by
T OxF* if v is split,
Y EX if v is non-split.

Then 7, = {z € E | z/T € OF} if v is finite.
Definition 3.1 (Toric Whittaker functions). We say that W € W(m, ¢) is a toric Whittaker function of

character y if
(L ()W = x"1(t) - W for all t € T,
Lemma 3.2. The Whittaker functions W, ,, chosen as above are toric. To be precise, we have
(1) vf”Wka is a toric Whittaker function of the character x, : C* — C* | z +s zhoetmez=me 7|~
(2) If v is finite, then W, ,, are toric Whittaker functions of character x,.
(3) If v|p, then W;U is toric, and for u € O
(e ()W = X HOWy 1.0,

where ut' "¢ = utt=', t = tgeg + tye, € Of with w € 5,

Proor. It follows immediately from the definitions of these Whittaker functions together with (3.8]), (3.4)
and (3.5)). O

3.7. Local toric period integrals (I).

ko /2

3.7.1. Define the local toric period integral for W € W(m, 1) by
P(W,x) :=P(W, W, x)

= / by (7 (L(8))W, 7 (J)W ) x (t)dt - LQ,7p/p)
EX/FX CF(l)

The main task of this section is to evaluate P(w ()W ., x). We first treat the archimedean and split cases.

X,V
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3.7.2. The archimedean case. Suppose v = o € X = Hom(F,R) is an archimedean place.

Proposition 3.3. We have

T(me + 1) (ks + mg)-

P(r (Vi Wi,,x) = 2% (4)ko+1+2ms

ProOF. Introduce the Hermitian inner product on W(m, ) defined by
-1
(W1, Wa) := b, (W1, c(W3)), where ¢(Ws)(g) := W(< 1> g)w(det g).

Write k = k, and m = m,. It is clear that
<Wk, Wk> = (47T)7kr(k).

Since c(V{"Wy) and 7( <_1 1> )V "W}, are both nonzero Whittaker functions of weight —k —2m, there exists

some constant ~y such that
1 -
w((TH VI = VW) = VEWL(@) = VI @)

for all a € Ry. Let hy,(z) := V"W (d(x)). Then ho(x) = Wi(d(z)) is a real-valued function in view of the
definition (3.6). A simple calculation shows that

dh,,
Rt = 2xd— + (k4 2m — 47wx)hyy,
x

so by induction h,,(z) takes value in R (c¢f. [JL70, p.189]). This implies that v = 1. We thus have
_ -1
b, (T()V" Wi, m(J) V" Wy,) = (VI"Wi,, VI"Wy) (s s = ( 1)).

To evaluate (V"W V" Wy), note that by [JL70, p.166| we have

m L (k+m)[(m+1)
(k)

(3.13) VIVIWE, = (—4) - W,

and hence we find that
(V"W VW) =(=1)"™ (W, V"V W)
I'(k+m)
I'(k)
=4™(47) 7% . T(k +m)T(m + 1).

=4™ F(m—i— 1)<Wk,Wk>

Recall that dt = 27~ 1df witht = €, so vol(C* /R*,dt) = 27! - 7 = 2. Combining these with Lemma
(1), we find that
rm _ —2m m m CR(2)
P(W(§)V+ kaX) =2 (_87) ~bv(7T(g)V+ WkHﬂ-(JC)VJr Wk) : CT(U
= 2% (4m) 2T (VW VI W)
=23 (4n) " F 21D (k + m)T(m + 1). 0
3.7.3. The split case. Suppose that v = ww is a finite place split in E. Recall that we have assumed w|X,§ if
v|pt.
Lemma 3.4. We have
L3, m®xw) 1

e(5, T ® Xa ¥) - w X2 (—dp)w(det ).

1
P(r(Q)W,x) = ‘I’(?VV’XUV ’ L(L 7 ® xo) 2
27 w



SPECIAL VALUES OF ANTICYCLOTOMIC RANKIN-SELBERG L-FUNCTIONS 15

PROOF. Let W(g) = W(g (_01 é) Jw~l(det g). By [JL70, Thm.2.18 (iv)], we have the local functional
equation:
‘I’(l_sa vall) \II(S7VV7XW)
w =e(8, TR X V) —/—m—m— .
L(1— 5,7V ®x2") ( X V) L(s, ™ ® xw)

We note that

_ 0 dp'
§1)1J§11—<dF g)

A straightforward computation shows that

1
P(n(s)W, x) = w(det q)/FX . W(d(at1))W(d(—a) <d(; dg >)Xw(t1)w_1(a)dxadt1

—w(=dets-dp) [ [ W)W (d(ad?) (_01 é)>xw<t1>w-1xw1<a>andt1
= = det o2 (dr) W5, W) ¥, W, 31

4 1 1 L3, 7 ®xg')
= w(det ¢)w 1Xm2(*dF)‘I’(§a W, xw)* - 6(5’77 ® X, V) - —L?l T xw)
29 w

The lemma thus follows. O

Proposition 3.5. We have

1
L(%77TE ®X>

l? wHy :)2 —d . m—‘r’
. P(7T(§)Wx,vaX) =|Dp| - {Z((Ze:f? * w)X“ ( F) ZZJ(DT*

If v = ww with w € X, then

1 f(l,TF@Xﬁﬂ/))
1 : P(ﬂ—(g)W;,mX) = 21 Y
L(§’7TE®X) L(§’7T®Xw)

PROOF.  The proposition follows immediately from Lemma[3.4] (3.9) and (3.11)) combined with the equations
det¢ = dp if v[p* and

“Xa (dF) |Dp|.

1
E(§,W®Xﬁ,w)'w_1X%2(—dF):1 if vt O

3.8. Local toric period integrals (II). In this subsection, we treat the case v is inert or ramified. A large
part of the computation in this subsection is inspired by [Mur08]. Let

_(0 —diy,
= V)
Ko(w)::{g:(z Z>6K3|a—16w(’),c€w27p}.

Let @ = 0, € Of be the element chosen in and write WO for the new local Whittaker function W9 at v.
Recall that {1, 0} is an O-basis of O and @ is a uniformizer if E/F is ramified.

3.8.1. 'We prepare some elementary lemmas.

Lemma 3.6. Suppose that v|t. Let m be a non-negative integer and let

Bl((’)):{c) 2) xeD;l,de(’)X},

_ 1 =z _
N(DR') = { (0 1) |z € DFl} :
If y € @™ 1O, then we have

A=) 1+ 0= ) € K ()= ()
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If ye @™ O* and 0 < r < m, then
m—r
N+ o)l B ) =N (T L) w o),

If y € wO, then

m—+te,—1
N (D" + () B (O) =N (D) (7 | WE(O)
PrOOF. Recall that if v|t, then 6 = d;lﬁ, ¢ = <dF d1>’ and hence
F
-1
te(x+y0) = (a: +yTO) ydp N(0)> (z,y € F).
ydp T
Then the proof is a straightforward calculation, so we omit the details. O

Lemma 3.7. Suppose that x|px is trivial on 1 4+ wO. For each non-negative integer r, we set
X :=/ x(1+y8)d'y,
w" O

where d'y is the Haar measure on O such that vol(O,d'y) = L(1,7g,/p) "DE|]%5 \DF|7%, Then X, = 0 if
1 _1

co(x) > 1 and 0 <7 < cy(x) and X, = |@"| - L(1,75/r) |DElf |Dr| 2 ifr > cy(x).

PROOF. Let Q. =14+ w"Or/1+w"O. If 0 < r < ¢,(x), then x is a non-trivial character on the group

Q.. Note that we have a bijection @O = @Q,, y — 1 + y0 and the pull-back of the quotient measure dt on

Q, is d'y. Therefore, we have

i ’
X, = (t)dt = 0 ?0<r<c(x)

o vol(@w™O,d'y) if r > cy(x)-

This finishes the proof. O
Define the matrix coefficient m° : GLy(F) — C by
-1
w(g) =, (r()W,x(( T )
= WO (d(a)g)W°(d(a))w *(a)d*a.

FX
Since W0 is invariant by K°(w), m°(g) only depends on the double coset K'(w)gK"(w) by ([2.2)). Put
m = mv(Xa,]T) = CU(X) - v(ni) > -1

We set
P (r(R™IVO, x) = P(r()R™WO, ) - L(fFT(;iF)w(w—m det )
o . —1
(3.14) = [, Rz (7 ) wmar

- / m®(d(@™ ) (£)d(@ ™) x (£)dt.
EX [FX

Here we have used the fact that m 4+ v(T(0)) > 0 in the second equality. It follows immediately from the
definition of the projector P, . that

P(m()Wy0: x) =P(m() Py RTWY, X)
w(w™dets)L(1,75,r)
Cr(1)

(3.15)

=P*(n(q)R;W?,X) -

Using the decomposition
EX=F*(1+4+00)UF*(wO+0)
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and Lemma [3.6] we find that

P (r(s)RIWO, ) = /O X(1+ yO)mO (d(w™ )z (1 + yB)d (™)) d'y

T / x(@ + Om®(d(@™ )i (y + B)d(w ™)) |y + 65" 'y
(3.16) w0

=X -m®(1) Z [ X el )y @
TOX

+Y- w(wfm)mo(d(wm"*e”*l)w),

where
1— eU
Yo = / X(y+0)d'y - ||
wO

In what follows, we use Lemma [3.7| and (3.16) to calculate P (7 (¢)Wy 4, X)-
3.8.2. The case v{n_ . Suppose that v {n_, i.e. the central character w is unramified. Then @ implies that
7 is either an unramified principal series or an unramified special representation.

