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Abstract. We construct the three-variable p-adic triple product L-
functions attached to Hida families of elliptic newforms and prove the
explicit interpolation formulae at all critical specializations by estab-
lishing explicit Ichino’s formulae for the trilinear period integrals of au-
tomorphic forms. Our formulae perfectly fit the conjectural shape of
p-adic L-functions predicted by Coates and Perrin-Riou. As an appli-
cation, we prove the factorization of certain unbalanced p-adic triple
product L-functions into a product of anticyclotomic p-adic L-functions
for modular forms. By this factorization, we obtain a construction of the
square root of the anticyclotomic p-adic L-functions for elliptic curves
in the definite case via the diagonal cycle Euler system à la Darmon and
Rotger and obtain a Greenberg-Stevens style proof of anticyclotomic
exceptional zero conjecture for elliptic curves due to Bertolini and Dar-
mon.
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1. Introduction

The aim of this paper is to construct the three-variable p-adic triple prod-
uct L-functions attached to Hida families of ellptic newforms in the unbal-
anced and balanced case with explicit interpolation formulae at all critical
specializations. Let p be an odd prime. Let O be a valuation ring finite
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flat over Zp. Let I be a normal domain finite flat over the Iwasawa algebra
Λ = OJΓK of the topological group Γ = 1 + pZp. Let

F = (f , g,h)

be the triplet of primitive Hida families of tame conductor (N1, N2, N3) and
nebentypus (ψ1, ψ2, ψ3) with coefficients in I. Roughly speaking, we con-
struct a three-variable Iwasawa function over the weight space of F inter-
polating the square root of the algebraic part of central values of the triple
product L-function attached to FQ and prove explicit interpolation formulae
at all critical specializations. We would like to emphasize that our formulae
completely comply with the conjectural form described in [CPR89], [Coa89a]
and [Coa89b] and is compatible with other known p-adic L-functions. For
example, when g and h are primitive Hida families of CM forms by some
imaginary quadratic field, we show that the unbalanced p-adic L-function is
the product of theta elements à la Bertolini-Darmon. In order to state our
result precisely, we need to introduce some notation from Hida theory for el-
liptic modular forms and technical items such as the modified Euler factors
at p and the canonical periods of Hida families in the theory of p-adic L-
functions.

1.1. Galois representations attached to Hida families. For a primi-
tive cuspidal Hida family F =

∑
n≥1 a(n,F)qn ∈ IJqK of tame conductor

NF , let ρF : GQ = Gal(Q/Q) → GL2(Frac I) be the associated big Galois
representation such that Tr ρF (Frob`) = a(`,F) for primes ` - NF , where
Frob` is the geometric Frobenius at ` and let VF denote the natural realiza-
tion of ρF inside the étale cohomology groups of modular curves. Thus, VF
is a lattice in (Frac I)2 with the continuous Galois action via ρF , and the
Gal(Qp/Qp)-invariant subspace Fil0 VF := V

Ip
F fixed by the inertia group Ip

at p is free of rank one over I ([Oht00, Corollary, page 558])). We recall the
specialization of VF at arithmetic points. A point Q ∈ Spec I(Qp) is called

an arithmetic point of weight kQ and finite part εQ if Q|Γ : Γ → Λ×
Q−→Q

×
p

is given by Q(x) = xkQεQ(x) for some integer kQ ≥ 2 and a finite order
character εQ : Γ → Q

×
p . Let X+

I be the set of arithmetic points of I. For
each arithmetic point Q ∈ X+

I , the specialization VFQ := VF ⊗I,Q Qp is the
geometric p-adic Galois representation associated with the eigenform FQ of
constructed by Shimura and Deligne.

1.2. Triple product L-functions. Let V = Vf ⊗̂OVg⊗̂OVh be the triple
product Galois representation of rank eight over R a finite extension of the
three-variable Iwasawa algebra given by

R = I⊗̂OI⊗̂OI.

Let X+
R ⊂ SpecR(Qp) be the weight space of arithmetic points of R given

by

X+
R :=

{
Q = (Q1, Q2, Q3) ∈ (X+

I )3 | kQ1 + kQ2 + kQ3 ≡ 0 (mod 2)
}
.
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For each arithmetic point Q = (Q1, Q2, Q3) ∈ X+
R, the specialization VQ =

VfQ1
⊗VgQ2

⊗VhQ3
is a p-adic geometric Galois representation of pure weight

wQ := kQ1 + kQ2 + kQ3 − 3. Let ω : (Z/pZ)× → µp−1 be the Teichmüller
character. We assume that

(ev) ψ1ψ2ψ3 = ω2a for some a ∈ Z.

Then (ev) implies that the determinant detV = X 2εcyc, where εcyc is the p-
adic cyclotomic character and X is a R-adic p-ramified Galois character with
X (c) = (−1)a (c is the complex conjugation). Note that the specialization

of X at Q can be written as the product XQ = χQε
−
wQ+1

2
cyc with a finite order

character χQ. We consider the critical twist

V† = V ⊗X−1.

Then V† is self-dual in the sense that (V†)∨(1) = V†. Next we briefly recall
the complex L-function associated with the specializationV†Q. For each place
`, denote by WQ`

the Weil-Deligne group of Q`. To the geometric p-adic
Galois representation V†Q, we can associate the Weil-Deligne representation

WD`(V
†
Q) ofWQ`

over Qp (see [Tat79, (4.2.1)] for ` 6= p and [Fon94, (4.2.3)]

for ` = p). Fixing an isomorphism ιp : Qp ' C once and for all, we define
the complex L-function of V†Q by the Euler product

L(V†Q, s) =
∏
`<∞

L`(V
†
Q, s)

of the local L-factors L`(V
†
Q, s) attached to WD`(V

†
Q) ⊗Qp,ιp

C ([Del79,
(1.2.2)], [Tay04, page 85]). On the other hand, we denote by πfQ1

=

⊗vπfQ1
,v (resp. πgQ1

, πhQ3
) the irreducible unitary cuspidal automorphic

representation of GL2(A) associated with fQ1
(resp. gQ2

,hQ3) and let

ΠQ = πfQ1
× πgQ2

× πhQ3
⊗ χ−1

Q

be the irreducible unitary automorphic representation of GL2(A)×GL2(A)×
GL2(A). Denote by L(s,ΠQ) the automorphic L-function defined by Gar-
rett, Piateski-Shapiro and Rallis attached to the triple product ΠQ. The
analytic theory of L(s,ΠQ) such as functional equations and analytic con-
tinuation has been explored extensively in the literature (cf. [PSR87]), and
thanks to [Ram00, Theorem 4.4.1], we have

L(s+
1

2
,ΠQ) = Λ(V†Q, s) := Γ

V†Q
(s) · L(V†Q, s).

Here Γ
V†Q

(s) is the archimedean L-factor of V†Q and is a finite product of

four classical Γ-functions (see (1.4)). Moreover, there is a positive integer
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N(V†Q) and the root number ε(V†Q) ∈ {±1} such that the complete L-
function Λ(VQ, s) satisfies the functional equation

Λ(V†Q, s) = ε(V†Q) ·N(V†Q)−s · Λ(V†Q,−s).

We thus have a good understanding of the complex analytic behavior of
L(V†Q, s). On the arithmetic side, Deligne’s conjecture for the critical central

value L(V†Q, 0) has been proved in [HK91]. In this article, we shall investigate

the p-adic analytic behavior of the algebraic part of L(V†Q, 0) viewed as a
function on the weight space X+

R. It is natural to first consider the behavior
of the root number ε(V†Q) of V†Q (or ΠQ) over the weight space. The global
root number

ε(V†Q) =
∏
`≤∞

ε(WD`(V
†
Q))

is defined as the product of local constants, where ε(?) is the local epsilon
factor attached to a Weil-Deligne representation (cf. [Tat79, page 21]) with
respect to the standard choice of a non-trivial additive character of Qp and
measures on Qp in [Del79, 5.3]. For each arithmetic point Q ∈ X+

R, we put

Σ−(Q) :=
{
` : prime factor of N1N2N3 | ε(WD`(V

†
Q)) = −1

}
.

It is known that there is a subset Σ− of prime factors of N1N2N3 such that
Σ− = Σ−(Q) for all Q ∈ X+

R. For the archimedean root number, we partition
the weight space X+

R into Xf
R tX

g
R tXh

R tXbal
R , where Xf

R is the unbalanced
range dominated by f given by

Xf
R =

{
(Q1, Q2, Q3) ∈ X+

R | kQ1 + kQ2 + kQ3 ≤ 2kQ1

}
(Xg
R and Xh

R are defined likewise), and Xbal
R is the balanced range

Xbal
R =

{
(Q1, Q2, Q3) ∈ X+

R | kQ1 + kQ2 + kQ3 > 2kQi for all i = 1, 2, 3
}
.

The union Xunb
R := Xf

R t Xg
R t Xh

R is called the unbalanced range. Then we
know that

ε(WD∞(V†Q)) = +1 if Q ∈ Xunb
R ;

ε(WD∞(V†Q)) = −1 if Q ∈ Xbal
R .

1.3. The modified Euler factors at p and ∞. Let GQp be the decom-
position group at p. We consider the following rank four GQp-invariant
subspaces of VQ:

(1.1)

Filf V := Fil0 Vf ⊗ Vg ⊗ Vh;

Filbal V := Fil0 Vf ⊗ Fil0 Vg ⊗ Vh + Vf ⊗ Fil0 Vg ⊗ Fil0 Vh

+ Fil0 Vf ⊗ Vg ⊗ Fil0 Vh.

Let • ∈ {f , bal}. Define the filtrations Fil+• V
† := Fil•V ⊗ X−1 ⊂ V†. The

pair (Fil+• V
†,X•R) satisfies the Panchishkin condition in [Gre94, page 217])
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in the sense that for each arithmetic point Q ∈ X•R, the Hodge-Tate numbers
of Fil+• V

†
Q are all positive, while the Hodge-Tate numbers ofV†/Fil+• V

†
Q are

all non-positive (the Hodge-Tate number of Qp(1) is one in our convention).
Now we can define the modified p-Euler factor by

(1.2) Ep(Fil+• V
†
Q) :=

Lp(Fil+• V
†
Q, 0)

ε(WDp(Fil+• V
†
Q)) · Lp(V†Q/Fil+• V

†
Q, 0)

· 1

Lp(V
†
Q, 0)

.

We note that this modified p-Euler factor is precisely the ratio between
the factor L(

√
−1)

p (V†Q) in [Coa89b, page 109, (18)] and the local L-factor

Lp(V
†
Q, 0).

In the theory of p-adic L-functions, we also need the modified Euler factor
E∞(V†Q) at the archimedean place observed by Deligne. It is defined to be

the ratio between the factor L(
√
−1)

∞ (V†Q) in [Coa89b, page 103 (4)] and the
Gamma factor Γ

V†Q
(0) and is explicitly given by

E∞(V†Q) =(
√
−1)−2kQ1 if Q ∈ Xf

R;

E∞(V†Q) =(
√
−1)1−kQ1

−kQ2
−kQ3 if Q ∈ Xbal

R .

1.4. Hida’s canonical periods. To make our interpolation formula mean-
ingful, we must give the precise definition of periods for the motive V†Q. We
begin by recalling Hida’s canonical period of a I-adic primitive cuspidal Hida
family F of tame conductor NF . Let mI be the maximal ideal of I. For a
subset Σ of the support of NF , we consider the following

Hypothesis (CR,Σ). The residual Galois representation ρ̄F := ρF (mod mI) :
GQ → GL2(F̄p) is absolutely irreducible and p-distinguished. Moreover, ρ̄F
is ramified at every ` ∈ Σ with ` ≡ 1 (mod p).

When Σ = ∅ is the empty set, we shall simply write (CR) for (CR, ∅).
Recall that ρF is p-distinguished if the semi-simplication of the restriction of
the residual Galois representation ρF (mod mI) to the decomposition at p is
a sum of two characters χ+

F ⊕ χ
−
F with χ+

F 6≡ χ
−
F (mod mI). Suppose that F

satisfies (CR). The local component of the universal cuspidal ordinary Hecke
algebra corresponding to F is known to be Gorenstein by [MW86, Prop.2,
§9] and [Wil95, Corollary 2, page 482], and with this Gorenstein property,
Hida proved in [Hid88a, Theorem 0.1] that the congruence module for F
is isomorphic to I/(ηF ) for some non-zero element ηF ∈ I. Moreover, for
any arithmetic point Q ∈ X+

I , the specialization ηFQ = Q(ηF ) generates
the congruence ideal of FQ. We denote by F◦Q the normalized newform of
weight kQ, conductor NQ = NFp

nQ with nebentypus χQ corresponding to
FQ. There is a unique decomposition χQ = χ′QχQ,(p), where χ

′
Q and χQ,(p)

are Dirichlet characters moduloNF and pnQ respectively. Let αQ = a(p,FQ).
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Define the modified Euler factor Ep(FQ,Ad) for adjoint motive of FQ by

Ep(FQ,Ad)

=α
−2nQ
Q


(1− α−2

Q χQ(p)pkQ−1)(1− α−2
Q χQ(p)pkQ−2) if nQ = 0,

−1 if nQ = 1, χQ,(p) = 1,

g(χQ,(p))χQ,(p)(−1) if nQ > 0, χQ,(p) 6= 1.

Here g(χQ,(p)) is the usual Gauss sum. Fixing a choice of the generator ηF
and letting ‖F◦Q‖2Γ0(NQ) be the usual Petersson norm of F◦Q, we define the
canonical period ΩFQ of F at Q by

(1.3) ΩFQ := (−2
√
−1)kQ+1 · ‖F◦Q‖2Γ0(NQ) ·

Ep(FQ,Ad)

ιp(ηFQ)
∈ C×.

By [Hid16, Corollary 6.24, Theorem 6.28], one can show that for each arith-
metic point Q, up to a p-adic unit, the period ΩFQ is equal to the product of
the plus/minus canonical period Ω(+ ;F◦Q)Ω(− ;F◦Q) introduced in [Hid94,
page 488].

1.5. Definitions of Γ-factors and an exceptional finite set Σexc. We
recall the definition of Γ-factors of V†Q following the recipe in [Del79]:
(1.4)

Γ
V†Q

(s) :=


ΓC(s+

wQ+1

2 )ΓC(s+ 1− k∗Q1
)ΓC(s+ k∗Q2

)ΓC(s+ k∗Q3
) if Q ∈ Xf

R;

ΓC(s+
wQ+1

2 )ΓC(s+ k∗Q1
)ΓC(s+ k∗Q2

)ΓC(s+ k∗Q3
) if Q ∈ Xbal

R .

Here ΓC(s) = 2(2π)−sΓ(s) and

k∗Qi =
kQ1 + kQ2 + kQ3

2
− kQi , i = 1, 2, 3.

For each prime `, let τQ`2
be the unique unramified quadratic character of

Q×` . Let (f, g, h) = (fQ1
, gQ2

,hQ3) be the specialization of F at Q and put

Σsc
fg = {`: finite prime | πf,` and πg,` are supercuspidal; πh,` is spherical} ;

Σfg =
{
` ∈ Σsc

fg | πf,` ' πf,` ⊗ τQ`2
' π∨g,` ⊗ σ for some σ unramified character

}
.

Define Σfh and Σfg likewise. We introduce the finite set

(1.5) Σexc = Σgh t Σfh t Σfg.

It is known that this set Σexc does not depend on any particular choice of
the specializations of (f , g,h).

1.6. Statement of the main results. We impose the following technical
assumption:

(sf) gcd(N1, N2, N3) is square-free.

Our first result is the construction of the unbalanced p-adic triple product
L-functions:

Theorem A. In addition to (ev) and (sf), we further suppose that
(1) Σ− = ∅,
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(2) f satisfies (CR).

Fix a generator ηf of the congruence ideal of f . There exists a unique ele-
ment LfF ∈ R such that for every Q = (Q1, Q2, Q3) ∈ Xf

R in the unbalanced
range dominated by f , we have

(LfF (Q))2 =Γ
V†Q

(0) ·
L(V†Q, 0)

(
√
−1)2kQ1 Ω2

fQ1

· Ep(Fil+f V†Q) ·
∏

`∈Σexc

(1 + `−1)2.

This p-adic L-function LfF is unique up to a choice of generators of the
congruence ideal of f , i.e. it is unique up to a unit in I, but the ratio LfF /ηf
is a genuine p-adic L-function. By symmetry, we actually obtain from The-
orem A two more p-adic L-functions LgF and LhF which interpolate central
L-values at Xg

R and Xh
R respectively. These p-adic L-functions LfF ,L

g
F and

LhF are called unbalanced p-adic triple product L-functions as they inter-
polate a square root of the critical central L-values of the triple product
L-function L(V†Q, s) for Q ∈ Xunb

R at the unbalanced range; from the inter-
polation formula, these p-adic L-functions are distinguished by the choices
of the modified Euler factor at p and the complex periods. In the literature,
the one-variable unbalanced p-adic triple product L-functions were first con-
structed by Harris and Tilouine in [HT01b] (when N1 = N2 = N3 = 1).
Darmon and Rotger in [DR14] extended the method in [HT01b] to construct
a three-variable power series interpolating the global trilinear period of a
triplet of Hida families and proved the interpolation formulae at the bal-
anced range, which is in connection with the p-adic Abel-Jacobi image of
diagonal cycles in a triple product of modular curves. This is a p-adic ana-
logue of the classical Gross-Zagier formula and has obtained very significant
arithmetic application to certain equivariant BSD conjectures in [DR17]. On
the other hand, it is well known that the relation of the interpolation at the
unbalanced range to central L-values is suggested by the main identity of
Harris and Kudla [HK91], or in general, Ichino’s formula [Ich08], but the
interpolation formulae at the unbalanced range in the literature are not pre-
cise enough for more refined arithmetic applications such as the formulation
of corresponding Iwasawa-Greenberg main conjecture. Therefore, Theorem
A complements the literature by providing a precise relation of the values of
p-adic triple product L-functions at all arithmetic points in the unbalanced
range to central L-values of the complex triple product L-functions.

Our main motivation is to use Theorem A to prove the factorization of
p-adic triple product L-functions into a product of anticyclotomic p-adic
L-functions. For example, if g and h are primitive Hida families of CM
forms associated with some imaginary quadratic field, then LfF is a product
of two square roots of anticyclotomic p-adic L-functions for modular forms
constructed in [BD96] and [CH18]; in contrast, if f and g are primitive
Hida families of CM forms, then LfF is a product of two anticyclotomic
p-adic L-functions in [BDP13] divided by some Katz p-adic L-function. The
latter gives a strengthening of [DLR15, Theorem 3.9] and [Col16]. With this
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factorization, we can easily show that the square root of the anticyclotomic
p-adic L-functions in the definite case can be recovered by the Euler system
of generalized Kato classes [DR17] (See Remark 8.2) and provide a new
proof of the anticyclotomic exceptional zero conjecture for elliptic curves.
These factorizations of p-adic triple product L-functions are obtained via the
direct comparison of the explicit interpolation formulae of p-adic L-functions
at critical points. These examples are much simpler than the factorization
formulae of Katz p-adic L-functions for imaginary quadratic fields and p-adic
L-functions for the symmetric square of elliptic newforms, proved by Gross
and Dasgupta respectively, where no critical interpolation is available. In a
joint work with F. Castella [CH22], we explore this Euler system construction
of the square root of the anticyclotomic p-adic L-functions for elliptic curves
and show the non-vanishing of the generalized Kato classes in the rank two
case for elliptic curves of rank two.

Next we state our second result about the balanced p-adic triple product
L-functions.

Theorem B. Let N = lcm(N1, N2, N3) and N− be the square-free product
of primes in Σ−. In addition to (ev) and (sf), we further suppose that p > 3
and

(1) #(Σ−) is odd,
(2) f , g and h satisfy (CR, Σ−),
(3) N = N+N− with gcd(N+, N−) = 1.

Then there exists a unique element Lbal
F ∈ R satisfies the following interpo-

lation property: for any arithmetic point Q ∈ Xbal
R , we have

(
Lbal
F (Q)

)2
=ΓV+

Q
(0) ·

L(V†Q, 0)

(
√
−1)kQ1

+kQ2
+kQ3

−1ΩfQ1
ΩgQ2

ΩhQ3

× Ep(Fil+bal V
†
Q) ·

∏
`∈Σexc

(1 + `−1)2.

We must mention that the p-adic interpolation of global trilinear period
integrals attached to a triplet of p-adic families of modular forms in the
balanced range was first investigated by Greenberg and Seveso in a pioneering
work [GS16]. Our construction is ostensibly different from theirs for their
method heavily relies on the theory of Ash-Stevens while our approach is
built on classical Hida theory developed in [Hid88b]. Indeed, their method
treats more general setting, namely they do not restrict to the ordinary case,
while our approach is more well-suited for the future investigation on the
arithmetic of the balanced p-adic L-functions such as the µ-invariants and
the Iwasawa-Greenberg main conjecture. The situation is more or less similar
to the two different constructions of two-variable p-adic L-functions for Hida
families given by Greenberg-Stevens and Mazur-Kitagawa. In any case, it is
definitely very interesting to compare these two different approaches in the
ordinary case.
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Remark 1.1. We discuss briefly the exceptional zero phenomenon for the
balanced p-adic L-functions. By the Ramanujan conjecture, the modified
p-Euler factor Ep(Fil+bal V

†
Q) never vanishes unless either of fQ1

, gQ2
,hQ3 is

special at p. For example, suppose that F = (f , g,h) is the triplet of prim-
itive Hida families passing through the p-stabilized newforms (f1, f2, f3) at-
tached to elliptic curves (E1, E2, E3) over Q at the weight two specialization
Q. Let αi = a(p, fi) be the p-th Fourier coefficient of fi for i = 1, 2, 3.
Assume E1 is semi-stable at p (i.e. α1 = ±1). Then the modified p-Euler
factor Ep(Fil+bal V

†
Q) equals{

(1− α1α2α3)3 if E2 and E3 are semi-stable at p,
p · α−2

3 (1− α3
α1α2

)2(1− α1
α2α3

)2 otherwise.

We thus conclude that Lbal
F posseses an exceptional zero at Q when either

(i) E2 and E3 are semi-stable at p and α1α2α3 = 1 or (ii) E2 and E3 has
good ordinary reduction at p and α2 = α3α1. In the case (i), we even have
the vanishing of the central value L(V†Q, 0) = L(E1×E2×E3, 2) = 0 as the
global root number

ε(V†Q) = ε(WDp(V
†
Q)) = −α1α2α3 = −1,

so one might speculate about a p-adic Gross-Zaiger formula relating certain
“second partial derivatives” of Lbal

F at Q to the p-adic Abel-Jacobi image of
diagonal cycle in the Shimura curve XN+,pN− attached to the quaternion
algebra ramified precisely at pN− as [BD07, Theorem 1]. We hope to come
back to this question in the near future.

1.7. An outline of the proof. The construction of the unbalanced p-adic L-
function is based on Hida’s p-adic Rankin-Selberg convolution (cf. [Hid93]).
Denote by eS(N,χ, I) ⊂ IJqK the space of ordinary I-adic cusp forms with
tame nebentypus χ and by T(N,χ, I) the universal ordinary cuspidal Hecke
algebra. Decompose the tame nebentypus ψ1 of f into a product of Dirich-
let characters ψ1,(p) and ψ

(p)
1 modulo p and N1 respectively and let χ :=

ψ1,(p)ψ
(p)
1 . Let f̆ ∈ eS(N1, χ, I) be the primitive Hida family of f twisted

by ψ(p)
1 and let 1f̆ ∈ T(N1, χ, I)⊗I Frac I be the idempotent corresponding

to f̆ . By the definition of congruence ideals, one can verify that ηf · 1f̆
indeed belongs to T(N,χ, I). In §3.6 (3.8), we construct an auxiliary R-adic
modular form eHaux ∈ eS(N,χ, I) ⊗I,i1 R ⊂ RJqK, where i1 : I → R is the
homomorphism a 7→ a⊗ 1⊗ 1, and then the unbalanced p-adic L-function is
defined to be

L f
F := the first Fourier coefficient of ηf · 1f̆ TrN/N1

(eHaux) ∈ R,

where TrN/N1
: eS(N,χ, I)→ eS(N1, χ, I) is the usual trace map.

In the balanced case, Hida theory for definite quaternion algebras plays
an important role. Let D be the definite quaternion algebra over Q of the
absolute discriminant N−, and for each positive integer m, let X̃m be the
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definite Shimura curve of level Γ1(pnN) associated with D as described in
[LV11, §2.1]. These are curves of genus zero equipped with a natural finite
covering map α̃m : X̃m → X̃m−1. We let Jm = Pic X̃m ⊗Z Zp and let J∞ :=
lim←−n→∞ Jm be the inverse limit induced by α̃m. Then J∞ is a Λ-module
with Hecke action, and its ordinary part Jord

∞ is equipped with the action of
the Σ−-new quotient of the universal ordinay cuspidal Hecke algebra of level
Γ1(Np∞). The I-module eSD(N, I) := HomΛ(Jord

∞ , I) is called the space of
Hida families of definite quaternionic forms. Due to the lack of q-expansions,
we do not have the notion of primitive Hida families on definite quaternion
algebras. Nonetheless, using the idea of Pollack and Weston [PW11] and
Hida theory, for a primitive Hida family F satisfying (CR, Σ−), it can be
shown that there exists Hecke eigenform FD ∈ eSD(N, I), unique up to a
unit in I, characterized by the following properties (i) FD shares the same
Hecke eigenvalues with F ; (ii) FD is non-zero modulo mI (Theorem 4.5).
We shall call FD the primitive Jacquet-Langlands lift of F . Let Jord

m :=
Jord
m ⊗̂OJord

m ⊗̂OJord
m and Jord

∞ = lim←−m→∞ Jord
m . With the assumption (2) in

Theorem B, we thus obtain the primitive Jacquet-Langlands lift FD = fD�
gD�hD ∈ Hom(Jord

∞ ,R). On the other hand, in Definition 4.6, we construct
a collection of regularized diagonal cycles ∆†m in Jord

m which are compatible
with respect to α̃m and thus get the big diagonal cycle ∆†∞ := lim←−m→∞∆†m ∈
Jord
∞ . In order to achieve the optimal integrality of p-adic L-functions, we

actually take a modification FD? ∈ Hom(Jord
∞ ,R) of FD in Definition 4.8,

and then define the balanced p-adic L-function

ΘFD := FD?(∆†∞) ∈ R

to be the value of the modified FD? at ∆†∞. This p-adic L-function ΘFD

is an analogue of theta elements à la Bertolini and Darmon ([BD96]) in the
triple product setting.

To obtain the interpolation formula in Theorem A and B, we first prove
that the interpolation L f

F (Q) at Q ∈ Xf
R (resp. Lf ,Σ−(Q) at Q ∈ Xbal

R ) is
given by the global trilinear period integral of certain automorphic forms in
the cuspidal automorphic representation ΠQ of GL2(AE) (resp. the automor-
phic representation ΠD

Q of (D ⊗AE)× via the Jacquet-Langlands transfer),
where E = Q⊕Q⊕Q is the split étale cubic Q-algebra (See Proposition 3.7
and 4.9). Thanks to Ichino’s formula in [Ich08], we can show that the square
of this global trilinear period integral is a product of the central L-value
L(1/2,ΠQ) and certain local zeta integrals Iv(φ?v ⊗ φ?v) (See §3.8.2 for defi-
nitions), which we shall call local Ichino integrals in the introduction. The
proof of the interpolation formulae therefore boils down to the determination
of the values of these local Ichino integrals. In the literature, local Ichino in-
tegrals were only computed for some special cases [II10], [NPS14] and [Hu17].
Local Ichino integrals at the real place are completely determined in a re-
cent work [CC19], but the explicit calculation of local Ichino integrals at
non-archimedean places in the generality we need is a highly laborious task
and occupies a substantial part of this paper. The key ingredient in our
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computation is Proposition 5.1, a generalization of [MV10, Lemma 3.4.2] by
removing several restrictive conditions therein, which reduces the calculation
of local Ichino integrals to that of certain local Rankin-Selberg integrals in
[GJ78, (1.1.3)]. With local theory of L-functions on GL(2) × GL(2) devel-
oped by Jacquet in [Jac72], we are able to work out the calculation of local
Rankin-Selberg integrals under (sf) and certain minimal hypothesis (See Hy-
pothesis 6.1). It turns out that the p-adic Ichino integral gives the modified
p-Euler factor Ep(Fil+• V

†
Q), while local Ichino integrals at ramified places `

only contributes p-adic units if ` 6∈ Σexc or (1 + `−1)2 if ` ∈ Σexc. This mini-
mal hypothesis, roughly speaking, requires F to be minimal in the sense that
F has the minimal conductor among Dirichlet twists. By taking a suitable
Dirichlet twist F ′ = (f ⊗χ1, g⊗χ2,h⊗χ3) with χ1χ2χ3 = 1 which satisfies
the minimal hypothesis, we obtain the desired p-adic L-functions

LfF := L f⊗χ1

F ′
; Lbal

F := ΘF ′D .

The interpolation formulae is a direct consequence of the explicit evaluation
of local Ichino integrals and the comparison between the canonical periods of
F and its Dirichlet twist F ′ established in §7.2. We conclude this paragraph
by mentioning that the method of this paper has been extended by Isao
Ishikawa in [Ish17] to construct p-adic twisted triple product L-functions
attached a Hida family of Hilbert modular form over a real quadratic field
and a Hida family of elliptic modular forms.

This paper is organized as follows. In §2, we recall basic definitions
and facts about classical elliptic modular forms and automorphic forms on
GL2(A). In §3, we give the construction of the unbalanced p-adic triple
product L-functions L f

F . The key items used in the construction of Haux,
the test Λ-adic forms g? and h?, are introduced in Definition 3.3. The main
formula is derived in Corollary 3.13, where we show the interpolation of the
square of L f

F at the unbalanced range is the product of the central L-value
of the triple product L-function and local Ichino integrals at the prime p and
ramified primes. In §4, we consider the balanced case. We review Hida’s
theory for definite quaterninoic forms in §4.4 and §4.5. In particular, we
present a slightly explicit version of the control theorem in Theorem 4.2
and explain the notion of primitive Jacquet-Langlands lifts in Theorem 4.5.
The construction of the big diagonal cycle ∆†∞ and the balanced p-adic L-
functions are given in §4.6 and §4.7. The relation between the interpolation
of the square of our balanced p-adic L-functions and the product of the cen-
tral L-value and local Ichino integrals is given in Corollary 4.13. In §5, we
prepare the tools for the computation of local Ichino integrals and carry out
the calculations at the p-adic place, and in §6, we elaborate the calculation
of local Ichino integrals at ramified primes. In particular, we show in §6.6
that the local Ichino integrals at ramified places can be interpolated into a
unit in the ring R of three-variable Iwasawa functions. In §7, we prove the
main results (Theorem 7.1) and show that the canonical periods of a prim-
itive Hida family and its Dirichlet twists are equal up to a unit in I by the
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method of level-raising. Finally, we prove the factorization of anticyclotomic
p-adic L-functions and give applications in §8.
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Notation. The following notations will be used frequently throughout the
paper. Let A be the ring of adeles of Q. If v is a place of Q, let Qv be the
completion of Q with respect to v, and for a ∈ A×, let av ∈ Q×v be the v-
component of a. Denote by |·|v (or simply |·| if there is no fear of confusion)
the absolute value on Qv normalized so that |·| is the usual absolute value
on R if v =∞ and |`|` = `−1 if v = ` is finite. Let |·|A be the absolute value
on A× given by |a|A =

∏
v |av|v. Let ζv(s) be the usual local zeta function

of Qv. Namely,

ζ∞(s) = π−
s
2 Γ(

s

2
); ζ`(s) = (1− `−s)−1.

Define the global zeta function ζQ(s) of Q by ζQ(s) =
∏
v ζv(s). In particu-

lar, ζQ(2) = π−1 · ζ(2) = π/6.
For a prime `, let v` : Q×` → C× be the valuation normalized so that

v`(`) = 1. We shall regard Q` and Q×` as subgroups of A and A× in a
natural way. To avoid possible confusion, denote $` = ($`,v) ∈ A× by the
idele defined by $`,` = ` and $`,v = 1 if v 6= `.

Let ψQ : A/Q → C× be the additive character with the archimedean
component ψR(x) = exp(2π

√
−1x) and let ψQ`

: Q` → C× be the local
component of ψQ at `.

If R is a commutative ring and G = GL2(R), we denote by ρ the right
translation of G on the space of C-valued functions on G: ρ(g)f(g′) = f(g′g)
and by 1 : G→ C the constant function 1(g) = 1. For a function f : G→ C
and a character χ : R× → C×, let f ⊗ χ : G → C denote the function
f ⊗ χ(g) = f(g)χ(det g).

Let GQ = Gal(Q/Q) be the absolute Galois group of Q and if χ :
(Z/NZ)× → C× is Dirichlet character modulo N , denote by c`(χ) ≤ v`(N)
the `-exponent of the conductor of χ. We shall identify χ with the Galois
character χ : GQ → C× via class field theory.

If ω : Q×\A× → Q
× is a finite order Hecke character, we denote by

ω` : Q×` → C× the local component of ω at `. On the other hand, we
write ω = ω(`)ω

(`), where ω(`) and ω(`) are finite order Hecke characters
of conductor `-power and of prime-to-` conductor respectively. With every
Dirichlet character χ of conductor N , we can associate a Hecke character χA,
called the adelization of χ, which is the unique finite order Hecke character
χA : Q×\A×/R+(1 + N Ẑ)× → C× of conductor N such that χA($`) =
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χ(`)−1 for any prime ` - N . We often identify Dirichlet characters with their
adelization whenever no confusion arises. Then χ`(`) = χ(`)−1 for ` - N .

2. Classical modular forms and automorphic forms

In this section, we recall basic definitions and facts about classical elliptic
modular forms and automorphic forms on GL2(A). The main purpose of this
section is to set up the notation and introduce some Hecke operators on the
space of automorphic forms which will be frequently used in the construction
of p-adic L-functions.

2.1. Classical modular forms. Let C∞(H) be the space ofC-valued smooth
functions on the upper half complex plane H. Let k be any integer. Let γ =(
a b
c d

)
∈ GL+

2 (R) act on z ∈ H by γ(z) = az+b
cz+d , and for f = f(z) ∈ C∞(H),

define
f |kγ(z) := f(γ(z))(cz + d)−k(det γ)

k
2 .