Proposition 3.8. Suppose that 7 is an unramified principal series. Then

1

——  P(n(s) Wy, x) = w(@w™ ‘wC”(X)

|DE|% Jw(detc) if co(X) =
g L(,me/r)?*  if colx) >

PROOF.  Since 7 is unramified, w is unramified and m = ¢,(x). Write # = m(u,v) and let @ = p(w) and
B = v(w). The matrix coefficient m° is a spherical function on GLy(F) in the sense of [Car79, Definition
4.1, p.150], and m°(g) only depends on the double coset K)gK?. By a standard computation (cf. [Wal85,
LEMME 14, p.226)]), we obtain

oo _GrOLOLAdT) o (wlelee() s
(3.17) mW=""0w P S s —a i) P
(3.18) m(d()) = 1 (a+ 5) w1,

B19) W) = e+ 5 (1 fad) md()

If v is inert and m = 0, then

L(1,7g/F)
Cr(1)

_ 1

(- af ) (1 - a"1Bw])

1
=L(;

w(det s HP(r()W?, x) =m°(1) - : |DE|% Dr| 2

1

|DelE
1

;T ®@X) - |DE|E -

Suppose that either v is ramified or m > 0 (so v|t and det¢ = 1). Then we deduce from (3.16]) that

(3.20) PHrORIW ) =l +,ZX — X )w(@ ™) - mO(d( )

Yy wle ) m (d ().
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1 1
If v is ramified and m = 0, then Xy = |Dg|% \DF|_% and Yy = x(wg) |Del; |DF|_%. By (3.20]), we find that

L(17TE/F)
Cr(1)

atB 3 oy Dl DR

(1 + x(@g)al®|®)(1 + x(@g)8 |w|?)

- “m®(1)

1+ ||

P(r()W*, x) =(m’(1) + x(@p)m’(d(=))) Dol |Dr| 2

—(1+

1o
|De|g |Dr|
Cr(1)

1 1
=|Dgl} - L(§>7TE ® X)-

Suppose that m > 0. Note that since x|ox = 1, Yy = —Xg if v is inert and Yy = Xy = 0 if v is ramified.

Combining with Lemma [3.7, (3.19) and (3.20)), we find that

L(1,
PRIV, 3) =X, (1) — (e () () EL L
F
1— —1 1— —1
=w(w™) |@™| - ( aB [=|)( o Bw=|) . mO(l)
1+ |
L(]-yTE/F)Q 1 _1
——————— |Dg|%|Dp| *
1
=w(w@™) |@™|Dplg - L(, 7/r)?.
The proposition follows immediately. O
Proposition 3.9. Suppose that 7 is an unramified special representation. Then
— P(r(6) Wy ) =w(w™) [ W] D
—  P(7w vy X) =w(@w™) |
L(Z, w0 ) X HE
~ L(17TE/F)2 chv(X) > 07
2 if v is ramified and c,(x) = 0.

PROOF. Suppose that vjn;. Then m = m,(x,7) = ¢,(x) — 1. Recall that 7 = 7(u,v) is a special
representation with a unramified character y and pr=—! = |-|. We have
1
W(d(a)) =p(a) la|* Io(a),
Wo(d(a)w) = — p(a) |al? |@| I5-10(a)

(¢f. [Sch02, Eq.(54)]). With the above formulas, we obtain by a direct computation that

1
|D}'|2 . 0

m’ = m®(w) = (— |w|) - m° 'mol w:—ww_%-mo.
W 3iml(w) = (- o) m(0): << w))(u()ll) W

11— |
If ¢, (x) > 0, then it follows from (3.16) and Lemma [3.7) that

L(LTE/F)

P(r(ORy W, x) =Xms1 - (m°(1) — m°(w)) - w(w™) 0

1
=w(@™) [@™ | - |DplE L(L, 75/ r)*.
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If ¢,(x) = 0 (m = —1), then v is ramified, X, = |DE|% |DF|_% » Yo = x(wEg) |’DE|%3 |DF|_% , and
L(I,TE/F)
Cr(1)
1 1 _1 _
= (1 — pl@)x(wg) [@|"?) |De| g Dr| "2 - m®(1)(1 - |@])w(@™)

PORIW. 0 = (X wP() + Yo (1) w)) (@)

1
_ 2[Dplpw(@ )

by (R1
PESE 2 oy (1))
1 1
= 2[Dplfw@ ) Lz w5 @ ) 0

3.8.3. The case vn; . We consider the case 7 is a ramified principal series. Recall that suggests that

7 = m(u,v), where p is unramified and v is ramified, and the conductor a(v) = a(w) = 1. Since x|px = w™!,

we must have m = ¢,(x) —1>0. Let §, := 0 — 0. Let Dg/p be the discriminant of F/F. We begin with a
lemma.

Lemma 3.10. Suppose that x|ox # 1 and x|1+wo = 1. Then

1
i) LOmm) Dol

1
/ X 0)d'y = x(0,) 0, -
Proor. By [HKS96, Prop. 8.2, we have

/ x(y +2716,)dy ::/ x(y +2718,) |y + 2715U|;s_§ dy|sz_%
F F

3 5(07X_17’(/}E)

=x(0,) 04|32 - ——F—F——=.
X( )l |E 6(717(*),1/})

By the assumption, for all » > m + 1 we have

/ Xy +0)dy = x(=@™") - / x(y)dy = 0.

w—rox OX
Thus

/Wmo x(y + 6)dy ZH?m/wro X(y+0)dy = /Fx(y+9)dy= / x(y+2778,)dy.

F

The lemma follows from the fact that
1
d'y = L(1,7g/r) | Dp/r|* - dy. U

Proposition 3.11. We have

g PO ) = [0 IPeli X(0ud5) 80l 20, ) - L1751 -0,
where n, is given by
p(@) [w|™ |Dp|T
(3.21) Ny = =00, . 9) € Z,)-

ProOOF.  We first recall that if £ : F* — C* is a character of conductor a(§), then

e(s,6,9) = €() |72 - S /) | (e=drw®).
a€OX /(1 +wal&)0)
By the equation &(s,&,1)e(1 — 5,671, 9) = £(—1) (c¢f. [Sch02, Eq.(7)]), we see that £(0,&, 1)) belongs to Z(Xp)

whenever v does not divide p and & takes values in Z(p). This shows that n, is a p-adic unit by the discussion

in §73



20 M.-L. HSIEH

We proceed to prove the toric integral. We have
1
WO(d(a)) =v|-|* (a)lo(a),
1
WO(d(a)w) =pl-|? (a)lz-10(a) -

(¢f. [Sch02, Eq.(50) and (51)]). A simple calculation shows that

w(dp)p(w?)
e(0,w, )

mO(1) — 0. mO(w) — wldp)p(@®) 1
(1) - 07 ( ) E(O,w,¢) . (1 — \WD |D.7:| :

It is not difficult to show that if v is ramified, then

Yo = / x(y+0)d'y =0,
w®

and that if m = ¢,(x) —1 > 0, then

/ x(y~ ' 4+6)d'y =0 for 0 <r < m and
wrOX

/ x(y+6)dy=0.
o

From the above equations, we find that

P*(W(C)RUmWOa X) =Xm41-m (1) + Z/ Xyt +6)dy- W(wfm)mo(d(w%%w)w)
TOX

+ Y0 - w(w ™)m(d(?™ T Hw)
[ oy [ md(w)
m®
By Lemma [3.10] we obtain

L(l,TE/F)
Cr(1)

2m % % _l
=@ X(8.)18,|% [De |} [Dr| 2

P(r(ORyW?,x) =P (n(<)Ry W, x) - w(w™)

O b) _Pholdr) Lk e
S(Lwo) 0w e)d-l=) )

L(l,TE F)Qﬂ(w2>|DF|% 2mtl N - . )
- / e(0,w,)? | ‘ Dl X(‘svdFl) 10,]7 (0, x 1,¢E)~

The last equality follows from
6(_17 W, 7/}) = |w,DF|_1 E(O7w7 ¢)
From the above computation and that L(s,7g ® x) = 1, the proposition follows. (Il

3.9. The global toric period integral. We return to the global situation. Let W;p} be the prime-to-p

Whittaker function given by
o= 11 W @ Wim o).

veh, vtp vEh,vtp
Definition 3.12. Let W, o =[], cx Wk, Define the p-modified toric Whittaker function W, by
(3.22) Wy =Wyoo - WL T W2, € Wir, ).
vlp

Let u = (u,) € (OF ®z Zp)* =[], O%, . The u-component W, ,, of W, is defined by

(3.23) Wx,u = Wx,oo ’ ng} : H nyuvﬂ)'

vlp
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Recall that the automorphic form ¢y € A(m) associated to W € W(m, ) is defined by
o B
(3.21) o= w(* o
BeEF

Let ¢y, (resp. ¢y,u) be the automorphic form associated to W, (resp. W, ,,). Let U, =[]
subgroup of (Or ®z Z,)*. It follows immediately from the definition (3.10) that

(3.25) Ox =D Py

u€EU,

olp U, be the torsion

Choose a sufficiently small prime-to-p integral ideal n; such that W, , is invariant by U,(ny) for all v { p.
Let K = [[, K, C GL2(Af) be an open compact subgroup such that

(3.26) K,=Kifv|p; K, CU,(ny) if v { p.

For each positive integer n, put

K} = {g eK|gy,= ((1) i) (mod p™) for all v|p}.

It is easy to verify that W, and W, , (and hence ¢, and ¢, ,) are invariant by K7 for sufficiently large n.
The following lemma immediately follows from Lemma [3.2]

Lemma 3.13. Let T = H v C Ag. Then ¢y is a toric automorphic form in the sense that for allt € T,
we have

W(Lg(t))f/ﬂ‘:ox =x"! (t)ﬁ;m%@x

In addition, for allt € Ty =], .,

T,, we have
(1 () xu =X (O Pxutr—<,

where u - t17¢ ;= utgpt%j) € (Or ®z Z,)*

Decompose ¢ = ¢, ¢, 5 such that (¢ ;,n,) =1 and ¢, has the same support with n,". Define a constant
Cr(x) by
Cr(x) =28 AR N g () T H(ey 1 )w(ng) 7! [T wdet,)
vipt
(3.27) 1 i "
< JI eGom@xmvxg (=dz) - [ xe(=8udz)) 18018, £(0.x, " ¥k, )
w|F, v=ww vlng

Note that C’(x) is actually a p-adic unit as p > 2 and (p,Fn~) = 1. We introduce the normalization factor
N(m,x) given by

(3.28) N(mx) = [] L7, 7)n
vEB(x)

We have the following central value formula of the toric integral P, (w(g)f/_f’@x).

Theorem 3.14. We have

~ -5 Fg(k—l—m)I’E(m—l—l) 1
Py(m()V¢y)? = Dkclr” Gyprzmrte o5 (™) LG me @) Cr(X)N(m,x)*,
where ex, (,X) is the p-adic multiplier given by
1 1 _o
ex,(m,x) = H €(§,7TU®XEJ/)U)L(§,7TU®XE) QXEQ(dfu)'

we N, , v=ww
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ProoF. Note that VFQDX is the automorphic form associated to the Whittaker function

VW = VI Wyoo - WL T W2
v|p
Hence, by Proposition [2.1] we find that

P (m()V{"ox)?
1
= [ PGV Wiy xo) [ [ 7——=— - P(r() W7 1 X)
ole_IE ’ HL@’W/%@XI/) ! v
1
« [T ————Pr(s) Wy o) - L5, 1 © X).
UEh U'fp (277T’C ®X’U) 2
Combining the local calculations of toric integrals of our Whittaker functions (Proposition Proposition
Proposition Proposition and Proposition [3.11]) yields the central value formula. O

Remark 3.15. Let ¢ be the automorphic form associated to the toric Whittaker function W2 := Wy -
[Ioch Wy,w- Then we obtain the following central value formula:

P 7o = |Dilgd PR 1m0 ) CLOON (P

3.10. Non-vanishing of the local Fourier coefficients. In order to prove the non-vanishing of our toric
form ¢, later, we calculate its local Fourier coefficients in this subsection. Define a, , : F* — C the local
Fourier coefficient associated to W, , by

ayw(a) = Wy(d(a)).

To obtain the optimal p-integrality of ¢,, we need the following normalization of the a, .
Definition 3.16 (Normalized local Fourier coefficients). Let

B(x) = {v € h | v is non-split with ¢,(x) > 0}.
For v € B(x), let n, be defined as in if vjn and n, = 1 if v {n,_. Define the normalized local Fourier
coeflicient af , by
ny ' L(L 7, 7))t if v e B(x),
1 if v e A(x),

€y otherwise.

X,V = X0 "

Recall that e, = 1 if v is unramified and e, = 2 if v is ramified.

Let v { p be a finite place. We shall show the normalized local Fourier coefficients a , indeed take value

,U
in a finite extension of Z, and is not identically zero modulo the maximal m,, of Z 1nduced by ¢ : Q— C,.
This is clear if v is split in view of the definition of a} , = a,, in §3.6] The most difficult case is when v is

inert and 7 is ramified at v. We begin with some formulae of a, .
Lemma 3.17. Suppose that ¢,(x) = 0. Then
a® (a) = Wi(d(a)) if vt is unramified,
XA WO(d(a)) + WO(d(aw))x(wr,)  if vin is ramified.

If v | n, then v is ramified and
a},.(a) = pl-* (@)1 0(a).
PrROOF. It is well-known that if 7 = 7(u,v) is a unramified principal series, then
Wod(@) =To@lal* - > p)w()
i+j=v(a),,j>0
(cf. [Bum97, Thm. 4.6.5]). It follows from the definition of W, , that W, , = W2 if v { n is unramified and

1 1
Wy (9) = 3 W2(g) + 5 W2(gd(w))x(wg) if v { n is ramified .
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If v|n, then v € A(x). By v is ramified, and we find that
Weolo) = 5 - WElgd(w) + 5 - Wlgw)e(w)x ().
The assertion follows from the formulas of W in Proposition O

To treat the case v is non-split with ¢,(x) > 0, i.e. v € B(x), we need to introduce certain partial Gauss
sums. For a non-split place v, write 7 = 7(u, v) with unramified p and pr=*(w) # ||~ " if 7 is unramified or
special. Define a character ¥y , , : E* — C* by

(3.29) o) = n(N(D)) - x| 2 (8).

Recall that the partial Gauss sum AVB(J/W,XW) in [Hsil2l (4.17)] is defined by

Ap(Wr ) == lim UoL (x4 0)p(—dp fr)da - [Dp| 2 (B FX).

X,V
n—oo [ _np

Lemma 3.18. Let v € B(x) be a non-split place with ¢,(x) > 0. Then we have

2 ~ 1 1
" a, ,(a) =AU ) - V]| 2 (@)V]- |2 (™
Py @xele) =Aallea) o @ @)

1 ifvin—,

xq—1 ifvlng,

1 -1 _1 . _

™| X(80) 80| 3 S5 222 DR 72 if v | ny

PROOF. It seems very difficult to deduce the above formula of a, ,(a) by a straightforward computation,
so we shall prove the formula by identifying the toric Whittaker function W, , with the image of an explicit
element in the induced representation corresponding to m, via the Whittaker linear functional.

Recall the Whittaker linear functional A : I(p,v) — C ([Bum97, (6.9), p.498]) is defined by

an= [ (] oo i [ (] e-aan

Let ¢ =¢, = <dF dl) and m = m,(x, 7). Define P, (R} € End¢ I(p,v) by
F

PRz S = vl ™ [ ()t

By [Sch02, Lemma 2.2.1], there exists a local new vector section f© € I(y, v)%"(®) such that

W) (9) = Alr(9)f°).
Put fg = Py R fO. Then

We thus have
L 0, (0 —1
a, ,(a) :V"|2(a)/F x(<1 . >)1/’(ax)dx
_po(dr -1 3 -1 -1
fx(< dl))|DF| v (a)/ me’v(ﬂerO)l/J(de az)dz
F F

1 ~ _ _1 1
=) V2 (@) Aa(Wr o) - € [DEI? V]| 72 (@™),

where f2(s)* is the normalized value

) = v (@™ v - 26 (ve=en ‘DE|% Dp|"2).
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To evaluate the value f2(¢)*, we use the computation in (3.16) and obtain

o) = /O ><<1+y0>f°<<-R;mL<<1+y0>R;")d’y+/ OX<y+e>f°<<-R;mbg(ywmm Dplp' d'y

—Xm+1 fO + Z/ 1 + ya ( my)d/y . fO(gd(WQ(m—T)»
r=0 wrox
+ Yo - w(@w ™) fO(sd(@®mHeh)).
To proceed, we need to use explicit formulas for O ([Sch02, Prop.2.1.2]). Suppose that 7 is a unramified
principal series (v{n~) or special representation (v | n; ). Then

3

f)?(C)* =X, - fo(g) + (X — Xyp1) - w(@w™™) - f0(§d(w2(m7T)))

T

+ Yo - w(@™ ™) fO(cd(@® ).

I
o

Let f°P" be the unique KC-invariant function in I(u,v) with f*7"(¢) = L(1, ur=") |D]—'|%. If 7 is an unramified
principal series, then we can take f© = f*?" (JBum97, Prop. 4.6.8]), and following the computation of the case
¢y(x) > 0 in Proposition [3.§| we find that

Q) =X (f2(9) = w(@™ ) f(d(@))) = X - (1= ™| |(@)) - £2(<)
= =" [Pl L(L,7/p).
If 7 is special, then
=t (),
and following the computation of the case ¢,(x) > 0 in Proposition we find that
V)" =X - () = (s - w))
=Xnr1 - (=@ + [w]) (<)
(=)« =" [Dsl} - L(L, ).

Finally, suppose that 7 is a ramified principal series with ramified v (v | n,7). Let B(F') be the group of upper
triangular matrices in GLa(F). Let f© € I(u1,v) be the function supported in B(F)wN(Dy') such that

fO(swn) = \’DF|% for every n € N(Dp').
Then one checks easily that f° does the job. Following the computation in Proposition [3.11} we find that

* —-m m i €(O7X7171/}E) 1 _
@ =@ ™)@ X0 8ulk 5 L 7y Pl [P 1266 w)
— 8(07X_17¢E) L -1
= |w™|- L(1 W (@™ - x(8y) —2A—=L|Dg|Z |Dp| 2.
=] L) o (@) - x(80) 2 Pl D
This completes the proof in all cases. O

To investigate the p-integrality of a% ,,, we define the local invariant p, (¥ ) by

Pk

(3.30) oy (P x0) 1= g}lcfx Vp (U 0(2) = 1).

By [Hsil2| (4.17)], Ag( = x,v) 1s indeed an algebraic integer. Moreover, it is proved in [Hsil2, Lemma 6.4] that
tip (W o) >0 <= Ag(Wr,.,) = 0(mod m,) for all € F*.
Therefore, it follows from Lemma that if v € B(x), then aj , takes values in Z, and
al , =0(mod m,) < /uLp(WmX,U) > 0.

We summarize our discussion in the following proposition.
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Proposition 3.19. Let O be the finite extension of Or_ generated by {a;‘m(l) and the values of X.

}vGB(X)
Then we have

the normalized local Fourier coefficient a , takes values in or every finite place v 1 p,
1) th lized local Fi i X0 k [ O f fi l
(2) if either v & B(x) is unramified or v € A(x), then a3 (1) =1,
(3) if v i n is ramified with c,(x) = 0, then a} (w™') =1,
ifv e , then wvv) = 0 if and only if there exists n, € such that
4) if v e B(X), then i, (U ) = 0 if and only if th o € F* such th

&%, () # 0 (mod m,).