Recall that the Maass-Shimura differential operators δk and ε on C∞(H) are
given by

δk =
1

2π
√
−1

(
∂

∂z
+

k

2
√
−1y

) and ε = − 1

2π
√
−1

y2 ∂

∂z
(y = Im(z))

(cf. [Hid93, (1a, 1b) page 310]). LetN be a positive integer and χ : (Z/NZ)× →
C× be a Dirichlet character modulo N . Let m be a non-negative integer.
Denote by N [m]

k (N,χ) the space of nearly holomorphic modular forms of
weight k, level N and character χ, consisting of slowly increasing functions
f ∈ C∞(H) such that εm+1f = 0 and

f |k
(
a b
c d

)
= χ(d)f for

(
a b
c d

)
∈ Γ0(N)

(cf. [Hid93, page 314]). Let Nk(N,χ) =
⋃∞
m=0N

[m]
k (N,χ).(cf. [Hid93, (1a),

page 310]) By definition, N [0]
k (N,χ) = Mk(N,χ) is the space of classical

holomorphic modular forms of weight k, level N and character χ. Denote
by Sk(N,χ) the space of holomorphic cusp forms in Mk(N,χ). Let δmk =
δk+2m−2 · · · δk+2δk. If f ∈ Nk(N,χ) is a nearly holomorphic modular form
of weight k, then δmk f ∈ Nk+2m(N,χ) has weight k+ 2m ([Hid93, page 312].
For a positive integer d, define

Vdf(z) = d · f(dz); Udf(z) =
1

d

d−1∑
j=0

f(
z + j

d
),

and recall that the classical Hecke operators T` for primes ` - N are given by

T`f = U`f + χ(`)`k−2V`f.

We say f ∈ Nk(N,χ) is a Hecke eigenform if f is an eigenfunction of all the
Hecke operators T` for ` - N and the operators U` for ` | N .
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If f ∈Mk(N,χ), let

f(q) =
∑
n≥0

a(n, f)qn

be the q-expansion (at the infinity cusp). If κ is a Dirichlet character modulo
M , define f |[κ] ∈ Mk(NM

2, χκ2) the twist of f by κ to be the unique
modular form with the q-expansion

f |[κ](q) =
∑

n≥0, (n,M)=1

a(n, f)κ(n)qn.

2.2. Automorphic forms on GL2(A). Let N be a positive integer. Define
open-compact subgroups of GL2(Ẑ) by

U0(N) =

{
g ∈ GL2(Ẑ) | g ≡

(
∗ ∗
0 ∗

)
(mod N Ẑ)

}
,

U1(N) =

{
g ∈ U0(N) | g ≡

(
∗ ∗
0 1

)
(mod N Ẑ)

}
.

Let ω : Q×\A× → C× be a finite order Hecke character of level N . We

extend ω to a character of U0(N) defined by ω(

(
a b
c d

)
) =

∏
`|N ω`(d`) for(

a b
c d

)
∈ U0(N), where ω` : Q×` → C× is the `-component of ω. Denote by

A(ω) the space of automorphic forms on GL2(A) with central character ω.
For any integer k, let Ak(N,ω) ⊂ A(ω) be the space of automorphic forms
on GL2(A) of weight k, level N and character ω. Namely, Ak(N,ω) consists
of automorphic forms ϕ : GL2(A)→ C such that

ϕ(αgu∞uf) =ϕ(g)e
√
−1kθω(uf)

(α ∈ GL2(Q), u∞ =

(
cos θ sin θ
− sin θ cos θ

)
, uf ∈ U0(N)).

Let A0
k(N,ω) be the space of cusp forms in Ak(N,ω).

Next we introduce important local Hecke operators on automorphic forms.
At the archimedean place, let V± : Ak(N,ω) → Ak±2(N,ω) be the normal-
ized weight raising/lowering operator in [JL70, page 165] given by
(2.1)

V± =
1

(−8π)

((
1 0
0 −1

)
⊗ 1±

(
0 1
1 0

)
⊗
√
−1

)
∈ Lie(GL2(R))⊗R C.

The level-raising operator V` : Ak(N,ω)→ Ak(N`, ω) at a finite prime ` by

V`ϕ(g) := ρ(

(
$−1
` 0
0 1

)
)ϕ.

If d =
∏
` `
v`(d) is an positive integer, define Vd : Ak(N,ω)→ Ak(Nd, χ) by

Vd =
∏
`

V
v`(d)
` .
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Define the operator U` on ϕ ∈ Ak(N,ω) by

U`ϕ =
∑

x∈Z`/`Z`

ρ(

(
$` x
0 1

)
)ϕ.

Note thatU`V`ϕ = `ϕ and that if ` | N , thenU` ∈ EndCAk(N,ω). For each
prime ` - N , let T` ∈ EndCAk(N,ω) be the usual Hecke operator defined by

T` = U` + ω($`)V`.

We introduce the twisting operator θκ` attached to a Dirichlet character κ of
modulo `s for some s > 0. Let `n be the conductor of κ. If n > 0, define the
Gauss sum g(κ) by

g(κ) =
∑

x∈(Z/`nZ)×

κ−1(x)e
−2π
√
−1x

`n .

For ϕ ∈ Ak(N,ω), we define θκ` ϕ : GL2(A)→ C by

(2.2) θκ` ϕ =


ϕ− `−1V`U`ϕ if n = 0,

g(κ)−1
∑

x∈(Z/`nZ)×
κ−1(x)ρ(

(
1 x/$n

`

0 1

)
)ϕ if n > 0.

2.3. We briefly recall a well-known connection between modular forms and
automorphic forms. With each nearly holomorphic modular form f ∈ Nk(N,χ),
we associate a unique automorphic form Φ(f) ∈ Ak(N,χ−1

A ) defined by the
equation

(2.3) Φ(f)(αg∞u) := (f |kg∞)(
√
−1) · χ−1

A (u)

for α ∈ GL2(Q), g∞ ∈ GL+
2 (R) and u ∈ U0(N) (cf. [Cas73, §3]). We call

Φ(f) the adelic lift of f . Conversely, we can recover the form f from Φ(f)
by

(2.4) f(x+
√
−1y) = y−

k
2 Φ(f)(

(
y x
0 1

)
).

The weight raising/lowering operators are the adelic avatar of the Maass-
Shimura differential operators δmk and ε on the space of automorphic forms.
A direct computation shows that the map Φ is equivariant for the Hecke
action in the sense that

(2.5) Φ(δmk f) = V m
+ Φ(f), Φ(εf) = V−Φ(f),

for a positive integer d,

(2.6) Φ(Vdf) = d1− k
2VdΦ(f),

and for a finite prime `

(2.7) Φ(T`f) = `
k
2
−1T`Φ(f); Φ(U`f) = `

k
2
−1U`Φ(f).

In particular, f is holomorphic if and only if V−Φ(f) = 0. For f ∈Mk(N,χ)
and κ a Dirichlet character modulo a `-power, one verifies that

(2.8) Φ(f |[κ]) = θκ` Φ(f)⊗ κ−1
A .
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2.4. Preliminaries on irreducible representations of GL2(Qv).

2.4.1. Measures. We shall normalize the Haar measures on Qv and Q×v as
follows. If v = ∞, dx or dy denotes the usual Lebesgue measure on R and
the measure d×y on R× is |y|−1 dy. If v = ` is a finite prime, denote by dx
the Haar measure on Q` with vol(Z`, dx) = 1 and by d×y the Haar measure
on Q×` with vol(Z×` ,d

×y) = 1. Define the compact subgroup Kv of GL2(Qv)
by Kv = O(2,R) if v =∞ and Kv = GL2(Zv) if v is finite. Let dkv be the
Haar measure on Kv so that vol(Kv, dkv) = 1. Let dgv be the Haar measure

on PGL2(Qv) given by dgv = |yv|−1 dxvd
×yvdkv for gv =

(
yv xv
0 1

)
kv with

yv ∈ Q×v , xv ∈ Qv and kv ∈ Kv.

2.4.2. Representations. Denote by χ� υ the irreducible principal series rep-
resentation of GL2(Qv) attached to two characters χ, υ : Q×v → C× such
that χυ−1 6= |·|±. If v =∞ is the archimedean place and k ≥ 1 is an integer,
denote by D0(k) the discrete series of lowest weight k if k ≥ 2 or the limit
of discrete series if k = 1 with central character sgnk (the k-the power of the
sign function). If v is finite, denote by St the Steinberg representation and
by χSt the special representation St⊗ χ ◦ det.

2.4.3. L-functions and ε-factors. For a character χ : Q×v → C×, let L(s, χ)
be the complex L-function and ε(s, χ) := ε(s, χ,ψQv

) be the ε-factor (cf. [Sch02,
Section 1.1]). Define the γ-factor

(2.9) γ(s, χ) := ε(s, χ) · L(1− s, χ−1)

L(s, χ)
.

If π is an irreducible admissible generic representation of GL2(Qv), denote
by L(s, π) the L-function and by ε(s, π) := ε(s, π,ψQv

) the ε-factor defined
in [JL70, Theorem 2.18]. Let π̃ denote the contragradient representation of
π. Denote by L(s, π,Ad) the adjoint L-function of π determined in [GJ78].

2.4.4. Conductors and new vectors. Let ` be a prime. Let (π,Vπ) be an
irreducible admissible infinite dimensional representation of GL2(Q`), where
Vπ a realization of π. For a non-negative integer n, let

U1(`n) = GL2(Z`) ∩
(

Z` Z`
`nZ` 1 + `nZ`

)
.

Let c(π) be the exponent of the conductor of π. By definition, c(π) is the
smallest integer such that VU1(`c(π))

π the space of U1(`c(π))-fixed vectors is
non-zero. Define the subspace Vnew

π by

Vnew
π =

{
ξ ∈ Vπ | π(

(
a b
c d

)
)ξ = ξ for all

(
a b
c d

)
∈ U1(`c(π))

}
.

Proposition 2.1 (Multiplicity one for new vectors). We have

dimC Vnew
π = 1.

Proof. This is [Cas73, Theorem 1]. �

In the sequel, we call Vnew
π the new line of π.
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2.4.5. Whittaker models. Every admissible irreducible infinite dimensional
representation π of GL2(Qv) admits a realization of the Whittaker model
W(π) =W(π,ψQv

)associated with the additive character ψQv
. Recall that

W(π) is a subspace of smooth functions W : GL2(Qv)→ C such that

• W (

(
1 x
0 1

)
g) = ψQv

(x)W (g) for all x ∈ Qv,

• if v = ∞ is the archimedean place, there exists an integer M such
that

W (

(
a 0
0 1

)
) = O(|a|M ) as |a| → ∞.

The group GL2(Qv) (or the Hecke algebra of GL2(Qv)) acts onW(π) via the
right translation ρ. We introduce the (normalized) local Whittaker newform
Wπ in W(π) in the following cases. If v = ∞ and π = D0(k), then the
Whittaker local newform Wπ ∈ W(π) is defined by
(2.10)

Wπ(z

(
y x
0 1

)(
cos θ sin θ
− sin θ cos θ

)
) = IR+(y) · y

k
2 e−2πy · sgn(z)kψR(x)e

√
−1kθ

(y, z ∈ R×, x, θ ∈ R).

Here IR+(a) denotes the characteristic function of the set of positive real
numbers. If v = ` is a finite prime, then the local Whittaker newform Wπ is
the unique function in W(π)new such that Wπ(1) = 1.

2.5. Ordinary lines in irreducible representations of GL2(Qp). Let
p be a prime. Let (π,Vπ) be an irreducible admissible generic represen-
tation of GL2(Qp) with central character ω : Q×p → C×. Let N(Zp) ={(

1 x
0 1

)
| x ∈ Zp

}
. Define the local Up-operator and the local level-raising

operator Vp in EndC(VN(Zp)
π ) by

(2.11) Upξ :=
∑

x∈Zp/pZp

π(

(
p x
0 1

)
)ξ; Vpξ = π(

(
p−1 0
0 1

)
)ξ.

For a Dirichlet character κ of conductor pn, we define the local twisting
operator θκp ∈ EndVπ by

(2.12) θκpξ =


ξ − p−1VpUpξ if n = 0,

g(κ)−1
∑

x∈(Z/pnZ)×
κ−1(x)π(

(
1 x/pn

0 1

)
)ξ if n > 0.

For a character χ : Q×p → C×, define the subspace Vord
π (χ) by

Vord
π (χ) :=

{
ξ ∈ VN(Zp)

π | Upξ = χ|·|−
1
2 (p) · ξ, π(

(
t 0
0 1

)
)ξ = χ(t)ξ, t ∈ Z×p

}
.

Proposition 2.2 (Multiplicity one for ordinary vectors). The space Vord
π (χ)

is non-zero if and only if π is either the principal series χ � χ−1ω or the
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special representation χ|·|−
1
2 St. In this case,

dimC Vord
π (χ) = 1.

Proof. Replacing π by π ⊗ χ−1|·|
1
2 , we may assume χ = |·|

1
2 . For each

n, let

V [n]
π [Up − 1] = {ξ ∈ Vπ | Upξ = ξ; π(u)ξ = ξ for all u ∈ U1(pn)} .

Let Vord
π = Vord

π (|·|
1
2 ). Let c(ω) be the exponent of the conductor of ω and

c∗ := max {1, c(ω)}. Then it is easy to see that

Vord
π =

∞⋃
n≥c∗
V [n]
π [Up − 1].

Suppose that π = |·|
1
2 �ω|·|−

1
2 or the Steinberg representation St. We claim

that V [n]
π [Up − 1] is non-zero for some n. If ω is ramified or π is Steinberg,

then c(π) ≥ c∗ and the new line Vnew
π = V [c(π)][Up − 1] is not zero. If ω is

unramified, then π is sphercial, and it is well known that dimC V
[1]
π = 2 and

the characteristic polynomial of U` on V
[1]
π is given by (X − 1)(X − ω(p)p),

so V [1]
π [U` − 1] is non-zero.

Now suppose that Vord
π 6= 0. Then π must be a principal series or special

representation since Up is a unipotent operator on V [n]
π if π is supercuspidal.

For any u ∈ U1(pm) with m ≥ 1 and ξ ∈ Vπ, a straightforward calculation
shows that

π(u)Upξ =
∑

x∈Zp/pZp

π(

(
p x
0 1

)
u′xzx)ξ for some u′x ∈ U1(pm+1), zx ∈ 1+pmZp.

It follows that if ξ ∈ V [m+1]
π [Up−1], then ξ ∈ V [m]

π [Up−1] whenever m ≥ c∗.
This implies that Vord

π = VU1(pc
∗

)
π 6= 0, and hence c∗ ≥ c(π) ≥ c(ω). If

c∗ = c(ω) > 0, then c(ω) = c(π), and it follows that Vord
π = Vnew

π is the
new line in Vπ and π = µ � µ−1ω with unramified character µ. Since any
new vector in µ� µ−1ω is an eigenvector of Up with the eigenvalue µ|·|−

1
2 ,

we thus conclude that π = |·|
1
2 � ω|·|−

1
2 . If c(ω) = 0, then c∗ = 1 and

Vord
π = V [1]

π [U` − 1]. It follows that π is a unramified principal series or the
Steinberg representation St. If π = St, then Vord

π is the new line. If π is
a unramified principal series, then the two dimensional vector space VU1(p)

π

has a basis ξ0 ∈ Vnew
π = VGL2(Zp)

π and Vpξ0. Since UpVpξ
0 = pξ0, Up is not

a scalar, and thus dimC Vord
π = dimC V

[1]
π [Up − 1] = 1. �

We shall call Vord
π (χ) the ordinary line of π with respect to χ whenever it

is non-zero.

Corollary 2.3. If π is either the irreducible principal series χ � χ−1ω or
the special representation χ|·|−

1
2 St, then the ordinary line W(π)ord(χ) in the
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Whittaker model is generated by the normalized ordinary Whittaker function
W ord
π characterized by

W ord
π (

(
y 0
0 1

)
) = χ|·|

1
2 (y)IZp(y) (y ∈ Q×p ).

Here IZp is the characteristic function of Zp.

Proof. The proof of Proposition 2.2 actually gives the recipe to construct
the ordinary line. Indeed, let W = Wπ⊗χ−1 be the Whittaker local newform
of π ⊗ χ−1. Define W † ∈ W(π ⊗ χ−1) as follows: W † = W if π ⊗ χ−1 is not

spherical and W † = W −χ−2ω|·|
1
2 (p)ρ(

(
p−1 0
0 1

)
)W if π⊗χ−1 is spherical.

An elementary calculation shows that W †⊗χ belongs toWord
π (χ). By using

the explicit formulas of Whittaker newforms ([Sch02, Section 2.4]), we find

that W † ⊗ χ(

(
y 0
0 1

)
) = χ|·|

1
2 (y)IZp(y) as desired. �

2.6. p-stabilized newforms. Let π be a cuspidal automorphic representa-
tion of GL2(A) and let A(π) be the π-isotypic part in the space of automor-
phic forms on GL2(A). For ϕ ∈ A(π), the Whittaker function of ϕ (with
respect to the additive character ψQ : A/Q→ C×) is given by

Wϕ(g) =

∫
A/Q

ϕ(

(
1 x
0 1

)
g)ψQ(−x)dx (g ∈ GL2(A)),

where dx is the Haar measure with vol(A/Q, dx) = 1. We have the Fourier
expansion:

ϕ(g) =
∑
α∈Q×

Wϕ(

(
α 0
0 1

)
g)

(cf. [Bum97, Theorem 3.5.5]). Let f(q) =
∑

n a(n, f)qn ∈ Sk(N,χ) be a
normalized Hecke eigenform, we shall denote by πf = ⊗′vπf,v the cuspidal
automorphic representation of GL2(A) generated by the adelic lift Φ(f) of
f . Then πf is irreducible and unitary with the central character χ−1. If f is
newform, then the conductor of πf is N , its adelic lift Φ(f) is the normalized
new vector in A0(πf ) and the Mellin transform

Z(s,Φ(f)) =

∫
A×/Q×

Φ(f)(

(
y 0
0 1

)
) |y|s−

1
2 d×y = L(s, πf )

is the automorphic L-function of πf . Here d×y is the product measure∏
v d×yv.

Definition 2.4 (p-stabilized newform). Let p be a prime and fix an iso-
morphism ιp : C ' Qp. We say that a normalized Hecke eigenform f ∈
Sk(Np, χ) is a (ordinary) p-stabilized newform (with respoect to ιp) if f is
a new outside p and the eigenvalue of Up, i.e. the p-th Fourier coefficient
ιp(a(p, f)), is a p-adic unit. The prime-to-p part of the conductor of f is
called the tame conductor of f .
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Remark 2.5. Let f be a p-stabilized newform. By the multiplicity one for
new and ordinary vectors, the Whittaker function of the adelic lift Φ(f) is
a product of local Whittaker functions in W(πf,v). To be precise,

WΦ(f)(g) = W ord
πf,p

(gv)
∏
v 6=p

Wπf,v(gv) (g = (gv) ∈ GL2(A)).

Comparing the Fourier expansions of Φ(f) and f via (2.4), we find that
(2.13)

Wπf,`(

(
` 0
0 1

)
) = a(`, f)`−

k
2 if ` 6= p; W ord

πf,p
(

(
p 0
0 1

)
) = a(p, f)p−

k
2 .

By Corollary 2.3, W ord
πf,p
∈ W(πf,p)

ord(αf,p), where αf,p is the unramified

character with αf,p(p) = a(p, f)p
1−k

2 .

2.7. The bilinear form. Let A0(ω) be the space of cusp forms in A(ω).
Let 〈 , 〉 denote the GL2(A)-equivariant pairing between A0(ω) and A0(ω−1)
defined by

〈ϕ,ϕ′〉 =

∫
A×GL2(Q)\GL2(A)

ϕ(g)ϕ′(g)dτg

for ϕ ∈ A0(ω), ϕ′ ∈ A0(ω−1), where dτg is the Tamagawa measure of
PGL2(A). The following lemma is well-known (cf. [Wal85, page 217]), and
we omit the proof.

Lemma 2.6. For cusp forms ϕ ∈ A0
k(N,ω) and ϕ′ ∈ A0

−k(N,ω
−1), we have

〈Xϕ,ϕ′〉 =− 〈ϕ,Xϕ′〉 for X ∈ Lie(GL2(R)),

〈ϕ,U`ϕ
′〉 =`〈V`ϕ,ϕ′〉 for ` | N,

〈T`ϕ,ϕ′〉 =ω(`)〈ϕ, T`ϕ′〉 for ` - N.

Let π = ⊗′vπv be an irreducible unitary cuspidal automorphic reprensen-
tation on GL2(A) with central character ω. Denote by π̃ the contragredient
representation of π. By the multiplicity one theorem, the pairing 〈 , 〉 gives
rise to the equality A(π̃) = A(π)⊗ ω−1. For a place v of Q, define the non-
degenerate GL2(Qv)-equivariant pairing 〈 , 〉 between W(πv) and W(π̃v) by

(2.14) 〈W,W ′〉 =

∫
Q×v

W (

(
y 0
0 1

)
)W ′(

(
−y 0
0 1

)
)d×y

for W ∈ W(πv) and W(π̃v). This integral converges absolutely as πv is
unitarizable.

Proposition 2.7. Let ϕ ∈ A(π) and ϕ′ ∈ A(π̃). Suppose that Wϕ =
∏
vWv

and Wϕ′ =
∏
vW

′
v such that Wv(1) = W ′v(1) = 1 for all but finitely many v.

Then we have

〈ϕ,ϕ′〉 =
2L(1, π,Ad)

ζQ(2)

∏
v

ζv(2)

ζv(1)L(1, πv,Ad)
〈Wv,W

′
v〉.
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Proof. This is [Wal85, Proposition 6]. Note that Wv = Wπv and W ′v =
Wπ̃v are the normalized local Whittaker newforms for all but finitely many
v, and if πv is spherical, then

〈Wπv ,Wπ̃v〉 =
ζv(1)L(1, πv,Ad)

ζv(2)
,

so the right hand side of the equation in the proposition is indeed a finite
product. �

We give the formula of the local pairing of ordinary Whittaker functions.

Lemma 2.8. Let p be a prime. Suppose that πp is a principal series χ�υ or
a special representation χ|·|−

1
2 St. LetW ord

πp ∈ W(πp)
ord(χ) be the normalized

ordinary Whittaker function in Corollary 2.3. If n ≥ max {1, c(πp)}, then
we have

〈ρ(

(
0 p−n

−pn 0

)
)W ord

πp ,W
ord
πp ⊗ ω

−1
p 〉 =χ(−1)χυ−1|·|(pn) · γ(0, υχ−1)ζp(1).

Here υ = χ−1ωp and γ(s,−) is the γ-factor defined in (2.9).

Proof. Let W = W ord
πp and tn =

(
0 p−n

−pn 0

)
. We first note that if

n ≥ max {1, cp(π)}, then W (

(
y 0
0 1

)
tn) = 0 if y 6∈ Zp. Then we have

〈ρ(tn)W,W ⊗ ω−1
p 〉 =

∫
Q×p

W (

(
y 0
0 1

)
tn)W (

(
−y 0
0 1

)
)ω−1
p (−y)d×y

=

∫
Q×p

W (

(
y 0
0 1

)
tn)χω−1

p (−y)|·|s−
1
2 (y)d×y|s=1.

By the local functional equation for GL(2) (cf. [Bum97, Theorem 4.7.5]),
the last integral equals

ωp(p
−n)ε(1− s, π ⊗ χ−1)

L(s, π ⊗ χω−1
p )

L(1− s, π ⊗ χ−1)
χωp(−1)

×
∫
Q×p

W (

(
y 0
0 1

)(
0 1
−1 0

)(
0 1
−p2n 0

)
)χ−1|·|1/2−s(y)d×y|s=1

=ωp(p
−n)χ(−1)χ(p2n) ·

∣∣p2n
∣∣s− 1

2 ε(1− s, π ⊗ χ−1)
L(s, π ⊗ χω−1

p )

L(1− s, π ⊗ χ−1)
ζp(1− s)|s=1

Using the formula

ε(1− s, π ⊗ χ−1)
L(s, π ⊗ χω−1

p )

L(1− s, π ⊗ χ−1)

=

ε(1− s, υχ−1)
ζp(s)L(s,χυ−1)

ζp(1−s)L(1−s,υχ−1)
if πp = χ� υ,

− |p|−s ζp(s+1)
ζp(1−s) if πp = χ|·|−

1
2 St,



22 MING-LUN HSIEH

we see that 〈ρ(tn)W,W ⊗ ω−1
p 〉 equals

χ(−1)ωp(p
−n)χ2|·|(pn)

{
γ(0, υχ−1)ζp(1) if πp = χ� υ,

− |p|−1 ζp(2) if πp = χ|·|−
1
2 St.

Finally, we note that if π = χ|·|−
1
2 St, then υ = χ|·|−1 and γ(0, υχ−1)ζp(1) =

− |p|−1 ζp(2). This finishes the proof. �

2.8. Root numbers and Petersson norms. Let f ∈ Sk(N,χ) be a nor-
malized cuspidal newform of weight k and conductor N . Put fc(z) := f(−z).
Then it is a classical result that

(2.15) f |k
(

0 −1
N 0

)
= w(f) · fc

for some w(f) ∈ C× with the modulus |w(f)| = 1 (cf. [Miy06, Theorem
4.6.15]). This complex number w(f) is called the root number of f . By
[Hid88c, page 38], we have

w(f) =
∏
`<∞

ε(1/2, πf,`).

Recall that the Petersson norm of f is defined by

‖f‖2Γ0(N) =

∫
Γ0(N)\H

∣∣f(x+
√
−1y)

∣∣2 yk dxdy

y2
.

For each integer M , define the matrix τM = (τM,v) ∈ GL2(A) by

(2.16)
τM,∞ =

(
−1 0
0 1

)
, τM,` = 1 if ` -M ;

τM,` =

(
0 1

−`v`(M) 0

)
∈ GL2(Q`) if ` |M.

Let π = πf be the cuspidal automorphic representation generated by Φ(f)

with central character ω(= χ−1
A ). Define the local norm of the normalized

Whittaker newform Wπv by

(2.17) Bπv =
ζv(2)

ζv(1)L(1, πv,Ad)
〈ρ(τN,v)Wπv ,Wπv ⊗ ω−1

v 〉.

It is straightforward to verify that

Bπ∞ = 2−1−k, Bπ` = 1 if ` - N.

By Proposition 2.7 and (2.15), we have

(2.18) ‖f‖2Γ0(N) =
[SL2(Z) : Γ0(N)]

2k · w(f)
· L(1, π,Ad) ·

∏
q|N

Bπq .
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3. The unbalanced p-adic triple product L-functions

3.1. Ordinary Λ-adic modular forms. Let p > 2 be a prime and let
O be the ring of integers of a finite extension of Qp. Let I be a normal
domain finite flat over Λ = OJ1 + pZpK. A point Q ∈ Spec I(Qp), a ring
homomorphism Q : I → Qp is said to be locally algebraic if Q|1+pZp is a
locally algebraic character in the sense that Q(z) = zkQεQ(z) with kQ an
integer and εQ(z) ∈ µp∞ . We shall call kQ the weight of Q and εQ the finite
part of Q. Let XI be the set of locally algebraic points Q ∈ Spec I(Qp) of
weight kQ ≥ 1. A point Q ∈ XI is called arithmetic if the weight kQ ≥ 2 and
let X+

I be the set of arithmetic points. Let ℘Q = KerQ be the prime ideal
of I corresponding to Q and O(Q) be the image of I under Q.

Fix an isomorphism ιp : Cp ' C once and for all. Denote by ω :
(Z/pZ)× → µp−1 the p-adic Teichmüller character. Let N be a positive
integer prime to p and let χ : (Z/NpZ)× → O× be a Dirichlet character
modulo Np. Denote by S(N,χ, I) the space of I-adic cusp forms of tame
level N and (even) branch character χ, consisting of formal power series
f(q) =

∑
n≥1 a(n,f)qn ∈ IJqK with the following property: there exists an

integer af such that for arithmetic points Q ∈ X+
I with kQ ≥ af , the special-

ization fQ(q) is the q-expansion of a cusp form fQ ∈ SkQ(Npe, χω2−kQεQ).
The character χ is called the branch character of f .

The space S(N,χ, I) is equipped with the action of the usual Hecke opera-
tors T` for ` - Np as in [Wil88, page 537] and the operatorsU` for ` | pN given
by U`(

∑
n a(n,f)qn) =

∑
n a(n`,f)qn. For a positive integer d prime to p,

define Vd : S(N,χ, I)→ S(Nd, χ, I) by Vd(
∑

n a(n,f)qn) = d
∑

n a(n,f)qdn.
Recall that Hida’s ordinary projector e is defined by

e := lim
n→∞

Un!
p .

This ordinary projector e has a well-defined action on the space of clas-
sical modular forms preserving the cuspidal part as well as on the space
S(N,χ, I) of I-adic cusp forms (cf. [Wil88, page 537 and Prop. 1.2.1]).
The space eS(N,χ, I) is called the space of ordinary I-adic forms defined
over I. A key result in Hida’s theory of ordinary I-adic cusp forms is
that if f ∈ eS(N,χ, I), then for every arithmetic points Q ∈ XI, we have
fQ ∈ eSkQ(Npe, χω2−kQεQ). We say f ∈ eS(N,χ, I) is a primitive Hida
family if for every arithmetic points Q ∈ XI, fQ is a p-stabilized cuspidal
newform of tame conductor N . Let Xcls

I be the set of classical points (for f)
given by

Xcls
I :=

{
Q ∈ Xcls

I | fQ is the q-expansion of a classical modular form
}
.

Note that Xcls
I contains the set of arithmetic points X+

I but may be strictly
larger than X+

I as we allow the possibility of weight one points.

3.2. Galois representation attached to Hida families. Let 〈·〉 : Z×p →
1 + pZp be character defined by 〈x〉 = xω−1(x) and write z 7→ [z]Λ for the
inclusion of group-like elements 1 + pZp → OJ1 + pZpK× = Λ×. For z ∈ Z×p ,
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denote by 〈z〉I ∈ I× the image of [〈z〉]Λ in I under the structure morphism
Λ→ I. By definition, Q(〈z〉I) = Q(〈z〉) for Q ∈ XI. Let εcyc : GQ → Z×p be
the p-adic cyclotomic character and let 〈εcyc〉I : GQ → I× be the character
〈εcyc〉I (σ) = 〈εcyc(σ)〉I. For each Dirichlet character χ, we define χI : GQ →
I× by χI := σχ 〈εcyc〉−2 〈εcyc〉I, where σχ is the Galois character which sends
the geometric Frobenious element Frob` at ` to χ(`)−1.

If f ∈ eS(N,χ, I) is a primitive Hida family of tame conductor N , we let
ρf : GQ → GL2(Frac I) be the I-adic Galois representation attached to f
characterized by

Tr(ρf (Frob`)) = a(`,f); det ρf (Frob`) = χω2(`) 〈`〉I `
−1 (` - pN).

Note that det ρf = χ−1
I · ε−1

cyc. We have a complete knowledge of the de-
scription of the restriction of ρf to the local decomposition group GQ`

. For
` = p, according to [Wil88, Theorem 2.2.1],

ρf |GQp
∼
(
αp ∗
0 α−1

p χ−1
I ε

−1
cyc

)
where αp : GQp → I× is the unramified character with αp(Frobp) = a(p,f).
Here our representation ρf is the dual of ρF considered in [Wil88]. For ` 6= p,
enlarging I if necessary, we have the following list of ρf |GQ`

.

(1) (Principal series) ρf |GQ`
is reducible and isomorphic to

α`ξε
1/2
cyc 〈εcyc〉−1/2

I ⊕ α−1
` ξ′ε1/2

cyc 〈εcyc〉−1/2
I

with a unramified characters α` : GQ`
→ I× and a finite order char-

acters ξ, ξ′ : GQ`
→ Q

× with ξξ′ = χ−1ω−2.
(2) (Special) ρf |GQ`

is indecomposable and

ρf |GQ`
∼

(
ξεcyc 〈εcyc〉−1/2

I ∗
0 ξ 〈εcyc〉−1/2

I

)

with a finite order character ξ : GQ`
→ Q

× such that ξ2 = χ−1ω−2.
(3) (Supercuspidal) ρf |GQ`

is irreducible and ρf ' ρ0 ⊗ 〈εcyc〉−1/2
I with

ρ0 : GQ`
→ GL2(Q) irreducible representation of finite image

(cf. [SU06, page 689]).

Remark 3.1 (Rigidity of automorphic types). We recall the rigidity of au-
tomorphic types for a primitive Hida family f in [FO12, Lemma 2.14]. Let
` 6= p be a prime. If for some arithmetic point Q the associated cuspidal
automorphic representation πfQ,` is principal series (resp. special, super-
cuspidal) of conductor `n, then for any arithmetic point Q′, πfQ′ ,` is also
principal series (resp. special, supercuspidal) of the same conductor `n. This
is a consequence of the above description of ρf |GQ`

, the Langlands correspon-
dence and the Ramanujan conjecture for elliptic modular forms (only needed
in the case (Special)).



HIDA FAMILIES AND p-ADIC TRIPLE PRODUCT L-FUNCTIONS 25

In addition, if πfQ,` is a discrete series at any arithmetic point Q ∈ X+
I ,

then the Weil-Deligne representaion associated with the specialization of
ρf ⊗ 〈εcyc〉1/2I |GQ`

at Q is independent of Q.

3.3. Hecke algebras and congruence numbers. IfN is a positive integer
and χ is a Dirichlet character moduloN , we let Tk(N,χ) be theO-subalgebra
in EndC eSk(N,χ) generated over O by the Hecke operators T` for ` - Np
and the operators U` for ` | Np. Suppose that N is prime to p. Let
∆ = (Z/NpZ)× and ∆̂ be the group of Dirichlet characters modulo Np.
Enlarging O if necessary, we assume that every χ ∈ ∆̂ takes value in O×.
We are going to consider the Hecke algebra T(N, I) acting on the space of
ordinary Λ-adic cusp forms of tame level Γ1(N) defined by

S(N, I)ord :=
⊕
χ∈∆̂

eS(N,χ, I).

In addition to the action of Hecke operators, denote by σd the usual diamond
operator for d ∈ ∆ acting on S(N, I)ord by σd(f)

χ∈∆̂
= (χ(d)f)

χ∈∆̂
. Then

the ordinary I-adic cuspidal Hecke algebra T(N, I) is defined to be the I-
subalgebra of EndI S(N, I)ord generated over I by T` for ` | Np, U` for ` | Np
and the diamond operators σd for d ∈ ∆. Let Q ∈ X+

I be an arithmetic point.
Every t ∈ T(N, I) commutes with the specialization: (t·f)Q = t·fQ. For χ ∈
∆̂Np, let ℘Q,χ be the ideal of T(N, I) generated by ℘Q and {σd − χ(d)}d∈∆.
A classical result [Hid88b, Theorem 3.4] in Hida theory asserts that

T(N, I)/℘Q,χ ' TkQ(Npe, χω2−kQεQ)⊗O O(Q).