4. REVIEW OF HILBERT MODULAR FORMS

In this section, we review some standard facts about Hilbert modular Shimura varieties and Hilbert modular
forms.

41. Let V = Fe; @ Fez be a two dimensional F-vector space and (, ) : VxV — F be the F-bilinear
alternating pairing defined by (es,e1) = 1. Let L = Ore; ® D]__-leg be the standard Ox-lattice in V', which is
Z) € My (F), we define the involution g — ¢ = (_dc ab>. Note
that if g € G(F), then g* = g~ det g. We identify vectors in V with row vectors according to the basis ey, e,
so G(F) = GLa(F) has a natural right action on V.

Hereafter, we let K be an open compact subgroup of G(A ) satisfying (3.26)) and the following conditions:

self-dual with respect to (, ). For g = ([CI

(neat) K is contained in U(N’) for some N’ > 3 and det(K)NOx , C (KN 0%)%.

We also fix a prime-to-p positive integer N such that U(N) C K.

4.2. Kottwitz models. We recall Kottwitz models of Hilbert modular Shimura varieties following the expo-
sition in [Hid04b].

Definition 4.1 (S-quadruples). Let OJ be a finite set of rational primes not dividing N and let U be an
open compact subgroup of K° such that U(N) C U. Let Wy = Zo)[Cn] with (v = exp(27”). Define

the fibered category Ag:l) over the category SCH jyy,, of schemes over Wy as follows. Let S be a locally
noetherian connected Wy -scheme and let s be a geometric point of S. The objects are abelian varieties with
real multiplication (AVRM) over S of level U, i.e. a S-quadruple (A, X, 1,7™))g consisting of the following
data:

(1) A/ is an abelian scheme of dimension d over S.

(2) t: Or — Endg A ®z Z(D) .

(3) X is a prime-to-0] polarization of A over S and X is the OF ), +-orbit of A\. Namely

= O]."(D)’+)\ = {)\/ € Hom(A7At) Xz Z(D) ‘ N =MXo a, ac OJ—',(I:I),+} .

4) 7 = n@ U@ is a 7,(S,5)-invariant U™ -orbit of the isomorphisms of @z-modules ™ : £ @z
ASCD) 5 VO (4y) = Hy (A5, Z0)) 4 A;D). Here we define (™) g for g € G(A;D)) by ng(z) =
(=) .
= (zg").

Furthermore, (A, ), ¢, 7)) g satisfies the following conditions:

e Let ! denote the Rosati involution induced by A on Endg A ® Zy. Then 1(b)" = 1(b), Vb € OF.
e Let e* be the Weil palrlng induced by A. Llftmg the isomorphism Z/NZ ~ Z/NZ(l) mduced by (N
to an isomorphism ¢ : Z ~ Z( ), we can regard e* as an F-alternating form e : V(&) (A4) x V) (4) —

)
D7 ®g A;D). Let €” denote the F-alternating form on V(5 (A) induced by e"(xl, x2) = (n ( ) n(x2)).
Then

e = u-e" for some u € A;D).

e As Or ®z Og-modules, we have an isomorphism Lie A ~ O ®z Og locally under the Zariski topology
of S.
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For two S-quadruples A = (A, X, 1,77)g and A’ = (A", N, //, 7)) g, we define morphisms by
Hom , o) (4, 4') = {¢> € Homo, (A, A') | ¢*N = X, po 7@ = ﬁ(D)} .
We say A ~ A’ (resp. A ~ A') if there exists a prime-to-0J isogeny (resp. isomorphism) in HomA(m) (A, A).

We consider the cases when O = () and {p}. When O = () is the empty set and U is an open compact
subgroup in G(ASCD)) = G(Ay), we define the functor &y : SCH )y, — SETS by

EU(S) = {(AaSHLvﬁ)S S AK(S)}/N .

By the theory of Shimura-Deligne, &y is represented by Shy which is a quasi-projective scheme over Wy. We
define the functor €y : SCH )y, — SETS by

eu(S) = {(A A7) € AP (S) | 1L 92 Z) = Hi(As. D)} | ~.

By the discussion in [Hid04b, p.136], we have €x = Ex under the hypothesis .
When O = {p} and U = K, we let W = Wx = Z,)[(n] and define functor £ SCH )y — SETS by

v (5) = {(A 2,775 € AL, (S)}/ ~ .

In [Kot92], Kottwitz shows Sf(f) is representable by a quasi-projective scheme Sh(;()) over W if K is neat.
Similarly we define the functor G(f()) : SCH )y — SETS by

e (5) = {(4, L,ﬁ@)) € AP (S) [N (L @7 Z0)) = Hy(A5,27)} | =

It is shown in [Hid04bl, §4.2.1] that (’3 5(p)
Let ¢ be a prime-to-pN ideal of Or and let c € (A} (PN ) such that ¢ = ilz(c). We say (A4, \,, 7)) is ¢-
(K

polarized if A € X such that e* = ue” with u € cdet(K). The isomorphism class [(A4, A, ¢,7P))] is independent
of a choice of A in A under the assumption (¢f. [Hid04bl p.136]). We consider the functor

QSEI_%(S) = {c—polarized S-quadruple [(4, A, ,7P)g] € Qf(p)(S)}.
Then QEE? I)< is represented by a geometrically irreducible scheme Shg)(c) /w, and we have
(4.1) s w=|] Sh¥)w,
[c]eClE (k)

where C1E(K) is the narrow ray class group of F with level det(K).

4.3. Igusa schemes. Let n be a positive integer. Define the functor I}?’)n : SCH )y — SETS by

S = I2.(9) = {(A X un® g)s } / ~,
where (A, X, 1,n®))g is a S-quadruple, j is a level p"-structure, i.e. an Oz-group scheme morphism:
J: DF' @z pupn — Ap"],
and ~ means modulo prime-to-p isogeny. It is known that I}f}n is relatively representable over £ 1(5 ) (¢f. [HLSO6

Lemma (2.1.6.4)]) and thus is represented by a scheme Ig .
Now we consider S-quintuples (A, \,t,17P), j)s such that [(A,\,:,nP)] € (’EEPI)((S). Define the functor

I (¢) : SCH — SETS by

= TPL(S) = {(4,0,0,0), j)s as above | / =

Then I}f)n (¢) is represented by a scheme I ,,(c) over Sh%}) (¢), and Ik ,,(¢) can be identified with a geometrically
irreducible subscheme of I, ([DR80, Thm. (4.5)]). For n > n' > 0, the natural morphism 7, »/ : I n(c) —
Ik n/(¢) induced by the inclusion D}l Qs D}l ®p,n is finite étale. The forgetful morphism 7 : I5 ,(c) —
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Sh(lg)(c) defined by 7 : (4, j) — A is étale for all n > 0. Hence I ,(¢) is smooth over Spec W. We write Ik (c)
for lim I (c).

4.4. Complex uniformization. We describe the complex points Shy (C) for U C G(Ay). Put
Xt = {T = (To)oex € C¥ |Im7, > 0 for all 0 € Z}.

The action of g = (go)oecx € G(F ®q R) with g, = (CCLU 2'7) and det g, > 0 on XV is given by 7 = (7,) —

gT = (%) Let F be the set of totally positive elements in F and let G(F)* = {g € G(F) | det g € F4 }.

Define the complex Hilbert modular Shimura variety by
M(XtT,U):=GF)N\XTxG(Ay)/U.

It is well known that M (X T, K) = Shy(C) by the theory of abelian varieties over C (cf. [Hid04bl §4.2]).
Now we define this isomorphism explicitly.

For 7 = (75)oex € X1, we let p, be the isomorphism V ®q R 5 C¥ defined by p,(ae; + bes) = at + b
with a,b € F @q R = R*. We can associate a AVRM to (7,9) € X TxG(Ay) as follows.
The complex abelian variety A, (7) = C* /p,(L,), where L, := (L ®z Af)g* N V.
The F-orbit of polarization (, ), on A,(7) is given by the Riemann form (, )ean := (, ) o p; L.
The ¢ : O — End A,y (7) ®z Q is induced from the pull back of the natural F-action on V' via p;.
The level structure n, : L ®z Af = (L) ®z Ay = Hi(Ay(7), Ay) is defined by ny(v) = vg".

Let A4(7) denote the C-quadruple (Ag(7), (, )oun> tcs Kng). Then the map [(7,g)] — [A4(7)] gives rise to an

isomorphism M (X*,U) = Shy(C).
For a positive integer n, the exponential map gives the isomorphism exp(2mwi—) : p~"Z/Z ~ K,n and thus
induces a level p™-structure j(g,):

L

g
i(9p): DF' @z ppn = DF'es @z p "Z/Z — L R7p "Z)Z 5 Ag(T)[p"].

K = {geKlng (é D (modp")}~

We have a non-canonical isomorphism:
M(X+v Kin) :> IKJL(C)
(7, 9)] = [(Ag (1), ( Vens 071 (90)]-

Let z = {z},c5 be the standard complex coordinates of C* and dz = {dz,},.y. Then Oz-action on
dz is given by tc(a)*dz, = o(®)dz,, 0 € ¥ ~ Hom(F,C). Let z = z;4 be the coordinate corresponding to
loo : F < Q < C. Then

(4.2) (OF ®z C)dz = H(Ay(7), 2, (r)/C)-
4.5. Hilbert modular forms. Let k =) k.0 € Z>[X] such that
ko, =koy =+ = ko, (mod 2) for all o1,...,04 € X.

For 7 = (7, )oex € Xt and g = ((ZU ZU>)JGE € G(F ®q R), we put

J(g. 7 =[] (como + do)*.
oeX

Definition 4.2. Let kyx = max,ex ky. Denote by My (K7, C) the space of holomorphic Hilbert modular
forms of weight k and level K7'. Each f € M (K7, C) is a C-valued function f : X*xG(Af) — C such that
the function f(—, g¢) : X* — C is holomorphic for each g € G(Ay), and for u € KJ* and o € G(F)™*,

kEmx+k

fla(r,gf)u) = (deta)™ 2 J(a,T)k -£(7,95).