Let f ∈ eS(N,χ, I) be a primitive Hida family of tame level N and char-
acter χ and let λf : T(N, I) → I be the corresponding homomorphism
defined by λf (T`) = a(`,f) for ` - Np, λf (U`) = a(`,f) for ` | Np and
λf (σd) = χ(d) for d ∈ ∆. Let mf be the maximal of T(N, I) containing
Kerλf and let Tmf

be the localization of T(N, I) at mf . It is the local ring
of T(N, I) through which λf factors. Recall that the congruence ideal C(f)
of the morphism λf : Tmf

→ I is defined by

C(f) := λf (AnnTmf
(Kerλf )) ⊂ I.

The Hecke algebraTmf
is a local finite flat Λ-algeba, and by the primitiveness

of f , there is an algebra direct sum decomposition

(3.1) λ : Tmf
⊗I Frac I ' Frac I⊕B, t 7→ λ(t) = (λf (t), λB(t)),

where B is some finite dimensional (Frac I)-algebra ([Hid88b, Corollaty 3.7]).
By definition we have

C(f) = λf (Tmf
∩ λ−1(Frac I⊕ {0})).

Now we impose the following

Hypothesis (CR). The residual Galois representation ρf of ρf is absolutely
irreducible and p-distiniguished.
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Under the above hypothesis, Tmf
is Gorenstein by [Wil95, Corollay 2, page

482], and with this Gorenstein property of Tmf
, Hida in [Hid88a] proved

that the congruence ideal C(f) is generated by a non-zero element ηf ∈
I, called the congruence number for f . Let 1∗f be the unique element in
Tmf

∩ λ−1(Frac I ⊕ {0}) such that λf (1∗f ) = ηf . Then 1f := η−1
f 1∗f is the

idempotent in Tmf
⊗I Frac I corresponding to the direct summand Frac I of

(3.1) and 1f does not depend on any choice of a generator of C(f). Moreover,
for each arithmetic point Q, it is also shown by Hida that the specialization
ηf (Q) ∈ O(Q) is the congruence number for fQ and

1f := η−1
f 1∗f (mod ℘χ,Q) ∈ Tord

kQ
(Npr, χω2−kQεQ)⊗O FracO(Q)

is the idempotent with λf (1f ) = 1.
There is a unique decomposition χ = χ(p)χ(p) of Dirichlet characters,

where χ(p) and χ(p) are Dirichlet characters modulo N and pr respectively.
We call χ(p) the p-primary component of χ. Let χ = χ−1 be the com-
plex conjugation of χ. Denote by f̆ ∈ eS(N,χ(p)χ

(p), I) the primitive Hida
family corresponding to the twist f |[χ(p)](q) =

∑
(n,N)=1 χ

(p)(n)a(n,f)qn

(cf. [Dim14, Lemma 6.1]). To be precise, the Fourier coefficients of f̆ are
given by

a(`, f̆) =

{
χ(p)(`)a(`,f) if ` - N,
a(`,f)−1χ(p)ω

2(`)`−1 〈`〉I if ` | N.

by [Miy06, Theorem 4.6.16]. For every arithmetic point Q ∈ X+, f̆Q is
the p-stabilized newform attached to fQ|[χ(p)]. Moreover, the Atkin-Lehner
involution η′p introduced in [Miy06, (4.6.21), page 168]) induces an iso-
morphism η′p : Sk(Npr, χω2−kQεQ) ' Sk(Npr, χ(p)χ(p)ω

2−kQεQ) such that
T`η
′
p = χ(p)(`)η′pT` for ` - N ([Miy06, (4.6.23)]). We thus obtain a Λ-algebra

isomorphism [χ(p)] : Tmf
' Tmf̆

such that [χ(p)](T`) = T` · χ(p)(`) for ` - N
and λf̆ ◦ [χ(p)] = λf . It follows that

(3.2) 1∗
f̆

= [χ(p)](1∗f ) and ηf̆ = ηf .

3.4. The adjustment of levels for a triple of modular forms. For any
positive integer M , let supp(M) denote the support of M , i.e. the set of
prime factors of M . If f is a p-stabilized newform of tame conductor N1,
let c`(f) := c(πf,`) be the exponent of the `-component of N1 for each prime
` 6= p and set

Σ1
f = {` : prime | πf,` is a principal series} ;

Σ0
f = {` : prime | πf,` is a discrete series} .

To a triple (f, g, h) of p-stabilized newforms of tame conductors (N1, N2, N3),
we are going to associate a set of auxiliary integers (df ,dg,dh), which we
call the adjustment of levels for (f, g, h). This adjustment of levels is crucial
for the construction of our test Λ-adic modular forms (Definition 3.3 and
Definition 4.8) in order to obtain the optimal value of the local zeta integrals
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in Ichino’s formula at bad places, and it is defined according to the choice
of good local test vectors in the space of product of local representations of
πf,` × πg,` × πh,` (cf. §6.1) at bad primes ` 6= p. Inevitably, the definition is
very ad-hoc and may seem to be artificial at the first sight. The readers are
advised to skip the precise definition in this subsection at the first reading
and come back until §6.1. To begin with, let Nfgh = gcd(N1, N2, N3) and
N = lcm(N1, N2, N3). Put

cmin
` := v`(Nfgh); c`(fg) = max {c`(f), c`(g)} .

Let Σfgh = Σ0
f ∩Σ0

g ∩Σ0
h. We introduce several disjoint subsets of supp(N):

Σ
(I)
fg =

{
` ∈ Σ1

f ∪ Σ1
g ∪ Σfgh | c`(h) < min {c`(f), c`(g)}

}
,

Σ
(IIa)
f =

{
` ∈ Σ0

g ∩ Σ0
h | L(s, πg,` ⊗ πh,`) 6= 1, c`(f) = 0

}
,

Σ
(IIb)
f =

{
` ∈ Σ0

g ∩ Σ0
h | L(s, πg,` ⊗ πh,`) = 1, ` ∈ Σ1

f , c`(f) < min {c`(g), c`(h)}
}
,

Σmax
f =

{
` : prime factor of N1 | c`(g) = c`(h) = cmin

` < c`(f)
}
.

Define Σ
(I)
fh, Σ

(I)
gh ,Σ

(IIa)
g ,Σ

(IIb)
g , Σmax

g , . . . , in the same manner. We set

d
(I)
f =

∏
`∈Σ

(I)
fg

`c`(fg)−c`(f) ·
∏
`∈Σ

(I)
fh

`c`(fh)−c`(f),

d
(II)
f =

∏
`∈Σ

(IIa)
f

`d
c`(gh)

2
e ·

∏
`∈Σ

(IIb)
f

`c`(gh)−c`(f),

dmax
f =

∏
`∈Σmax

f

`c`(f)−cmin
` .

Likewise we define d(I)
g ,d

(II)
g ,dmax

g ,d
(I)
h ,d

(II)
h and dmax

h . Finally, put

(3.3) df = d
(I)
f d

(II)
f , dg = d(I)

g d
max
f dmax

h · d(II)
g and dh = d

(I)
h d

max
g · d(II)

h .

By definition, we have

(3.4) df | N/N1, dg | N/N2, dh | N/N3.

3.5. Definitions of good test Λ-adic modular forms. Let O = OF for
some finite extension F of Qp. Fixing a topological generator γ0 of 1 + pZp,
we let Λ = OJ1 + pZpK = OJT K with T = γ0 − 1. For i = 1, 2, 3, let Ii be a
normal domain finite flat over Λ and let ψi : (Z/pNiZ)× → O× be Dirichlet
characters with ψi(−1) = 1. Throughout this paper, we fix a triplet of
primitive Hida families

F := (f , g,h) ∈ eS(N1, ψ1, I1)× eS(N2, ψ2, I2)× eS(N3, ψ3, I3)

of tame conductorsN = (N1, N2, N3) and branch characters ψ = (ψ1, ψ2, ψ3).
We shall impose the following running hypotheses

(ev) ψ1ψ2ψ3 = ω2a for some a ∈ Z;

(sf) gcd(N1, N2, N3) is square-free.
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Lemma 3.2. Let (Q1, Q2, Q3) ∈ Xcls
I1
× Xcls

I2
× Xcls

I3
and (f, g, h) = FQ =

(fQ1
, gQ2

,hQ3) be the specialization of F at Q. The adjustment of levels
d•f ,d

•
g and d•h for • ∈ {(I), (II),max} are independent of the choice of any

arithmetic point Q.

Proof. The lemma is clear from the rigidity of automorphic types, the
description of the restriction of ρf |GQ`

given in §3.2 and the Langlands cor-
respondence for GL(2). �

Definition 3.3 (Test Λ-adic forms). Let N = lcm(N1, N2, N3). Put

Σ
(IIb)
?,0 =

{
` ∈ Σ

(IIb)
? | c`(?) = 0

}
for ? ∈ {f, g, h} .

For each ` ∈ Σ
(IIb)
f,0 (resp. Σ

(IIb)
g,0 , Σ

(IIb)
h,0 ), we fix once and for all a root β`(f) ∈

I×1 (resp. β`(g) ∈ I×2 , β`(h) ∈ I×3 ) of the Hecke polynomial Hf ,`(X) :=
X2 − a(`,f)X + ψ1ω

2(`)`−1 〈`〉I1
(resp. Hg,`(X), Hh,`(X)). With the

above notation in the previous subsection, we define the pair (g?,h?) in
eS(N,ψ2, I2)× eS(N,ψ3, I3) of the ordinary Λ-adic cusp forms by

g?(q) =
∑

I⊂Σ
(IIb)
g,0

(−1)|I|βI(g)−1Vdg/nIg,

h?(q) =
∑

I⊂Σ
(IIb)
h,0

(−1)|I|βI(h)−1Vdh/nIh,

where nI =
∏
`∈I `, βI(?) =

∏
`∈I β`(?) for ? = f , g,h.

3.6. The construction of the p-adic L-function in the unblanced
case. We let

R = I1⊗̂OI2⊗̂OI3

be a finite extension over the three variable Iwasawa algebra

R0 : = Λ⊗̂OΛ⊗̂OΛ = OJT1, T2, T3K,
(T1 = T ⊗ 1⊗ 1, T2 = 1⊗ T ⊗ 1, T3 = 1⊗ 1⊗ T ).

Define the multiplicative map Θ : Z×(p) → R
× by

Θ(n) := ψ1,(p)ω
−a−1(n) 〈n〉1/2I1

〈n〉−1/2
I2
〈n〉−1/2

I3
.

Define the R-adic twisting operator |[Θ] : R[[q]]→ R[[q]] by

(
∑
n≥0

a(n)qn)|[Θ] =
∑

n≥0, p-n

Θ(n) · a(n)qn.

Here ψ1,(p) is the restriction of the branch character ψ1 of f to (Z/pZ)×.
Define the power series H by

H := g? · h?|[Θ] ∈ RJqK.

Lemma 3.4. The power series H belongs to S(N,ψ1,(p)ψ1
(p)
, I1)⊗̂I1R.
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Proof. The following proof is taken from Hida’s blue book [Hid93]. Put

X0
R =

{
Q = (Q1, Q2, Q3) ∈ X+

I1
× X+

I2
× X+

I3
| kQ1 = kQ2 + kQ3 , kQ1 ≥ kQ2 + 2

}
.

For Q ∈ X0
R, put

k0 = ψ1,(p)ω
−a−1ε

1/2
Q1
ε
−1/2
Q2

ε
−1/2
Q3

.

Here ε1/2? is the unique square root of ε? taking value in 1 + pZp. We verify
that (h?|[Θ])Q = hQ3 |[k0] ∈ SkQ3

(N,ψ2
1,(p)ψ

−1
1 ψ−1

2 εQ1ε
−1
Q2

), and hence we
find that for every Q ∈ X0

R,

(3.5) HQ = g?Q2
· h?Q3

|[k0] ∈ SkQ1
(N,ψ1,(p)ψ1

(p)
ω2−kQ1 εQ1).

We have R0 = OJT1, T2, ZK with Z = (1 + T1)−1(1 + T2)(1 + T3) − 1. Let
L0 = FracR0 and L = FracR be a finite extension of L0. Let α1, · · · , αn be
a basis of R over R0 and write H =

∑n
j=1H

(j)αj with H(j) ∈ R0JqK. On

the other hand, letting
{
α∗j

}
j=1,...,n

be the dual basis of {αj}j=1,...,n with

respect to the trace map Tr : L → L0, we have H(j) = Tr(Hα∗j ). Let
u = 1 + p. By (3.5), we can write H(j) = H(j)(T1, T2, Z) ∈ OJT1, T2, ZKJqK
so that
(3.6)
H(j)(uk1ζ1−1,uk2ζ2−1, ζ3−1) = Tr(HQαi(Q)) ∈ Sk1(N,ψ1,(p)ψ1

(p)
ω2−k1)

for all but finite many positive integers k1, k2 with k1 ≥ k2 + 2 and ζi ∈ µp∞
(i = 1, 2, 3), where Q = (Q1, Q2, Q3) are some arithmetic points of weights
(k1, k2, k1 − k2) and finite parts (εQ1 , εQ2 , εQ3), εQi(z) is the finite order
character with εQi(u) = ζi.

To prove the lemma, it suffices to show that

(3.7) H(j)(T1, T2, Z) ∈ S⊗̂OOJT2, ZK, S := S(N,ψ1,(p)ψ1
(p)
,OJT1K),

which in turn, by [Hid93, Lemma 1 in page 328], is equivalent to showing
that H(j)(T1, T2, ζ − 1) ∈ S⊗̂OO[ζ]JT2K for every ζ ∈ µp∞ . Now we repeat
the arguments in [Hid93, page 226-227]. Let a be a positive integer such that
gQ is a classical modular form for all Q ∈ XI with kQ = a. For m = 1, 2, . . .,
we define the power series inductively

H0(T1, T2) = H(j)(T1, T2, ζ − 1), Ym = T2 − (um+a−1 − 1) ∈ OJT2K,

Hm(T1, T2) =
Hm−1(T1, T2)−Hm−1(T1,u

m+a−1 − 1)

Ym
∈ OJT1, T2KJqK

Then (3.6) implies that H0(T1,u
a − 1) ∈ S ⊗O O[ζ] and by induction, we

find easily that Hm(T1,u
m+a−1) ∈ S⊗OO[ζ] for all m = 0, 1, . . .. On other

hand, by construction we have

H(j)(T1, T2, ζ − 1) =
∞∑
m=0

Hm(T1,u
m+a − 1)

m∏
i=1

Yi.

It is clear that the right hand side is a convergent power series and belongs
to S⊗̂OO[ζ]JT2K. �
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Define the auxiliary R-adic form Haux by

(3.8) Haux :=
∑

I⊂Σ
(IIb)
f,0

(−1)I
ψ1,(p)(nI/df ) 〈nI/df 〉I1

df

βI(f)nI
·Udf/nI (H).

By the above Lemma 3.4, we have Haux ∈ S(N,ψ1,(p)ψ1
(p)
, I1)⊗̂I1R. This

allows us to apply the ordinary projector e to Haux, and we obtain

eHaux ∈ eS(N,ψ1,(p)ψ1
(p)
, I1)⊗̂I1R

an ordinary Λ-adic modular form with coefficients in R. With these prepa-
rations, we are ready to define the p-adic L-function following the con-
struction in [Hid85, (4.6)]. Denote by TrN/N1

: eS(N,ψ1,(p)ψ1
(p)
, I1) →

eS(N1, ψ1,(p)ψ1
(p)
, I1) the usual trace map (cf. [Hid88c, page 14]).

Definition 3.5. The unbalanced p-adic triple product L-function L f
F is

defined by
L f

F := a(1, ηf · 1f̆ TrN/N1
(eHaux)) ∈ R.

3.7. Global trilinear period integrals. We denote by Xf
R the weight

space for the triple (f , g,h) in the f -dominated unbalanced range, consisting
of Q = (Q1, Q2, Q3) ∈ X+

I1
× Xcls

I2
× Xcls

I3
such that

kQ1 ≥ kQ2 + kQ3 ; kQ1 ≡ kQ2 + kQ3 (mod 2).

In this subsection, we relate the value of L f
p (Q) at a pointQ = (Q1, Q2, Q3) ∈

Xf
R to a global trilinear period integral of a test triple of modular forms. To

this end, it is necessary to work in the framework of automorphic forms.
Let (k1, k2, k3) = (kQ1 , kQ2 , kQ3) and let r be an integer such that r ≥
max {1, cp(εQ1), cp(εQ2), cp(εQ3)}. Recall that the specialization

(f, g, h) := FQ = (fQ1
, gQ2

,hQ2) ∈ Sk1(N1p
r, χf )×Sk2(N2p

r, χg)×Sk3(N3p
r, χh)

are p-stabilized cuspidal newforms with characters modulo Npr

χf = ψ1εQ1ω
2−k1 , χg = ψ2εQ2ω

2−k2 and χh = ψ3εQ3ω
2−k3 .

Let ϕf = Φ(f), ϕg = Φ(g) and ϕh = Φ(h) be the associated adelic lifts
as in (2.3). Then

(ϕf , ϕg, ϕh) ∈ A0
k1

(N1p
r, ωf )×A0

k2
(N2p

r, ωg)×A0
k3

(N3p
r, ωh),

and the central characters ωf , ωg, ωh are the adelizations

ωf = (χ−1
f )A, ωg = (χ−1

g )A, ωh = (χ−1
h )A.

Write (β`(f), β`(g), β`(h)) for the specialization (β`(f)(Q1), β`(g)(Q2), β`(h)(Q3)).
For each finite prime `, define the polynomial Qf,` ∈ O[X] by

Qf,`(X) = Xv`(df )

{
1 if ` 6∈ Σ

(b)
gh ,

(1− β`(f)−1`
k1
2
−1X−1) if ` ∈ Σ

(b)
gh .
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We define Qg,`(X) and Qh,`(X) likewise. Set

(3.9) ϕ?f =
∏
`

Qf,`(V`)ϕf , ϕ?g =
∏
`

Qg,`(V`)ϕg and ϕ?h =
∏
`

Qh,`(V`)ϕh.

By (2.6), we see that

ϕ?g = d
kQ2

2
−1

g Φ(g?Q2
) and ϕ?h = d

kQ3
2
−1

h Φ(h?Q3
).

Decompose ωf = ωf,(p)ω
(p)
f , where ωf,(p) and ω

(p)
f are finite order Hecke

characters of p-power conductor and prime-to-p conductor respectively. By
definition, ωf,(p) is the adelization of the p-primary component χ−1

f,(p) of χ
−1
f .

Let f̆ be the primitive Hida family corresponding to the twist f |[ψ1
(p)

] and
put

ϕ̆f = Φ(f̆) ∈ A0
k1

(N1p
r, ω−1

f ω2
f,(p)).

We introduce the modified p-Euler factor Ep(f,Ad) for the adjoint mo-
tive attached to the p-stabilized newform f . Let αf,p : Q×p → C× be the
unramified character as in Remark 2.5. Let βf,p := α−1

f,pωf,p. Hence the
local component πf,p is either the principal series αf,p � βf,p or the special
representation αf,p|·|−

1
2 St. Define the modified p-Euler factor Ep(f,Ad) by

(3.10)
Ep(f,Ad) = ε(1, βf,pα

−1
f,p)L(0, βf,pα

−1
f,p)
−1L(1, βf,pα

−1
f,p)
−1

= a(p, f)−cp(πf ) · pcp(πf )(
k1
2
−1)ε(1/2, πf,p)

×

{
(1− α−2

f,pωf,p(p))(1− α
−2
f,pωf,p(p)p

−1) if c(πf,p) = 0,

1 if c(πf,p) > 0.

Define J∞ and tn ∈ GL2(A) for a positive integer n by
(3.11)

J∞ =

(
−1 0
0 1

)
∈ GL2(R), tn =

(
0 p−n

−pn 0

)
∈ GL2(Qp) ↪→ GL2(A).

Lemma 3.6. Let notation be as above. For n ≥ max{c(πf,p), 1}, we have

〈ρ(J∞tn)ϕf , ϕ̆f ⊗ ω−1
f,(p)〉 =

ζQ(2)−1

[SL2(Z) : Γ0(N1)]
· ‖f◦‖2Γ0(N◦f )

× Ep(f,Ad) ·
ω−1
f,pα

2
f,p|·|p(pn)ζp(2)

ζp(1)
.

Proof. Write π for πf the irreducible automorphic cuspidal representa-
tion on GL2(A) generated by ϕf = Φ(f) and let ω = ωf be the central char-
acter of π. Let ϕ′ = ρ(J∞tn)ϕf ∈ A0

−kQ1
(Npr, ω) and ϕ′′ = ϕ̆f ⊗ ω−1

f,(p) ∈
A0
kQ1

(Npr, ω−1). Then ϕ′ ∈ A(π) and ϕ′′ ∈ A(π̃). Since ϕf and ϕ̆f are auto-

morphic forms attached to p-stabilized cuspidal newforms f and f̆ , and ωf,(p)
is unramified outside p, according to Remark 2.5, the Whittaker functions
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Wϕ′ and Wϕ′′ have the factorizations

Wϕ′ = ρ(tn)W ord
πp ·ρ(J∞)Wπ∞

∏
v 6=p,∞

Wπv , Wϕ′′ = W ord
πp ⊗ω

−1
p ·Wπ∨∞

∏
v 6=p,∞

Wπ∨v ,

where W ord
πp ∈ W

ord
πp (αp) is the ordinary Whittaker functions attached to the

character αp. On the other hand, let ϕ◦ = Φ(f◦) be the normalized newform
in A(π) and let ϕ◦ ∈ A(π̃) be the complex conjugation of ϕ◦. Then ρ(J∞)ϕ◦

is the normalized newform in A(π̃).
Let α = αf,p, β = βf,p be the characters defined as above. Combining

Proposition 2.7, Lemma 2.8 and the formula

ε(1/2, πp) =

{
ε(1/2, β) if πp = α� β,

−α|·|−
1
2

p (p) if πp = α|·|−
1
2

p St,

we find that the ratio 〈ϕ
′,ϕ′′〉

〈ϕ◦,ϕ◦〉 equals

〈ρ(tn)W ord
πp ,W

ord
πp ⊗ ω

−1
p 〉

〈Wπp ,Wπ∨p 〉
= αβ−1|·|p(p

n) · ε(1/2, πp)

×

{
(1− βα−1|·|p(p))(1− βα−1(p))(1 + p−1)−1 if c(πp) = 0,

α−1|·|−
1
2

p (pc(πp)) if c(πp) > 0.

From above equation together with the following equation ([II10, page 1403])

〈ϕ◦, ϕ◦〉 =
ζQ(2)−1

[SL2(Z) : Γ0(N1pcp(π))]
‖f◦‖2Γ0(Nf◦ )

= ‖f◦‖2Γ0(Nf◦ )

ζQ(2)−1

[SL2(Z) : Γ0(N1)]

{
1 if c(πp) = 0

|p|cp(π)
p (1 + p−1)−1 if c(πp) > 0,

we can directly deduce the lemma. �

We may regard F := FQ = (f, g, h) as the modular form on H3 of weight
(k1, k2, k3) given by F (z1, z2, z3) = f(z1)g(z2)h(z3). Let ωF be the central
character of F |H given by

ωF = ωfωgωh.

Let k be the Dirichlet character modulo pr defined by

(3.12) k = ψ1,(p)ω
−a−1+

k2+k3−k1
2 ε

1/2
Q1
ε
−1/2
Q2

ε
−1/2
Q3

.

By definition, k2 = χ2
f,(p)χ

−1
f χ−1

g χ−1
h . Define the character ω1/2

F by

(3.13) ω
1/2
F = ωf,(p)kA = ω−a+

k1+k2+k3
2

−3ε
−1/2
Q1

ε
−1/2
Q2

ε
−1/2
Q3

.

Then ω1/2
F is a finite order Hecke character unramified outside p, and

(ω
1/2
F )2 = ωfωgωh = ωF

as the notation suggests. Let E = Q⊕Q⊕Q be the split cubic étale algebra
over Q. Let

m =
k1 − k2 − k3

2
.
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Define the automorphic cusp form φ?F on GL2(AE) by

(3.14)
φ?F : = (ρ(J∞)ϕ?f ⊗ ω

−1/2
F ) � ϕ?g � V m

+ θkpϕ
?
h,

φ?F (x1, x2, x3) = ϕ?f (x1J∞) · ϕ?g(x2) · V m
+ θkpϕ

?
h(x3) · ω−1/2

F (detx1).

Here θkp is the twisting operator as in (2.2). Put

tn = (tn, 1, 1) ∈ GL2(Ep).

We shall relate the the valuation of our p-adic L-function Lp(Q) at Q to the
global trilinear period I(ρ(tn)φ?F ) defined by

I(ρ(tn)φ?F ) :=

∫
A×GL2(Q)\GL2(A)

φ?F (xtn, x, x)dτx.

Put

(3.15) d
κ/2
F := d

k1−2
2

f d
k2−2

2
g d

k3−2
2

h .

Proposition 3.7. For n ≥ r ≥ max {c(πf,p), c(πg,p), c(πh,p), 1}, we have

L f
F (Q) =

ζQ(2)[SL2(Z) : Γ0(N)]

η−1
f ‖f◦‖2Γ0(Nf◦ )Ep(f,Ad)

·I(ρ(tn)φ?F ) · ζp(1)

ω−1
f,pα

2
f,p|·|p(pn)ζp(2)

· 1

d
κ/2
F

.

Proof. First of all, since f̆Q1
is a p-stabilized ordinary newform, by the

multiplicity one for new and ordinary vectors together with (3.2), we have

L f
p (Q) · f̆Q1

= ηf · 1f̆Q1

TrN/N1
(eHaux

Q ).

Taking the adelic lifts of both sides, we obtain that
(3.16)
〈ρ(J∞tn)ϕf⊗ω−1

f,(p), ϕ̆f 〉·L
f
p (Q) = ηf ·〈ρ(J∞tn)ϕf⊗ω−1

f,(p),TrN/N1
Φ(1∗

f̆Q1

eHaux
Q )〉.

We set
H = g?Q2

· δmkQ3
h?Q3
|[k],

where δmkQ3
is the Maass-Shimura differential operator. Then H is a nearly

holomorphic cusp form of weight kQ1 . Since Θ(n)(Q) = k(n)nm for n ∈ Z×(p),
from [Hid93, equation (2), page 330], we deduce that

(3.17) eHQ = e(g?Q2
dm(h?Q3

|[k])) = eHol(g?Q2
δmkQ3

(h?Q3
|[k])) = eHol(H),

where d = q ddq is Serre’s p-adic differential operator and Hol is the holomor-
phic projection as in [Hid93, (8a), page 314]. Using (2.5), (2.6) and (2.8),
we see that

ϕH := Φ(H) = d
1− k2

2
g d

1− k3
2

h · ϕ?g · V m
+ θkpϕ

?
h ⊗ k−1

A .

Then ϕH ∈ A0
k1

(Npr, ω−1
f ω2

f,(p)) has a decomposition

ϕH = Hol(ϕH) + V+ϕ
′
1 + V 2

+ϕ
′
2 + · · ·+ V n

+ϕ
′
n,

where Hol(ϕH) and
{
ϕ′j

}
j=1,...,n

are holomorphic automorphic forms. It

follows that Hol(ϕH) = Φ(Hol(H)).
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Let 1∗f ∈ Tord(N1p
r, χf ) be the specialization of 1∗f . As a consequence

of strong multiplicity one theorem for modular forms, the idempotent 1f =

η−1
f 1∗f ∈ Tord(N1p

r, χf )⊗O FracO(Q1) is generated by the Hecke operators
T` for ` - Np, so we see that 1f is the left adjoint of 1f̆Q1

for the pairing

〈−⊗ω−1
f,(p),−〉 by Lemma 2.6, and hence the right hand side of (3.16) equals

(3.18)
ηf · 〈TrN/N1

(
1f · ρ(J∞tn)ϕf ⊗ ω−1

f,(p)

)
,Φ(eHaux

Q )〉

= ηf [K0(N1) : K0(N)] · 〈ρ(J∞tn)ϕf ⊗ ω−1
f,(p),Φ(eHaux

Q )〉.

Note that for any prime ` 6= p, ωf,(p)($`) = χf,(p)(`) is the specialization of
ψ1,(p)(`) 〈`〉I1

at Q1. From the definition (3.8), (3.17) and Lemma 2.6, we
find that the pairing in the right hand side of (3.18) equals

d
− k1

2
f

∑
I⊂Σ

(b)
gh

(−1)I
n
k1
2
I

βI(f)
χf,(p)(nI/df ) · 〈ρ(J∞tn)ϕf ⊗ ω−1

f,(p),Udf/nIΦ(eHol(H))〉

= d
1− k1

2
f 〈ρ(J∞tn)ϕ?f ⊗ ω−1

f,(p), eHol(ϕH)〉.

On the other hand, it is straightforward to verify by Lemma 2.6 that

〈ρ(tn)Upϕ,ϕ
′〉 = 〈ϕ,Upϕ

′〉,
〈ρ(J∞)ϕ, V+ϕ

′〉 = −〈ρ(J∞)V−ϕ,ϕ
′〉

(cf. [Hid85, (5.4)]), and together with (3.13), it follows that

d
1− k1

2
f 〈ρ(J∞tn)ϕ?f ⊗ ω−1

f,(p), eHol(ϕH)〉 = d
1− k1

2
f 〈ρ(J∞tn)ϕ?f ⊗ ω−1

f,(p), ϕH〉

= d
−κ/2
F 〈ρ(J∞tn)ϕ?f ⊗ ω

−1/2
F , ϕ?g · V m

+ θkpϕ
?
h〉 = d

−κ/2
F I(ρ(tn)φ?F ).

Combining the above equation with (3.16) and (3.18), we find that

〈ρ(J∞tn)ϕf , ϕ̆f ⊗ ω−1
f,(p)〉 ·L

f
p (Q) = ηf [Γ0(N1) : Γ0(N)]d

−κ/2
F · I(ρ(tn)φ?F ).

Now the lemma follows from the formula of the pairing in the left hand side
given in Lemma 3.6. �

3.8. Ichino’s period integral formula for triple products.

3.8.1. The setting. In this subsection, we apply Ichino’s formula to express
I(ρ(tn)φ?F ) as a product of the central value of the triple product L-function
attached to F and normalized local trilinear integrals. We retain the notation
in the previous subsection. Let

π1 = πf ⊗ ω
−1/2
F , π2 = πg and π3 = πh

with central characters ω1 = ω−1
g ω−1

h , ω2 = ωg and ω3 = ωh respectively.
Let

ΠQ = π1 × π2 × π3

be an irreducible unitary cuspidal automorphic representation of GL2(AE)
and let A(ΠQ) = A(π1) ⊗ A(π2) ⊗ A(π3) be the unique automorphic real-
ization of ΠQ. For brevity of notation, we simply write Π for ΠQ. For each
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place v, let VΠv = Vπ1,v ⊗Vπ2,v ⊗Vπ3,v denote a realization of Πv, where Vπi,v
is a realization of πi,v for i = 1, 2, 3. Then we have the factorizations

Π '
⊗
v

Πv, A(Π ) '
⊗
v

VΠv .

We let φF = ϕ1 � ϕ2 � ϕ3 ∈ A(Π ), where

ϕ1 = ϕf ⊗ ω
−1/2
F , ϕ2 = ϕg and ϕ3 = ϕh.

Then we have a factorization φF =
⊗

v φv via the above isomorphism. Since
ϕf , ϕg and ϕh are p-stabilized newforms and ω1/2

F is unramified outside p, we
find that φv = ϕ1,v⊗ϕ2,v⊗ϕ3,v ∈ Vnew

Πv
if v 6= p and φp = ϕ1,p⊗ϕ2,p⊗ϕ3,p ∈

Vord
Πp

.
• ϕi,v ∈ Vnew

πi,v is a new vector if v 6= p,
• ϕi,p ∈ Vord

πi,p(χi,p) is an ordinary vector attached to the character
χi,p : Q×p → C×, where

(3.19) χ1,p = αf,pω
−1/2
F,p , χ2,p = αg,p and χ3,p = αh,p

(α?,p is the character attached to a p-stabilized newform ? defined in
Remark 2.5).

For each finite prime `, define the polynomial Q1,`(X) ∈ O[X] by
(3.20)

Q1,`(X) = Xv`(df )

{
1 if ` 6∈ Σ

(IIb)
f,0 ,

(1− ω1/2
F ($`)β`(f)−1`

k1
2
−1X−1) if ` ∈ Σ

(IIb)
f,0 .

Set Q2,`(X) = Qg,`(X) and Q3,`(X) = Qh,`(X). Let d̂f =
∏
`$

v`(df )
` ∈ Q̂×.

We put

ϕ?1 : =
∏
`

Q1,`(V`)ϕ1 = ω
1/2
F (d̂f ) · ϕ?f ⊗ ω

−1/2
F ,

ϕ?2 = ϕ?g; ϕ?3 = ϕ?h.

We give the factorization of the automorphic form φ?F defined in (3.14). By
definition,

φ?F = C1 · ρ(J∞)ϕ?1 � ϕ?2 � V m
+ θkpϕ

?
3 (C1 := ω

−1/2
F,∞ (−1)ω

−1/2
F (d̂f )).

In view of (3.9), we find that that φ?F = C1 ·
⊗

v φ
?
v, where

(3.21) φ?v =


π1,∞(J∞)ϕ1,∞ ⊗ ϕ2,∞ ⊗ V m

+ ϕ3,∞ if v =∞,

ϕ1,p ⊗ ϕ2,p ⊗ θkpϕ3,p if v = p,

Q1,`(V`)ϕ1,` ⊗Q2,`(V`)ϕ2,` ⊗Q3,`(V`)ϕ3,` if v = ` - p.

Here θkp is the local twisting operator attached to k as in (2.12) and V` is the
level-raising operator as in (2.11). Note that φ?` = φ` is a new vector in VΠ`

for ` - pN .
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Next we consider the contragredient representation Π̃ = π̃1⊗ π̃2⊗ π̃3. We
put

ϕ̃i = ϕi ⊗ ω−1
i and ϕ̃?i = ϕ?i ⊗ ω−1

i , i = 1, 2, 3.

Define φ̃F and φ̃?F ∈ A(Π̃ ) by

φ̃F = ϕ̃1 � ϕ̃2 � ϕ̃3,

φ̃?F = ρ(J∞)ϕ̃?1 � ϕ̃?2 � V m
+ θkpϕ̃

?
3.

Recall that Ni is the tame conductor of πi. Take an isomorphism A(Π̃ ) '⊗
v VΠ̃v

with V
Π̃v

= Vπ̃1,v
⊗ Vπ̃2,v

⊗ Vπ̃3,v
. We have a factorization φ̃F =⊗

v φ̃v, where φ̃v = ϕ̃1,v ⊗ ϕ̃2,v ⊗ ϕ̃3,v,

φ̃i,∞ ∈ Vnew
π̃i,∞

, φ̃i,p ∈ Vord
π̃i,p

(χi,pω
−1
Qi

);

φ̃i,v ∈ π̃i,v(
(

0 1
−Ni 0

)
)Vnew
π̃i,v

if v 6= p ∞.