Here det « is considered to be the element (o(det a)),ex in (CX)*.
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For every f € My (K7, C),we have the Fourier expansion
f(Tvgf) = Z Wﬁ(f,gf)€2ﬂ'i’:[‘r}—/Q(’BT).
BeFU{0}

For a semi-group L in F,let Ly = F, NL and L>o = Ly U{0}. If B is a ring, we denote by B[L] the set of

all formal series
Z a,@qﬂ, ag € B.
BeEL

Let a,b € (AgcpN))X and let a = ilx(a) and b = ilz(b). The g-expansion of f at the cusp (a, b) is given by
at 0 _
(43) flon@= 5 Wit (% )’ € CIN )il

BE(N~1ab)>o
If B is a W-algebra in C, we put
M (¢, KT, B) = {f € My(K},C) | f|(a,p)(q) € B[(N"'ab)>¢] for all (a,b) such that ab™" = ¢} .

4.5.1. Tate objects. Let .# be a set of d linearly Q-independent elements in Hom(F, Q) such that I[(F}) > 0
for I € &#. If L is a lattice in F and n a positive integer, let Ly, = {x € L|Il(x) > —n foralll € ¥}
and put B((L;.%)) = nh_}rrgo B[Ly»]. To a pair (a,b) of two prime-to-pN fractional ideals, we can attach
the Tate AVRM Tateq(q) = a* @z Gpn/q® over Z((ab;.#)) with O-action t.q, acting on a*, where a* =
a’lD}l. As described in [Kat78|, Tateq p(g) has a canonical ab~!-polarization A.q, and also carries a canonical
Or ® Z((ab;.7))-generator wean of Qrate, , induced by the isomorphism Lie(T'ateq,s(q) /z((ab;.7))) = 0° @z
Lie(G,,) ~ a* ® Z((ab;.’)). Since a is prime to p, the natural inclusion a* ®z p,n < a* ®z G, induces

a canonical level p"-structure 7, cqn : D;l ®z Hpn = 0 @z Py Tatequ(q). Let Lo = L+ (b al) —

be; @ a*es. Then we have a level N-structure nﬁ’;)n N1/ Lo = Tateqp(q)[N] over Z[(n]((N~1ab;.7))
induced by the fixed primitive N-th root of unity (y. We write T'ate, , for the Tate Z((ab;.#))-quadruple

(Tateu,h(Q)a /\can; Leans ﬁgg)nv np,can) at (a7 b)

4.5.2. Geometric modular forms. We collect here definitions and basic facts of geometric modular forms.
The whole theory can be found in [Kat78] and [Hid04b]. Let T be the algebraic torus over W defined by
T(R) = (OF ®z R)* for every W-algebra R. Let k € Hom(T,G, ). Let B be a W-algebra. For a B-
algebra C, we consider a triple (A, j,w) over C, consisting of [(A,7)] = [(4,\,¢,7®), )] € Ik.n(c)(C) (resp.
[(A,5)] = [(A,X,0,nP), j)] € Ik ,(C)) AVRM with level structures and an 1-form w generating H°(A4, Q4 ,¢)
over Or ®z C. A geometric modular form f of weight k on Ik ,(¢) (resp. Ik ) over B is a rule of assigning
to every triple (A, j,w) over C a value f(4, j,w) € C satisfying the following axioms.

(G1) f(A j,w) = f(4j, &) € Cif (4,jw)~ (4, ') over C,

(G2) For a B-algebra homomorphism ¢ : C — C’, we have

F((Aj,w) @c C') = o(f(A, j,w)),

(G3) f((4,j,aw) = k(a™!)f(4, j,w) for all a € T(C) = (O ®z C)*,

(G4) f(Tate, p,wean) € B[(N~tab)>o] at all cusps (a,b) in I n(c) (resp. I n).
For each k € Z[X], we regard k € Hom(T, G,y yy) as the character  — z*, z € (O ®z W)*. We denote by
My(¢c, KT, B) (resp. My (K7, B)) the space of geometric modular forms over B of weight k on Ik ,(c) (resp.
Ik ). For f € My(KT, B), we write f|. € My(c, KT, B) for the restriction f|7, (-

For each f € My (K7, C), we regard f as a holomorphic Hilbert modular form of weight k and level K}* by

Frg8) = F(AG(T), (5 Vs L Ty, 2midz2),

where dz is the differential form in (4.2). By GAGA this gives rise to an isomorphism My (K}, C) &
My (K7, C) and My (¢, K',C) = My(c, K1, C). Moreover, as discussed in [Kat78, §1.7], we have the following
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important identity which bridges holomorphic modular forms and geometric modular forms
f|(u,b)(q) = f(M(avb)vwcan) € C[[(Nflab)zo]]-

By the g-expansion principle, if B is W-algebra in C and f € My(¢, K", B) = Mg(c, K, C), then f|. €
My (e, KT, B).

4.5.3. p-adic modular forms. Let B be a p-adic W-algebra in C,. Let V (¢, K, B) be the space of Katz
p-adic modular forms over B defined by

V(C,K,B) = I'&HHEHO(IKW(C)/B/;DWLB,O]KYn).

In other words, Katz p-adic modular forms consist of formal functions on the Igusa tower.

Let C be a B/p™ B-algebra. For each C-point [(4, )] = [(A,\, t,n®), j] € I (c)(C) = lim Ik o (¢)(C), the
p>°-level structure j induces an isomorphism j, : ’D;l ®z C ~ Lie A which in turn gives rise to a generator
w(j) of H(A,Q4) as a Or ®z C-module. Then we have a natural injection

w Mk(c,K{‘,B)%V(c,K,B)
4 Fe FA)) = F(A j,w()))

~

which preserves the g-expansions in the sense that ﬂ(a’b)(q) = f(Tate,,) = fl(ap)(q). We call f the
p-adic avatar of f.

4.6. CM points. Recall that we have fixed 9 € K in §3.4] satisfying (d1-3) and the associated embedding
t: K = My(F) in (2.1). The map py: V ®q R ~ C¥, aej + bez — a¥) + b yields an isomorphism py : V ~ K
satisfying

po(z)a = py(zi(a)) for z € V,a € K.
Let ¢ =], < € G(A), where ¢, € G, for each place v is defined in (3.3). Let ¢; € G(Ay) be the finite part
of ¢. According to our choices of ¢,, we have

po(L ®z 2) C}) = Ok ®z VA
Define = : Ag — X" xG(Ay) by
a= (4o, ay) — z(a) := (Vs,tlar)sy).

Let a € A%J}’)X and let

(A(a),5(@) /e = Auays; (92), (; Jeans teans 1P (a), ()

be the C-quintuple associated to xz(a) as in §4.4f The alternating pairing (, ) : KxK :— F defined by
(z,y) = (Ty — 27)/(¥ — ¥) induces an isomorphism Ox Ao, Ox = ¢(Ox) 'DZ' for the fractional ideal

¢(Ox) =D ((Y - E)DQ}F). The hypothesis (d2) on ¥ implies that

¢(Ox) is prime to pc,nDy/r.

Note that ¢(Ox) descends to a fractional ideal of Oz and that ¢(Ox) is the polarization of (1) = (A(1),j(1)).
In addition, z(a) = (A(a), j(a)),c is an abelian variety with CM by Ox with the polarization ideal of z(a)
given by

¢(a) := c(Ox)N(a)™t  (a =ilc(a)).
It thus gives rise to a complex point [z(a)] in Ix(¢(a))(C). Let W, be the p-adic completion of the maximal
unramified extension of Z, in C,. The general theory of CM abelian varieties ([Shi98]) combined with the

criterion of Serre and Tate ([ST68]) imply that [z(a)] indeed descends to a point in Ik (¢(a))WV,) = Ix(W,),
which is still denoted by z(a). The collection {[z(a)]} C Ix(W,) are called CM points in the Hilbert

modular Shimura varieties.

aE(A%’f}”)X
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5. ANTICYCLOTOMIC RANKIN-SELBERG p-ADIC L-FUNCTIONS
5.1. Toric forms.

Definition 5.1 (Toric forms). We define the complex Hilbert modular form f, : Xt xG(Af) — C associated
to ¢y by

. _kmeE+k i
£ (7.97) =0x(9) - L(goos 1) (det goo) 7 |det g7,
(i=(W-1sex, 9= (goo,95)s gool =7, det goc > 0).

Here det go, = (det gy )oex € (R*)* and det go, > 0 means det g, > 0 for all o € X.
Let £7 be the normalization of f, given by

(5.1)

* — —Kkma/2

£ = N(m,x) " [detcsly 2x,.
Let 67" be the Maass-Shimura differential operator (c¢f. [HT93, (1.21)]). Then the normalized differential
operator V" defined in (3.7) is the representation theoretic avatar of §;"* in the following sense:

ST e (T, 97) = (VI0x) (oo 95 )L (go0+ 1) 2™ (det goo) ™ |det g| g/

(cf. [Hsil2, §4.5]). We call §;*f; the normalized toric form of character x associated with the Hilbert modular
form f.

kEmaeX+k+2m
2

Similarly, for each u € (O ®z Z,)*, we let £ , be the normalized modular form associated to the u-

component ¢, ., (¢f. Wy, in (3.23)). It is clear from (3.25)) that
(5.2) £r=> £,
u€EU,
Let KT' be the open compact subgroup defined in (3.26). Then f; and {f;vu}ueu belong to My (K7, C) for
sufficiently large n.
For a € (Agg})f)X x(Ox @ Zp)*, we consider the Hecke action |[a] given by
] - Mi(e(a), KT, ©) = My(c, o K7, C) (KT 1= to(@)KJu(a)),
f — f|[a](T,g7) :==£(7, gt (a)).

The Hecke action |[a] can be extended to the spaces of p-integral modular forms (c¢f. [Hsil4bl §2.6]). It follows
from Lemma immediately that

(5-3) £3 ulla] = x71):

5.2. The toric period integral. Next we consider the toric period integral of f;. Let Ux = (K ®q
R)*x(Ox ®z Z)* be a subgroup of A¥ and let Cl_ = K*A*\AZ/Uk. Let R be the subgroup of Ag
generated by KX for all ramified places v and let CI™# be the subgroup of Cl_ generated by the image of R
By Lemma and the fact that 7 = AXUxR, we have
(5.4) Po(m()VI™py) = vol(Ug, d)s(C18) - Y~ Vo (u(t)s)x (1)

[tlect_/C1™®

f{’}f/?(a) A a1 foralla € Ty (u.a*~¢ = uagpa%i).

Let D1 be a set of representatives of Cl_/Cla_lg in (A,(é)f}[))x. We define the y-isotypic toric period by
* * —kma/2
POTE) = Y opti(a(@)x]- [ ().
a€Dy
Proposition 5.2. Let Dy, 5 be the discriminant of K/F. We have
Ls(k+m)Ls(m+1) 1

Px(ézn ;)2 = [O)é : O;]z : (Imﬁ)k+2m(4ﬂ')2m+k+1 ’ L(iaﬂ-lc ® X) ! GZP(WX) ’ CTI’(X>7

where

2
.  (#(Clh .
Cr(x) = Cr(x) 4™V Nz /q(Dic/7) [ (W) € Zy)
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and CL(x) is defined in (3.27)).

PrOOF.  We first note that the ratio % is a power of 2, so the constant C(x) is a p-adic unit. By
definition, we have

kma /2

£ (2(a)) = @y (e(ag)s)(Imd) /2 |N(a) det o7y
By , we find that
1
N(mx) - (Im )

vol(Ug, d*t)§(CIM®) - P (67£]) = T POV ey).

From the well-known formula
. hic/h
2L(1,7xc)5) = (2m)F QL. T ’C,/l = x . %7’
|Dklg [Drlr* - [Ok : OF]

we see that
vol(Uk, dt) =vol(K* A*\AZ, dt) - 4(C1_)~*
2179l | D s |3 hi
Delg (07 03] BrHCL)

=21~ VR, i r) - H(CL) T =

The proposition follows form Theorem [3.14] immediately. (]

5.3. The Fourier expansion of 7 ,. Let u = (uy) € U,. We give an expression of the Fourier expansion of
£3 .- Let Wy u ¢ be the finite part of W, ,. By the definition of f, ,, we have

= T o )5 %)

BEF
(5.5) _ Bg% Wt ( (ﬂ 1) g7) B/ 23 T ()
(T = Too + Woo = (To + 1Yo )oex € XT)
The second equality follows from the choice of Whittaker functions at the archimedean places .
We define the global prime-to-p Fourier coefficient ay (), (A(p )* — C by

a?@ =N W(" )@= () e ap)
(5:6) T e ) T we(™ )

veB(x) vg€B(x),vtp
=TI aja
vEh,vtp
Here af , are the normalized local Fourier coeflicients defined in Definition

Proposition 5.3. Let ¢ be a prime-to-p ideal of F and let ¢ € (A,(g)f)X such that ilz(c) = ¢. Then the Fourier
expansion of £ , at the cusp (OF,¢) is given by

fuloro@= Y asf,.0d,
BE(N~1e)4
where
ag(fy ,.c)=p"aP (Bec) [ xw(B My (sw,0r,)(B)-
weX, v|w
In particular, £, € My (K}, 0) by Proposz'tion and the Fourier expansion of £ at the cusp (OF,c) is
given by

Y Xu

filora@= > asf] )’

BEN~1e)y
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where

ag(fy, ) = 8%aP (B T[] xw(B8 ) Tox (B):

weZ

Proor. It follows from the definition of W, , that

e ) ) T ()

vlp
Be ! _
("7 ) T e smon®)
weX, v|w

The proposition follows from (5.5)) immediately. The Fourier expansion of f; follows from ([5.2). O

5.4. p-adic L-functions. Now we resume the setting in the introduction. Let K, be the maximal anticy-
clotomic ZZ[,J::Q]—extension of K and let I'™ = Gal(K,~ /K). Let C(I'") = C(I'", Zy,) be the space of continuous
functions ¢ : '™ — Zp. The reciprocity law reck at X, induces a morphism
recy, (.7:®Q Qp) ~ H ch,ﬂfﬁ
wEZ,
Let %g’it be the set of critical specializations, consisting of p-adic characters QAS : I'™ — €} such that for some
m € Zzo[E],
(;Aﬁ(recE (x)) =a™ for all x € (O ® Z,,)™ sufficiently close to 1.
Let ¢ be an anticyclotomic Hecke character of p-power conductor and of mﬁmty type (m,—m) with m €
Z>o[X]. Then ¢ is unramified outside p and ¢|ax = 1. The p-adic avatar d) of ¢ belongs to %C“t. To be
pr_ecise, let ¢, =[], 5, ¢w. Then we have

(5.7) g(rec;p (z)) = ¢z, (x)x™ for every z € (F ®q Qp)™.
Hereafter, we let A be a Hecke character of * and assume that Hypothesisand hold for (w, A). Note that
Hypothesis |A| and also hold for (7, A@). We will apply our calculations in §3|to the pair (7, x) = (7, A\@).
Lemma 5.4. Let ¢ be as above. Then

(1) a (P) _ a)\P)‘

(2) c; (/\fb) Cr(N)o(3).
Proor. If vt p is split, we have remarked that W = Wy, ». If vis inert or ramified, then ¢, =1
as ¢, is unramified and p > 2. Therefore, we have W)g;) P = W;(p ])c Part (1) follows from the definition of

ag\p ¢) (5.6) immediately. Next, recall that we have defined CJ(x) for a Hecke character y in (3.27). Since ¢ is
anticyclotomic and unramified outside p, part (2) follows from the fact [Sch02, Eq.(11)]

1 1

5(577TU®AE¢W7'(/)'U) :5(5771-1)@)\@71#)%(])3:5) (’U:ww7 UJ|S) D
Let Op := Ofr ®z Z, and let T" := recx, (1 + pO,) be an open subgroup of I'". Let {6(0)} .5 be the

Dwork-Katz p-adic differential operators ([Kat78, Cor. (2.6.25)]) and let 6™ :=[] ., 0(c)™".

,U

Proposition 5.5. There exists a unique p-adic distribution Fy . : C(T7) — V (¢, K, Z,) such that
(1) Fa,c is supported in IV,
(ii) for every ¢ € %Zcfit of weight (m, —m), we have

g:A,c(¢) = 0mf;¢,c'
PrROOF. We denote by JF ((¢) the p-adic measure with values in the space of formal g-expansions such that
for every ¢ € C(T'7),

Fre@) = D as(ff,)p(recs, (8))d”.

Be(N~1e)t
Note that ag(f},c) = 0 unless 8 € (’)X , and thus F  has support in IV by definition.
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Let gg be the p-adic avatar of a Hecke character ¢ of infinity type (m,—m). By [Kat78|, (2.6.27)] (¢f. [HT93|
§1.7 p.205]), the g-expansion of 0™ £}, is given by

"yl or0@) = Y. as(fiy o, (8)B™d".

BE(N~Le)4
Therefore, by Lemma and (5.7) we find that
(5.8) Fre(@)(@) = 0154 (a)-
By the g-expansion principle, this measure descends to the p-adic measure Jy  with values in the space of
p-adic modular forms V (¢, K,Z,). O

We are ready to define the p-adic L-function.
Definition 5.6. For a € AZ, define |[a] € End(C(I'")) by ¢ — ¢l[a](0) := ¢(oreck(a)|r-). Fix a square
root \/Cr(A) € Z; of the constant Cr(\) and let A = A - |-|;i’"‘°/2. We define the p-adic integral distribution
&y (m,X): C(I7) = Z, by

(5.9) Ly, (T, M) (p) = Z Aa) - (Frew (#lla)) (2(a)).

V a€D;

We will still denote by Zs;, (m, ) € Z,[I'~] the corresponding power series.

We give the evaluation formula of Zs (m, ) at critical specializations. Let (Qu0,€,) € (CX)EX(ZZ)Z
be the complex and p-adic CM periods of (K, X) introduced in [HT93, (4.4 a,b) p.211] (¢f. (22,¢) in [Kat78|
(5.1.46), (5.1.48)]) and let Qx = (2mi) "' Q. For each Hecke character x of infinity type (m,—m), we define
the algebraic L-value by

1 Is(m)T's(k+m) L(3m®Xx) =

al L X X 2

(5.10) L g(ivw’c ®x) = (Im 0)F+2m (47 )h+2m+13 "~ o2(k+2m) €Q.
K

The algebraicity of this L-value is due to Shimura [Shi78§].

Theorem 5.7. Suppose that Hypothesis and hold. Then for each p-adic character a € %Icfit of weight
(m, —m), we have the evaluation formula

(zzp (7, A)(9)

k+2m
Qp

2
) —[0F : OFP? e, (m M) LY5 (5, mc @ 20) - 671 (3).