Moreover, φ̃?F =
⊗

v φ̃
?
v, where

(3.22) φ̃?v =


π1,∞(J∞)ϕ̃1,∞ ⊗ ϕ̃2,∞ ⊗ V m

+ ϕ̃3,∞ if v =∞,

ϕ̃1,p ⊗ ϕ̃2,p ⊗ θkpϕ̃3,p if v = p,

Q̃1,`(V`)ϕ̃1,` ⊗ Q̃2,`(V`)ϕ̃2,` ⊗ Q̃3,`(V`)ϕ̃3,` if v = ` - p.

Here Q̃i,`(X) = Qi,`(ω−1
i ($`)X) for i = 1, 2, 3.

3.8.2. Ichino’s formula. For N = (N1, N2, N3), we put

τN = (τN1 , τN2 , τN3) ∈ GL2(AE).

Here τNi is the matrix defined as in (2.16). For each place v ofQ, we choose a
GL2(E⊗Qv)-equivariant map bv : VΠv ⊗VΠ̃v

→ C such that bv(φv, φv) = 1
for all but finitely many v. We introduce certain local zeta integrals that
appear in our application of Ichino’s formula. For each place v, we define
the local zeta integral

(3.23) Iv(φ
?
v ⊗ φ̃?v) :=

L(1,Πv,Ad)

ζv(2)2L(1/2,Πv)

∫
PGL2(Qv)

bv(Πv(gv)φ
?
v, φ̃

?
v)

bv(Πv(τN,v)φv, φ̃v)
dgv.

Here dgv is the Haar measure as in §2.4.1. At the place p, we will consider
the local integral
(3.24)

Iord
p (φ?p⊗φ̃?p, tn) :=

L(1,Πp,Ad)

ζp(2)2L(1/2,Πp)

∫
PGL2(Qp)

bp(Πp(gptn)φ?p, Π̃p(tn)φ̃?p)

bv(Πp(tn)φp, φ̃p)
dgp.

Remark 3.8. The integrals Iv(φ?v⊗ φ̃?v) and Iord
p (φ?p⊗ φ̃?p, tn) do not depend

on any choice of the realizations VΠv ,VΠ̃v
, the pairing bv and the new or

ordinary vector φv in virtue of the irreducibility of Πv and the multiplicity
one for new vectors and ordinary vectors Proposition 2.2. This allows us to
evaluate these local integrals by choosing favourable realizations of VΠv .
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Definition 3.9. Define the set

Σ−fgh =
{
` ∈ Σ0

f ∩ Σ0
g ∩ Σ0

h | ε(1/2,Π`) = −1
}
.

From the rigidity of automorphic types in Remark 3.1, we can deduce that
there is a subset Σ− of primes dividing N such that

Σ− = Σ−fQ1
gQ2

hQ3
=
{
` : prime factos of N | ε(WD`(V

†
Q)) = −1

}
for any arithmetic point Q ∈ Xf

R.

Proposition 3.10. Suppose that Σ− = ∅. Then

I(ρ(tn)φ?F )2

3∏
i=1
〈ρ(τNitn)ϕi, ϕ̃i〉

=
(−1)k1ζQ(2)

8L(1,Π ,Ad)
· L(

1

2
,Π )

× Iord
p (φ?p ⊗ φ̃?p, tn)

∏
v 6=p

Iv(φ
?
v ⊗ φ̃?v)ω−1

F,q(df ).

Proof. Note that

I(ρ(tn)φ?F )2 = ω1,∞(−1)I(ρ(tn)φ?F ) · I(ρ(tn)φ̃?F ).

Applying [Ich08, Theorem 1.1, Remark 1.3], we obtain the proposition im-
mediately in view of the decomposition of φ?F and φ̃?F into pure tensors.
We remark that ω1,∞(−1) = (−1)k1 and the constant C in Remark 1.3
loc.cit. equals ζQ(2)−1 since the product measure

∏
v dgv = ζQ(2) · dτg

(cf. [II10, page 1403]). �

Lemma 3.11. We have the following equalities:

(1) If q - N is a finite prime, then Iq(φ?q ⊗ φ̃?q) = 1;
(2) I∞(φ?∞ ⊗ φ̃?∞) = 2k2+k3−k1+1.

Proof. Part (1) is [Ich08, Lemma 2.2]. Note that φ?q = φq is a new vector
in VΠq for a finite prime q - N . The formula of the archimedean zeta integral
in part (2) is proved in [CC19]. For the reader’s convenience, we sketch
the proof. For i = 1, 2, 3, let Wki = Wπi,∞ be the Whittaker newform of
the discrete series πi,∞ = D0(ki) in (2.10). Define the matrix coefficient
Φ∞ : GL2(R)→ C by

Φ∞(g) :=
〈ρ(gJ∞)Wk1 , ρ(J∞)Wk1〉
〈ρ(J∞)Wk1 ,Wk1〉

· 〈ρ(g)Wk2 ,Wk2〉
〈ρ(J∞)Wk2 ,Wk2〉

·
(8π)2m〈ρ(g)V m

+ Wk3 , V
m

+ Wk3〉
〈ρ(J∞)Wk3 ,Wk3〉

(recall that m = k1−k2−k3
2 ). Note that Φ is right SO(2)(R)-invariant, and a

lengthy computation shows that

Φ∞(

(
y x
0 1

)
) = IR+(y) · 4k1Γ(k3 +m)2

Γ(k3)

m∑
i,j=0

(−2)i+j
(
m

i

)(
m

j

)
Γ(k3 + i+ j)

Γ(k3 + i)Γ(k3 + j)

× (−y)k1−m+i

((1− y)−
√
−1x)k1((1− y) +

√
−1x)k1−2m+i+j

.
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By definition,

I∞(φ?∞ ⊗ φ̃?∞) =
L(1,Π∞,Ad)

ζ∞(2)2L(1/2,Π∞)
· (8π)−2mI(Φ∞),

where

I(Φ∞) :=

∫
PGL2(R)

Φ∞(g)dg =

∫
R

∫
R×

Φ∞(

(
y x
0 1

)
)
dy

|y|
dx.

By a direct computation, we obtain

(3.25)

I(Φ∞) =
4k1Γ(k3 +m)2

Γ(k3)

m∑
i,j=0

(−2)i+j
(
m

i

)(
m

j

)
Γ(k3 + i+ j)

Γ(k3 + i)Γ(k3 + j)

× 22−2k1+2m−i−j · π · Γ(k1 −m+ i− 1)Γ(k3 −m+ j)

Γ(k1 − 2m+ i+ j)Γ(k1)

=
4m+1π · Γ(k3 +m)

Γ(k2)Γ(k3)

m∑
j=0

(−1)j
(
m

j

)
Γ(k1 −m+ j)

Γ(k3 + j)
· Sj ,

where

Sj := Γ(k2 +m)
m∑
i=0

(−1)i
(
m

i

)
Γ(k2 + j + i)

Γ(k3 + i)
· Γ(k1 −m− 1 + i)

Γ(k1 − 2mj + i)
.

Applying the combinatorial identity [Orl87, Lemma 3] to Sj , we find that

Sj = (−1)m · Γ(k3 + j)Γ(k1 −m− 1)

Γ(k1 −m+ j)
· Γ(k1 − k3 −m)

Γ(k1 − k3 − 2m)
· Γ(j + 1)

Γ(j −m+ 1)
.

Substituting the above expression to the last line of (3.25), we find that

I(Φ∞) = 4m+1 · π · Γ(k1 −m− 1)Γ(k3 +m)Γ(k2 +m)Γ(m+ 1)

Γ(k1)Γ(k2)Γ(k3)
.

Hence, part (2) follows from the above expression of I(Φ∞) and

L(1,Π∞,Ad)

ζ∞(2)2L(1/2,Π∞)
=

π−3ΓC(k1)ΓC(k2)ΓC(k3)

π−2 · ΓC(k1 −m− 1)ΓC(k3 +m)ΓC(k2 +m)ΓC(m+ 1)
.

�

To distinguish the contributions from each term in the formula of L f
F (Q),

we introduce the normalized local zeta integrals. For each place v, define the
local norm of Whittaker newforms for Πv by

(3.26) BΠv := Bπ1,vBπ2,vBπ3,v

with Bπi,v the local norm of πi,v defined as in (2.17). To each positive integer
n, we associate the local norm B

[n]

Π ord
p

of ordinary Whittaker functions for Πp

given by

(3.27) B
[n]

Π ord
p

:=
ζp(2)3

ζp(1)3L(1,Πp,Ad)

3∏
i=1

〈ρ(tn)W ord
πi,p ,W

ord
πi,p ⊗ ω

−1
i,p 〉.
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We define the normalized local zeta integrals

I unb
ΠQ,p

= Iord
p (φ?p ⊗ φ̃?p, tn) ·

B
[n]

Π ord
p

ω−1
f,pα

2
f,p|·|p(−p2n)

· ζp(1)2

ζp(2)2
;(3.28)

I ?
ΠQ,q

= Iq(φ
?
q ⊗ φ̃?q) ·BΠq ·

ζq(1)2

|N |2q ζq(2)2
· ω−1

F,q(df )|dkF |q for q | N.(3.29)

Definition 3.12 (The canonical periods of Hida families). Define the canon-
ical period ΩfQ of the specialization fQ at an arithmetic point Q by

ΩfQ := (−2
√
−1)kQ+1 · ‖f◦Q‖2Γ0(NQ) ·

Ep(fQ,Ad)

ηfQ
,

where f◦Q is the normalized newform associated with fQ of conductor NQ

and ηfQ is the specialization of ηf at Q and Ep(fQ,Ad) is the modified Euler
factor in (3.10).

We summarize our computation in the following

Corollary 3.13. Assume that Σ− = ∅. For every Q = (Q1, Q2, Q3) ∈ Xf
R,

we have the interpolation formula(
L f

F (Q)
)2

= ψ1,(p)(−1)(−1)kQ1
+1 ·

L(1/2,ΠQ)

Ω2
fQ1

·I unb
ΠQ,p
·
∏
q|N

I ?
ΠQ,q

.

Proof. ByWaldspurger’s Petersson inner product formula (Proposition 2.7)
and the identities

BΠ∞ = 2−(k1+k2+k3)−3; BΠq = 1 if q - N
with ki = kQi , we find that

3∏
i=1

〈ρ(τNitn)ϕi, ϕ̃i〉 =
8L(1,Π ,Ad)

ζQ(2)3
· 2−(k1+k2+k3)−3B

[n]

Π ord
p

∏
q|N

BΠq .

Note that ωf,p(−1) = (−1)k1ψ1,(p)(−1). Combining Proposition 3.7, Propo-
sition 3.10, Lemma 3.11 and the equality

[SL2(Z) : Γ0(N)] =
∏
q|N

ζq(1)

|N |q ζq(2)
,

we get the corollary. �

4. The balanced p-adic triple product L-functions

4.1. Notation and conventions. Let D be the definite quaternion algebra
over Q with discriminant N−. Let ν : D× → Q× be the reduced norm. For
any commutative Q-algebra R, put

D×(R) = (D ⊗Q R)×.

If v is a place of Q, let Dv = D⊗QQv. For x ∈ D×(A), denote by xv ∈ D×v
the local component of x at v. We fix an isomorphism Ψ =

∏
q-N− Ψq :
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D×(Q̂(N−)) ' M2(Q̂(N−)) once and for all. Let OD be the maximal order
of D such that Ψq(OD ⊗ Zq) = M2(Zq) for all primes q -∞N−. Let N+ be
a positive integer prime to N− and let

N = N+N−.

Denote by RN the Eichler order of level N+ in D with respect to Ψ. Put

U1(N) =

{
g = (gq)q ∈ R̂×N | Ψq(bq) ≡

(
∗ ∗
0 1

)
(mod NZq) for q | N+

}
.

We shall frequently use the following notation in this section: let
(
a b
c d

)
∈

GL2(Q̂(N−)) act on x ∈ D̂× by

x

(
a b
c d

)
:= x ·Ψ−1(

(
a b
c d

)
).

Let dτx be the Tamagawa measure on A×\D×(A) with the volume

vol(A×D×\D×(A),dτx) = 2.

There exists a positive rational number vol(R̂×N ) such that for any f ∈
L1(D×\D×(A)/D×∞R̂

×
N ), we have

(4.1)
∫
A×D×\D×(A)

f(x)dτx = vol(R̂×N )
∑

[x]∈D×\D̂×/R̂×N

f(x) · (#ΓN,x)−1,

where [x] means the double cosetD×xR̂×N and ΓN,x := (D×∩xR̂×Nx−1)Q×/Q×.
By Eichler’s mass formula, we have

(4.2)

vol(R̂×N ) =
48

N

∏
q|N−

ζq(1)
∏
q|N+

(1 + q−1)−1

=
48

[SL2(Z) : Γ0(N)]

∏
q|N−

1 + q−1

1− q−1
.

For a non-negative integer κ and a commutative ring A, let Lκ(A) :=
A[X,Y ]deg=κ be the space of two variable polynomials of degree κ over A. Let
ρκ : M2(A) → EndA Lk(A) be the morphism ρκ(g)P (X,Y ) = P ((X,Y )g).
Let 〈 , 〉κ : Lκ(A)×Lκ(A)→ A[ 1

κ! ] be the pairing defined by

〈XiY κ−i, XjY κ−j〉 =

{
(−1)i

(
κ
i

)−1 if i+ j = κ,

0 if i+ j 6= κ.

Let g 7→ g′ be the main involution of M2(A) given by(
a b
c d

)′
=

(
d −b
−c a

)
.

It is well-known that

(4.3) 〈ρκ(g)P1, P2〉κ = 〈P1, ρκ(g′)P2〉κ.
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4.2. p-adic modular forms on definite quaternion algebras. In the
rest of this section, we shall freely identity Dirichelet characters χ with their
adelizations χA when no confusion may arise. Let O ⊂ OCp be a finite flat
extension of Zp containing all φ(N)-th roots of unity. For anO-algebra A and
a A-valued (even) Hecke character χ : Q×\Q̂× → A× , we let SDκ+2(N,χ,A)

be the space of p-adic modular forms on D̂× of weight κ + 2, level N and
branch character χ, consisting of vector-valued functions f : D̂× → Lκ(A)
such that

f(αxuz) = ρκ,p(u
−1
p )f(x)z−κp χ−1(z) for all α ∈ D×, u ∈ U1(N+), z ∈ Q̂×.

Here up is the p-component of u and ρκ,p(up) = ρκ(Ψp(up)). For each integer
d prime to pN−, define the level raising operator Vd : SDκ+2(N,χ,A) →
SDκ+2(Nd, χ,A) by

Vdf(x) = f(x

(
d−1 0
0 1

)
).

We recall the Hecke operators Tq and the operators Uq acting on f ∈
SDκ+2(N,χ,A). For each prime q | N−, let $Dq ∈ R×q with ν($Dq) = q.
The Hecke operator Tq for q - Np is given by

Tqf(x) = f(x

(
1 0
0 $q

)
) +

∑
b∈Zq/qZq

f(x

(
$q b
0 1

)
)

and the operator Uq for q |MN−p is given by

Uqf(x) =
∑

b∈Zq/qZq

f(x

(
$q b
0 1

)
) for q |M, q 6= p, Uqf(x) = f(x$Dq) for q | N−,

Upf(x) =
∑

b∈Zp/pZp

ρκ,p(

(
$p b
0 1

)
)f(x

(
$p b
0 1

)
).

Here $q = ($q,`) ∈ Q̂(N−)× is the idele $q,q = q and $q,` = 1 for ` - N−q.
If A is p-adically complete, then the ordinary projector e = limn→∞Un!

p

converges to an idempotent in EndO SDκ+2(N,χ,A).

Inner products. Denote by εcyc : Q+\Q̂× → Z×p the p-adic cyclotomic char-
acter defined by εcyc(a) = |a|A ap. Assuming 6 · κ! ∈ A×, we have a perfect
pairing

(·, ·)N : SDκ+2(N,χ,A)× SDκ+2(N,χ−1, A)→ A

given by

(f1, f2)N :=
∑

[x]∈D×\D̂×/R̂×N

〈f1(x), f2(x)〉κ · εcyc(ν(x))κ · (#ΓN,x)−1.

Let τDN = (τDN,q) ∈ D̂× be the element with τDN,q = 1 if q - N and

τDN,q = Ψ−1
q (

(
0 1
−N 0

)
) for q | N+. Define the Atkin-Lehner involution
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[τDN ] : SDκ+2(N,χ,A)→ SDκ+2(N,χ−1, A) by

[τDN ]f(x) := ρκ,p(τ
D
N,p)f(xτDN )χ(ν(x)).

We can define a new pairing 〈 , 〉N : SDκ+2(N,χ,A)× SDκ+2(N,χ,A)→ A by

〈f1, f2〉N = (f1, [τ
D
N ]f2)N .

It is well known that this new pairing is Hecke equivariant and perfect
(cf. [Hid06, Lemma 3.5]).

4.3. Automorphic forms on definite quaternion algebras. Fixing ιp :
Cp ' C once and for all, we choose an imbedding Ψ∞ : D∞ ↪→ M2(C) such
that Ψ∞(α) = ιp(Ψp(α)) for α ∈ D×. Define the unitarized representation
ρu
κ : D×∞ → AutLκ(C) by ρu

κ(x)P = |ν(g)|κ/2A ρκ(Ψ∞(g))P for P ∈ Lκ(C).
For a finite order Hecke character ω modulo N+, let ADκ+2(N,ω) be the

space of Lκ(C)-valued automorphic forms on D×(A) of weight κ + 2, level
N and character ω. In other words, ADκ+2(N,ω) consists of functions ϕ :
D×(A)→ Lκ(C) such that

ϕ(αxu∞ufz) = ρu
κ(u−1
∞ )ϕ(x)ω(z)

(α ∈ D×, u∞ ∈ D×∞, uf ∈ U1(N), z ∈ A×).