ProOOF. It follows from [Kat78, (2.4.6), (2.6.8), (2.6.33)] that

1 e 1 m
Q’;W f)\d;( ( )) = Q;}?_gm 5k f,\¢>( ( ))
We thus have
1 ~ -1 m
oz 2, (mNB) =VCx(N) 3 A(0) - 07 E (2(a)
p a€Dy p
1
= Sigam - Prg(05'1xp)-
Q2. JOr (V)

Combined with Proposition and Lemma (2), the above equation yields the proposition. O

6. THE p-INVARIANT OF p-ADIC L-FUNCTIONS

In this section, we use the explicit computation of Fourier coefficients of {f;\" u} to study the p-invariant
W uel

of the p-adic L-function Zx;, (7, \) by the approach of Hida [Hid10b].

p
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6.1. The t-expansion of p-adic modular forms. We begin with a brief review of the t-expansion of
p-adic modular forms. A functorial point in Ix(c) can be written as [(4,7)] = [(4,\,¢,7?), )]. Enlarging
W, if necessary, we let W, be the p-adic ring generated by the values of A on finite ideles over the Witt ring
W (F,). Let myy, be the maximal ideal of W), and fix an isomorphism W,/myy, = F,. Let T := O% @z pto
and let T = 0% @z Gm/W be the formal completion. Let {&1,...,£4} be a basis of Ox over Z and let t be
the character 1 € O = X*(0F% ®@z G,,) = Hom(O% ®z Gy, Gy). Then
Oz S WylSi,...,S4 (S;i=t%—1).

Let x := (1) sy, € Ix(c)(Wp) be the CM point introduced in nd let zg = x@w, F), = (Ag, jo) € Ik (¢)(Fp)
be the reduction. The theory of Serre-Tate coordinates ([Kat&1]) tells us the deformation space §r0 of xg is

1somorphlc to_ the formal torus T and the p>-level structure jy of Ag induces a canomcal isomorphism
Pao T/W = Szo = Spf OIK(C) z (¢f [Hid10D, (3.15)]). We will regard the character ¢ on T as a function on

S, via @g,. Then x is the canonical lifting of zo, i.c. t(x) = 1. For f € V(c, K, W,), we define
f(t) :=¢z,(f) € Op = Wp[S1,..., Sal.-

The formal power series f(t) is called the t-ezpansion around xg of f.

6.2. The vanishing of the p-invariant. Let 7_ : (Agéi]}[))X — I'” be the natural map induced by the
reciprocity law. Let Z' = 7~ !(I") be a subgroup of (A%,J}[))X and let CI'_ O CI™# be the image of Z’ in Cl_.
Let D} (resp. DY) be a set of representative of CI' /CI™® (resp. CI_/CI") in (A%’f}[))x. Let Dy := DD}
be a set of representative of Cl_/ CI™&. Recall that U, is the torsion subgroup of O;. Let U be the torsion
subgroup of KX and let U8 = (K*)!=¢n Of be a subgroup of Y. We regard U8 as a subgroup of O, by
the imbedding induced by X,. Let Dy be a set of representatives of U, /U8 in U,,.

Let ¢ := ¢(Ok) be the polarization ideal of the chosen CM point x(1). The following theorem reduces the
calculation of the p-invariant p ) s to the determination of p-adic valuation of the g-expansion of f3 .

Theorem 6.1. Suppose that p is unramified in F. Then

Hoam = 0 plas(E . c(@)
BEFy

PrOOF. For every pair (u,a) € UpyxDy, we let £;, = £ [c@a) € Mi(c(a), K,0). Let F,, be the
p-adic avatar of f; ,. Fix a sufficient large finite extension L over Q, so that x and f; ,|[a] are defined
over Oy, for all (u,a), and hence F,, 4|[a] € V (¢, OL). For each z € Z’, let (z) be the unique element in 1+ pO,,
such that recy, ((z)) = 7_(z) € I'". For (a,b) € D1xDY, we define

=Y Fualt* ),

u€Up
= > Mab™Falla)e! ).
ac€bD,

Let % (m, A) be the p-adic measure on 1+ pO, ~ I" obtained by the restriction of Zs () to 7_(b)I". In
other words, for each continuous function ¢ : IV — Zp, we have

LE(m N (p) =L, (N (o - ol[b7])
= Y Na)F e (llab™Y])(z(a)).
aEbDi

Here the second equality follows from the fact that Fy .(4) has support in I (Proposition i)). The argument
of [Hsil4b, Prop. 5.2 shows that F°(¢) is the power series expansion of the measure .Z% (7, \) regarded as a
p-adic measure on O, and that

Hrns = bler%)f” w(F?), where

©(F) == inf {r € Qso | p"F* # 0 (mod m,)} .
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By (5.3) we find that
Falt) = gU™) - Y Fua(t™ ),

u€Dy
and hence

F) =) Y Mab )Tyl

(u,a) €Dy xbD]

Proceeding along the same lines in [Hsil4b, Thm.5.5], we deduce the theorem from the above equation by
the linear independence of p-adic modular forms modulo p acted by the automorphisms in DyxDj ([Hid10bl,
Thm. 3.20, Cor. 3.21]) and the g-expansion principle for p-adic modular forms. |

Theorem 6.2. In addition to Hypothesz's and @, we suppose that p is unramified in F and
(aiK) the residual Galois representation p, (i) = pp(7)|c, (mod my,) is absolutely irreducible.

Then Par s =0 if and only if

Z Mp(w‘n',)\,v) =0,

vley

where p,(Pr xp) are the local invariants defined as in (3.30)).

ProoF. It is not difficult to deduce from the formula of ag(f} ,, ¢(a)) in Propositionand Proposition
that
tip(Pr n0) > 0 for some vlcy = ag(fy ,, c(a)) = 0 (mod m,) for all a € AT,

and hence p_, 5, > 0 by Theorem
Conversely, we suppose that ji,(¥r x») = 0 for all v|c. We are going to show p_ , - = 0 by contradiction.

Assume that P .5 > 0. By Proposition Theorem for each a € A,(g}/) we find that
ag(fy ,,c(a)) =0 (mod m,) for all u € Uy, and B € Fy

= a”(Be'N(a™")) = 0 (mod m,) for all 3 € OF (v

Therefore, as a function on (Agcp ))X, we have
61) al” (a) = 0 (mod m,,) for all
6.1

_ N _
a € 0% et det(U(N)N((AL)*) = F*e 'N(AF))).

By Proposition , there exists n = (n,) € Hu|c; F,¢ such that a ,(n,) # 0 (mod my) for each v[cy. We

v

extend 7 to be the idele in A} such that 7, = 1 at v { ¢. Therefore, (6.1) together with the factorization
formula of ag\p ) (5.6) imply that for each uniformizer w, at v { pr, we have

(p) (nw,) =0 (mod m,) = W( (w >) = 0 (mod m,) whenever

1
@, € [l == Py e IN((A) )
On the other hand, by (3.2)), we find that

(6.2)

Tr pp(m)(Frob,) = w(wv)_l |wv|_k”w/2 WS( (wv 1)) for all v { pn.

Let recx,r : Ag — Gal(K/F) be the surjection induced by the reciprocity law. Combined with (6.2)), the
above equation yields that

Tr pp(7)(Frob,) = 0 (mod m,) whenever

Frob,|c = recx/z(w@,) = rec,7(n 'e™).

This in particular implies that recy/, #(n~te™1) must be the complex conjugation ¢, and hence we arrive at a

contradiction to (aiK)) by the following Lemma O
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Lemma 6.3. Let p > 2 be a prime. Let G be a finite group and H C G be a index two subgroup. Let
p: G = GLa(F),) be a faithful irreducible representation of G. Let T = Trp : G — [, be the trace function.
Assume that

(1) There exists an order two element c € G — H,
(2) T(he) =0 for all h € H.

Then p|g is reducible.

PrROOF. The assumption (2) implies that T(¢) = 0, and hence det p(c) = —1. We may assume that p(c) =

<(1) (1)) Suppose that p { #(G). By the usual representation theory of finite groups, we have

(Tl Tl)-

DN =

L= (1T) = s 3 T Tl ™) = gy 3 TOT0) =

geG heH

Since (T|#, T|m) = 2, we conclude that p|g is not irreducible.
Now we assume that p | §(H). For each b € M(F,) with b? = 0, define the p-subgroup P, of p(H) by

Py={h € p(H)|h=1+azb for some z € F,}.

Let h € H be an element of p-power order. It is well known that (p(h) — 1)> = 0, and hence T(h) = 2 and
det p(h) = 1. Combined with T(hc) = 0, these equations imply that

. 1 1 1 -1
p(h) € Py, or Py, with by = <_1 1) , by = (1 _1> .

Note that either P, or P, is trivial. Indeed, if hy # 1 € P, and ho # 1 € Py,. Then hihy € H and
Tr(hihoc) # 0, which is a contradiction. In particular, we conclude that elements of p-power order in H are
commutative with each other and that there is only one p-Sylow subgroup of H, which we denote by P. It is

clear that H normalizes P. Since P # {1}, there is a unique line fixed by p(P), which is an invariant subspace
of p(H). We find that p|p is reducible if p | §(H). O

Remark 6.4. The assumption (3) in Theorem [B|in the introduction implies the vanishing of p, (¥, » ) for
all v|c} .

7. NON-VANISHING OF CENTRAL L-VALUES WITH ANTICYCLOTOMIC TWISTS

In this section, we consider the problem of non-vanishing of L-values modulo p with anticyclotomic twists.
Let ¢ # p be a rational prime and let [ be a prime of F above ¢. Let I'| := Gal(K../K) be the Galois
group of the maximal anticyclotomic pro-¢ extension K. in the ray class field of K of conductor [*°. Let
X? be the set consisting of finite order characters ¢ : I — . Fix a Hecke character x of infinity type
(k/2+m,—k/2 —m). We assume

(p[, I‘lD}C/]:) =1.
When p { Dy, we know the algebraic L-value L*8(%, 7x ® x¢) € Z,, in (5.10) in view of Theorem Recall
that m,, is the maximal ideal of Zp. This section is devoted to proving the following result:

Theorem 7.1. With the same assumptions in Theorem [6.3, we further assume that
(1) (pl,neyDiy7) = 1.
(2) pp(Ur x0) =0 for all vlcy .
Then for almost all ¢ € f{? we have
1
Lalg(i, T @ x¢) # 0 (mod my,).

Here almost all means "except for finitely many ¢ € XV " if dimq, Fy = 1 and "for ¢ in a Zariski dense subset
of X0 " if dimq, Fy > 1 (See [Hid04a, p.737]).

When F = Q, an imprimitive version of the above result under different assumptions is treated in [Brallb.
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7.1.  After introducing some notation, we outline the approach of Hida [Hid04a] to study this problem. We
shall take v = ¢,nDx /7l to be the fixed ideal in For every n € Z>g, let Rin := Ox + ["Ox be the order
in K of conductor [". Let Un = (K®q R)* (R, ®zZ)* and let Cl, := K*A*\AZ /U be the anticyclotomic
ideal class group of conductor [". Denote by [-], : Ag — Cl,, the quotient map. Let Cl = l&nn Cli.. Let
I be the [~adic Iwahori subgroup of K [0 given by

b
I[:{g:<ccl d)GK?|CEW[Df!}.

Let Ko(I) := K'Iy = {g € K | g1 € I} be an open compact subgroup of GLa(A ). Recall that the Uj-operator
on My (Ky(l), C) is given by

o Wy ud;-l
FlUlrgs)= Y.  F(r.gs ( o ,>),
u€O 5 /I0F
We briefly outline the approach of Hida to prove Theorem [7.1] as follows:
(1) Construct a suitable p-adic modular form ?;2 which is an eigenfunction of Ui-operator with p-adic unit
eigenvalue.
(2) Consider Hida’s measure <,0;LC on Cl. attached to f; (7.1) and show the evaluation formula of this
measure is related to central values L*'8(1, 7 ® x¢) (Proposition [7.3).
(3) The Zariski density of CM points in Hilbert modular varieties modulo p reduces the proof of Theo-
rem n to the non-vanishing of certain Fourier coefficients of f; at some cusp ([Hid04a, Thm. 3.2 and
Thm. 3.3]).

We remind, as the reader will note, that the proof is very close to Theorem [5.7]and Theorem[6.2} The essential
new inputs in this section are the choice of U-eigenforms and the computation of local period integral at [.

7.2. CM points of conductor [". Let n € Z>;. We choose gl(n) € G, as follows. If [ = £¢€ splits in K,
writing ¥ = ¥geg + Ueee (so dr, = V¢ — U5 is a generator of Dr, ), we put

Jm_ (Ve -1 (@
- =\1 o 1)
my (0 1 wy
R 1)

Let ¢(™ := g[(”) [, Sv- According to this choice of g[(n), we have

If [ is inert, then we put

§}n) * (g ®Z 2) = Qﬁ(R[n).
Define z,, : A — X+t xG(Ay) by
znla) = (05, apct™).
This collection {z, (a)}aeAé of points is called CM points of conductor [". As discussed in {zn(a))}

descend to CM points in Ix (W,).

ae(Aﬁpr)f) x

7.3. The measures associated to Ui-eigenforms. We construct the Uj-eigenform fj( as follows. Write
m = 7w(pr, vi). Define the local Whittaker function T/V[Jr € W(m, ) by

1 w71
Wilo) = Wtg) — sl P OWG (T ),

It is not difficult to verify that

° VV[Jr is invariant by I,
a 1
(")) = m @t o)

_1
o VV[Jr is an U-eigenfunction with the eigenvalue vi(wy) || 2.
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Define the normalized global Whittaker function W;g by

— —kma/2
W= N~ detsp 1) TT Wi T W W,
oeX vEh,v#l
where N (7, x) is the normalization factor in (3.28). Let go;f( be the automorphic form associated to W;g as in
(3.24) and let f;; be the associated Hilbert modular form as in Definition
The following lemma follows from the choice of our Whittaker function W; and the construction of f;.

Lemma 7.2. Recall that R is the group generated by K for all ramified places v in Ag. We have

(1) £} is toric of character x outside [, and

£l (zn(ta)) = £ (2 (6))x |- [5/%(a) for alla € R - (Rin ©2 Z)*.

(2) fLﬁ = f; for every ¢ € XY.

PROOF.  Part (1) follows immediately from the fact that W} is a toric Whittaker function outside [ in view
of Lemma In addition, for every ¢ € i’?, ¢ is anticyclotomic and unramified outside I. We thus have
W; = W; ¢» which verifies part (2) (¢f. Lemma . O

Following [Hid04al (3.9)], we define a p-adic Z,-valued measure goTX on Ol attached to the p-adic avatar
’f\; of f; as follows. For a locally constant function ¢ : Cl. — Z, factoring through Cl., we define

(7.1) /C pdgl =i S 0 (@) R(0)((aln),

fioe lal.€Cl5,

where oy = vi(w) || P and X is the p-adic avatar of x/|- \Ki’"‘”/z. One checks that the right hand side does
not depend on the choice of n since f; is an U-eigenform with the eigenvalue «y.

Let ¢ € X? be a character of conductor [". We view ¢ as a character on Cl}, by the reciprocity law.
Following the arguments in Proposition -2 and Theorem [5.7] we can write the measure as a toric period
integral of Vfgo;r@:

Ql;:c-i-Qm _ -1 1
. 1 oy

— vol - ' '
vol(Ug, dt) (Im)k/2+m  L(1, 7,/ 7,) |w]”

Pyg(m(s"™)Vm! ).
Here we used the fact that

vol(Upn, dt) = vol(Uk, dt) - L(1,7ic, ) 7,) |woi|™ .
We have the following evaluation formula.

Proposition 7.3. Suppose that (I,c,nDx,r) = 1. For ¢ € }I? of conductor I with n > 1, we have

2
1 Wy -n al 1
m/ odel | = | rln [OF  OF - LM®(<, e @ x6) - Cr(X)9(3).
2 Clie o 2

PrROOF. In view of (7.2), it remains to compute PX¢(7T(§(H))‘7_?Q0;¢)2, which can be written as a product
of local toric period integrals as in the proof of Theorem We have computed these local period integrals
in §3.7 and §3.8 except for the local integral at [, which will be carried out in the following Lemma[7.4] The

desired formula is obtained by combining these calculations. O

Lemma 7.4. Suppose that x\ is unramified and ¢ € X0 has conductor ", n > 1. Then

1
P(r(s"™ W/, x¢) = Dk, |E, - wi(@}) || L1, 7ic,/7,) 7
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PROOF.

Write F' = Fi (resp. E = K;) and @w = w;. For t € E, we put

LE") (t) := (gl(n) )~ L(t)g[(n) )

First we suppose [ is split. A direct computation shows that

1 w"di! t 1 —w dit
() (4) — F £ F .
Co=( ) (6 W) )

1
(") 7" = (

£
1 0
whdr —1)°
w (et ™) P(r(s™)W, x0)

)6 ()

U e @xsos(o)ad s
L O A e AR

We find that

=/ Y(—dp'w "z) e (z)d*x - ; Y(dp'w "a)¢s (a)d*a
=e(1,¢5 ", ¥)pe(—1)e(l, ¢e,¥) - (r(1)* = |@"Dp| L(1,75/r)*

This proves the formula in the split case.

Now we suppose that [ is inert. We shall retain the notation in Define m' : G| — C by

m'(g) = bi(n(g) W, W/).
Then mf(g) only depends on the double coset I;gI;. Put

j / m' () (6)) () dt.
EXFx
It is clear that
n . L, 75 p)w(dets™)
(7.3) P(r(s" )W, x¢) = P* - - ‘
¢r(1)
For y € w"Oy, it is easy to verify that Lén)(1 +y60) € I if r > n and

1M1+ y0) € Iiw (w ) w’”") Lif0<r<n (w
If z € @wOp, then

n w”
P )(I+0)EI[W< w‘") Ii.
computation shows that

Note that n = ¢(¢) = ci(x¢) as in (3.1). Combined with the above observations and Lemma a direct

P =X, m'(1)+(-X,) mf(w (w wl))

b (Tt x,
y () v(w)

1—p v |(w 1
. — ) ,Lt[ [‘ |( ) . ‘IDF|2 Xn
I—|w|  1—p ul|(@)  wm(@)—wn(=)
1 1
=— . [L(1 "Dg|3.
1_|w| (7TE/F)|w || E‘E

The formula in the inert case follows from ([7.3) immediately.
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7.4. Proof of Theorem We prove Theorem [7.1] in this subsection. By the evaluation formula Proposi-
tion it boils down to proving that

(7.4) / ¢del, # 0 (mod my,) for almost all ¢ € XY.
Cls

By [Hid04al, Thm. 3.2, 3.3] together with the toric property of f; Lemma (¢f. [Hsil2] Lemma 6.1 and
Remark 6.2]), the validity of (|7.4) is reduced to verifying the following condition:

(H')  For every u € Of, and a positive integer r, there exist 8 € O;,(p) and a € (Agg’l}f))X such that
B = u(mod [") and
aB(f;L, ¢(a)) # 0 (mod my,).
The verification of (H') under the assumptions and i, (Wr,y,») = 0 for all v|c; follows from the same

argument in Theorem Note that for a polarization ideal ¢(a) (¢ = ¢(Ok), a € (A,(g[})x) and a totally

positive 3 € (’);’(p) N Og,, we have (¢(a),pl) =1 and

ag(fl, c(a)) = 6 [] a},, (B, 'N(a; ™)) - vl |5(8) (iF(c) = o).

vtpl
Let u € O, and let n* = (n;/) be the idele in A such that a3 , (1)) # 0 (mod m,) for all v|c’, ni* = u and

n¥ =1 for all v ¢ le;, . To verify (H'), we simply proceed the Galois argument in Theorem replacing 7 in
by n“ therein. This completes the proof of Theorem
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