Here xf denotes the finite part of x. To each p-adic modular form f ∈
SDκ+2(N,χ,O), we associate the adelic lift Φ(f) ∈ ADκ+2(N,χ−1) defined by

(4.4) Φ(f)(x) := ρκ(Ψ∞(x−1
∞ ))ιp(ρκ,p(xp)f(xf)) · |ν(x)|κ/2A , x ∈ D×A.

Let AD(ω) be the space of (scalar-valued) automorphic forms on D×(A)
with central character ω. For ϕ,ϕ′ ∈ AD(ω), define

〈ϕ,ϕ′〉 =

∫
A×D×\D×(A)

ϕ(x)ϕ′(x)ω−1(ν(x))dτx.

Here dτx is the Tamagawa measure onA×\D×(A). For f ∈ SDκ+2(N,ω−1,Cp)

and u ∈ Lκ(Cp), let Φ(f)u ∈ AD(ω) be the automorphic form given by the
matrix coefficient Φ(f)u(x) := 〈Φ(f)(x),u〉κ. By (4.1) and Schur’s orthogo-
nality relations, we have

(4.5) 〈ρ(τDN )Φ(f)u, Φ(f)v〉 =
vol(R̂×N )

(N+)κ/2(1 + κ)
· 〈f, f〉N · 〈u,v〉κ.

4.4. Hida theory for quaternionic modular forms. In this subsection,
we recall Hida theory for modular forms on definite quaternion algebras
following [Hid88b]. Suppose that p - N . For each positive integer α, let Xα

be the finite set
Xα = D×\D̂×/U1(Npα)

and let O[Xα] =
⊕

x∈Xα Ox be the finitely generated O-module spanned by
divisors ofXα. Recall that Λ = OJ1 + pZpK = OJT K, where T = 〈1 + p〉Λ−1.

For z ∈ 1 + pZp, let 〈z〉Λ act on O[Xα] by 〈z〉Λ x := x

(
z 0
0 z

)
. Let ∆ =

(Z/pN+Z)×. For d ∈ ∆, the diamond operator σd acts on O[Xα] as follows:
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decomposing d = (d1, d2) ∈ (Z/pZ)× × (Z/N+Z)× and choosing an idele
d̃ ∈ Ẑ× such that the p-component d̃p = ω(d1) ∈ Z×p is the Teichmüller
lifting of d1 and the prime-to-p component d̃(p) ∈ Ẑ(p)× is a lifting of d2,
we define σd x := xd̃. Thus O[Xα] is a finitely generated Λ[∆]-module.
Moreover, O[Xα] is equipped with the usual Hecke operators Tq for q - Np
given by

Tq x = x

(
1 0
0 $q

)
+

∑
b∈Zq/qZq

x

(
$q b
0 1

)
,

the operator Uq for q | Np defined by

Uq x =
∑

b∈Zq/qZq

x

(
$q b
0 1

)
if q | N+p; Uq x = x$Dq if q | N−.

The ordinary projector e = lim←−nU
n!
p converges to an idempotent in EndΛ(O[Xα]).

We introduce the space of Λ-adic modular forms on definite quaternion
algebras. Let X∞ := D×\D̂×/U1(Np∞), where

U1(Np∞) =

{
g ∈ U1(N) | gp =

(
a b
0 1

)
, a ∈ Z×p , b ∈ Zp

}
.

We have a natural quotient map X∞ → Xβ → Xα for β > α. Let Pα be the
principal ideal of Λ generated by (1 + T )p

α − 1.

Definition 4.1. Denote by SD(N,Λ) the space of functions f : X∞ → Λ
such that

• f(xz) = f(x) 〈z〉2 〈z〉−1
Λ for z ∈ 1 + pZp;

• for any α sufficiently large, the function f (mod Pα) : X∞ → Λ/Pα
factors through Xα.

We call SD(N,Λ) the space of Λ-adic modular forms on D× of level N .

By definition, we have

(4.6) SD(N,Λ) = lim←−
α

HomΛ(O[Xα],Λ/Pα)⊗Λ,ι2 Λ,

where ι2 : Λ → Λ is the O-algebra homomorphism given by ι2(T ) = (1 +
T )−2(1 + p)2 − 1. Hence SD(N,Λ) is a compact Λ-module endowed with
the natural Hecke action given by tf(x) = f(tx) for t = Tq,Uq and the
action of diamond operators σd. In addition, the ordinary projector e =
lim←−nU

n!
p converges in EndΛ SD(N,Λ). For a finite order Hecke character

χ : Q×\Q̂× → O× modulo N+p, put

SD(N,χ,Λ)

:=
{
f ∈ SD(N,Λ) | σdf = χ−1(d)f for d ∈ ∆×

}
=
{
f ∈ SD(N,Λ) | f(xz) = f(x) · χ−1(z) 〈εcyc(z)〉2 〈εcyc(z)〉−1

Λ for z ∈ Q̂×
}
.

Let I be a normal domain finite flat over Λ. We define SD(N, I) = SD(N,Λ)⊗Λ

I and SD(N,χ, I) = SD(N,χ,Λ)⊗Λ I.
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Theorem 4.2 (Control Theorem). Let Nχ :=
∑

d∈∆ χ(d)σd ∈ O[∆] and let
Pχ be the ideal of Λ[∆] generated by {χ(d) · σd − 1}d∈∆. Suppose that p > 3.
Then

(1) SD(N,χ, I) is a free I-module, and the norm map Nχ : eSD(N, I)/Pχ '
eSD(N,χ, I) is an isomorphism.

(2) For every arithmetic point Q ∈ X+
I , we have a Hecke equivariant

isomorphism

eSD(N,χ, I)⊗I I/℘Q ' eSDkQ(Npα, χω2−kQεQ,O(Q)),

f (mod℘Q) 7→ fQ,

where α = max {1, cp(εQ)} and fQ is the unique p-adic modular form
such that

Q(f(x)) = 〈fQ(x), XkQ−2〉kQ−2 for all x ∈ D̂×.

Proof. This is a reformulation of Hida’s control theorems for definite
quaternion algebra. We sketch proofs in [Hid88b] for the reader’s conve-
nience. We may assume I = Λ and O = O(Q). Let ∆p be the p-Sylow
subgroup of ∆. We first show that eSD(N,Λ) is a free Λ[∆p]-module. For
any abelian group A, let H0(Xα, A) be the space of A-valued functions
on Xα. Let V ord(N) := lim−→α

lim−→β
eH0(Xα, p

−βO/O) be the discrete Λ-
module V ord

0 (0;U1(N+)) defined in [Hid88b, Theorem 8.6]. Let V ord(N) :=
lim←−α e · O[Xα] be the Pontryagin dual of V ord(N). In virtue of (4.6),

eSD(N,Λ) = HomΛ(V ord(N),Λ)⊗Λ,ι2 Λ,

so it suffices to show that V ord(N) is a free Λ[∆p]-module. For any positive
integer α and character ξ : (Z/N+pα)× → O×K of p-power order with value
in some finite extension K of FracO, we define the OK-module

H0(Xα, ξ, A) :=
{
f ∈ H0(Xα, A) | f(xz) = ξ(z)f(x), x ∈ Xα, z ∈ Ẑ×

}
,

whereA = K/OK or OK . Since any finite order element inD× has order only
divisible by 2 or 3 and p > 3, one verifies that the groupD×∩xU1(Npα)x−1 =

{1} for any x ∈ D̂× and that

H0(Xα, ξ,K/OK) = H0(Xα, ξ,OK)⊗K/OK .

In particular, H0(Xα, ξ,K/OK) is p-divisible. Hence, the Λ[∆p]-freeness of
V ord(N) follows from [Hid88b, Corollary 10.1] (and the proof therein). From
the Λ[∆p]-freeness of eSD(N,Λ), we deduce that the map f 7→ Nχf induces
an isomorphism

Nχ : eSD(N,Λ)/Pχ ' eSD(N,Λ)Nχ=1 = eSD(N,χ,Λ).

This proves part (1). We proceed to prove part (2). By [Hid88b, Theorem
9.4], we see that

eSD(N,χ,Λ)/℘Q ' eSD(N,Λ)/(Pχ, ℘Q) ' eSDkQ(Npn, χω2−kQεQ,O).
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The above isomorphism f 7→ fQ is given by the dual map to the one ι in
[Hid88b, (8.10)], whose explicit description is given in [Hid88b, line 9-11,
page 375]. This finishes the proof of part (2). �

A perfect paring on the space of ordinary Λ-adic forms. For each positive
integer α, put

X0(Npα) = D×\D̂×/R̂×Npα .

To each finite order character χ : Q×\Q̂× → O×, we associate a universal
I-adic deformation defined by

χI : Q×\Q̂× → I×, χI(z) := χ(z) 〈εcyc(z)〉−2 〈εcyc(z)〉I .

For f , f ′ ∈ eSD(N,χ, I), define

BN,α(f , f ′) :=
∑

[x]∈X0(Npα)

U−αp f(xτDNpα)f ′(x)χI(ν(x))·(#ΓNpα,x)−1 (mod Pα) ∈ I/Pα.

One verifies that BN,α+1(f , f ′) ≡ BN,α(f , f ′) (mod Pα).

Definition 4.3. Let

BN : eSD(N,χ, I)× eSD(N,χ, I)→ I

be the Hecke-equivariant I-bilinear pairing defined by

BN (f , f ′) := lim←−
α

BN,α(f , f ′) ∈ lim←−
α

I/Pα = I.

For every Q ∈ X+
I with kQ = 2, we have

BN (f , f ′)(Q) = 〈U−αp fQ, f
′
Q〉Npα

for any α ≥ max {1, cp(εQ)}. This in particular implies that the pairing BN

is perfect.

Lemma 4.4. For each arithmetic point Q in X+
I and integer α ≥ max {1, cp(εQ)},

we have

BN (f , f ′)(Q) = (−1)kQ · 〈U−αp fQ, f
′
Q〉Npα .

Proof. To lighten the notation, we let κ = kQ − 2 and let f = fQ, f
′ =

f ′Q ∈ eSDkQ(Npα, χω−κεQ,O(Q)). We first claim that the value 〈U−βp f, f ′〉Npβ
is independent of any integer β ≥ α. Choose a prime ` - Np such that `+1 6≡
0 (mod p) and ` is inert in Q(

√
−1) and Q(

√
−3). Then D×∩xR̂×N`pαx

−1 =

{±1} for all x ∈ D̂×. Write χQ = χI (mod Q) = χω−κεQε
κ
cyc for brevity.
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For ` as above, (1 + `) · 〈U−βp f, f ′〉Npβ equals∑
[x]∈X0(N`pβ)

〈[τDNpβ ]U−βp f(x), f ′(x)〉κ · χQ(ν(x))

=
∑

[x]∈X0(N`pα),

b∈Zp/pβ−αZp

〈[τDNpβ ]U−βp f(x

(
1 0
pαb 1

)
), ρκ,p(

(
1 0
−pαb 1

)
)f ′(x)〉κχQ(ν(x))

=
∑

[x]∈X0(N`pα),

b∈Zp/pβ−αZp

〈ρκ,p(
(

0 1
−pβ bpα

)
)U−βp f(xτDN

(
0 1
−pβ bpα

)
), f ′(x)〉κχQ(ν(x))

=
∑

[x]∈D×\D̂×/R̂×N`pα

∑
b∈Zp/pβ−αZp

〈ρκ,p(τDpα
(

1 −pβ−αb
0 1

)
)U−βp f(xτDNpα

(
1 −pβ−αb
0 1

)
, f ′(x)〉 · χQ(ν(x))

=
∑

[x]∈X0(N`pα)

〈[τDNpα ]U−αp f(x), f ′(x)〉κχQ(ν(x)) = (1 + `) · 〈U−αp f, f ′〉Npα .

This verifies the claim. For x ∈ D̂×, we let f [0](x) = 〈f(x), Xκ〉κ be the spe-
cialization of f(x) at Q. For any positive integer m, there exists a sufficiently
larger β > m+ vp(κ!) such that

(1 + `) ·BN (f , f ′)(Q) (mod pm)

≡
∑

[x]∈X0(N`pβ)

U−βp f [0](xτDNpβ )f ′[0](x)χQ(ν(x)) (mod pm).

On the other hand, we have

〈U−αp f, f ′〉Npα ≡ 〈U−βp f, f ′〉Npβ (mod pm)

≡(1 + `)−1
∑

[x]∈X0(N`pβ)

∑
z∈Zp/pβZp

〈U−βp f(xτDNpβ ), ρκ,p(

(
0 −1
0 0

)
)U−βp f ′(x

(
$β
p z

0 1

)
)〉χQ(ν(x)) · (mod pm)

≡(1 + `)−1
∑

[x]∈X0(N`pβ)

〈U−βp f [0](xτDNpβ ), f ′[0](x)〉(−1)κ · χQ(ν(x))

≡(−1)κ ·BN (f , f ′)(Q) (mod pm).

In the third equality, we have used the fact that 〈Un
pf(x), Xκ〉 = Un

pf
[0](x)

for any n ∈ Z. This proves the lemma. �

4.5. Hecke algebras and primitive Λ-adic forms. Let TD(N, I) be the
sub-algebra of EndI(eS

D(N, I)) generated by Tq, Uq and the diamond oper-
ators 〈d〉 over I and let TD(N,χ, I) be the holomorphic image of TD(N, I)
in EndΛ(eSD(N,χ, I)). Thanks to the Jacquet-Langlands correspondence,
there is a surjective I-algebra homomorphism JL : T(N, I)→ TD(N, I) such
that JL(Tq) = Tq for q - Np, JL(Uq) = Uq for q | N+p, JL(Uq) = (−1)Uq
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for q | N− and JL(σd) = σd; moreover, for an ordinary Λ-adic newform
f ∈ eS(N,χ, I) of tame conductor N with suppN− ⊂ Σ0

f , the correspond-
ing homomorphism λf : T(N, I) → I factors through JL. We denote by
λDf : TD(N, I) → TD(N,χ, I) → I the morphism such that λf = λDf ◦ JL.
Put

eSD(N, I)[λDf ] :=
{
f ∈ eSD(N, I) | t · f = λDf (t)f for t ∈ TD(N, I)

}
.

The multiplicity one theorem for GL(2) implies that dimFrac Λ eS
D(N, I)[λDf ]⊗Λ

Frac Λ = 1, but we do not have a notion of normalized eigenforms for quater-
nionic modular forms due to the lack of the q-expansion. Nonetheless, we
have the following

Theorem 4.5. Suppose that f satisfies the Hypothesis (CR, supp(N−)) in
§1.4. Then the I-module eSD(N, I)[λDf ] is free of rank one. In this case, a
generator fD of eSD(N, I)[λDf ] is called the primitive Jacquet-Langlands lift
of f . By definition, fD is unique up to a scalar in I×.

Proof. Let m be the maximal ideal of TD(N, I) containing KerλDf . Un-
der the Hypothesis (CR), we note that eSD(N, I)m is a free TD(N, I)m-
module of rank one in virtue of [CH18, Proposition 6.8] and Hida’s con-
trol theorem (cf. [PW11, Proposition 6.4 and 6.5]). By Theorem 4.2 (1),
we find that eSD(N,χ, I)m is also a free TD(N,χ, I)m-module of rank one
which in turn implies that TD(N,χ, I)m is Gorenstein as eSD(N,χ, I)m
is equipped with a Hecke-equivariant perfect pairing BN . It follows that
eSD(N, I)m[λDf ] = eSD(N,χ, I)m[λDf ] ' TD(N,χ, I)m[λDf ] is a free of rank
one I-module. �

4.6. Regularized diagonal cycles and theta elements. Recall that E =
Q⊕Q⊕Q is the totally split étale cubic algebra overQ. LetDE = D⊕D⊕D.
For each positive integer n, let

UE,1(Npn) := U1(Npn)× U1(Npn)× U1(Npn)

be an open-compact subgroup of D̂×E . Define the finite set

Xn : = D×E\D̂
×
E/UE,1(Npn)Q̂×

= (Xn ×Xn ×Xn)/Q̂×.

The set Xn is a zero dimensional analogue of the triple product of modular
curves. Consider the finitely generated Zp-module Zp[Xn] equipped with
the operator UE,p := Up ⊗ Up ⊗ Up and the ordinary projector eE :=

e ⊗ e ⊗ e. For each (x1, x2, x3) ∈ D̂×E , let [(x1, x2, x3)] denote the double

coset D×E(x1, x2, x3)UE,1(Npn)Q̂×. Set τpn :=

(
0 1
−pn 0

)
∈ GL2(Qp).
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Definition 4.6 (Regularized diagonal cycles). Let ∆n ∈ Zp[Xn] be the
twisted diagonal cycle given by

∆n :=
∑

[x]∈X0(Npn)

∑
b∈Zp/pnZp,

z∈(Zp/pnZp)×

[(x

(
pn b
0 1

)
, x

(
pn b+ z
0 1

)
, xτpn

(
1 0
0 z

)
)]

and define the regularized diagonal cycle ∆†n by

∆†n := U−nE,p (eE∆n).

The following lemma allows us to define the Λ-adic diagonal cycle

∆†∞ := lim←−
n→∞

∆†n ∈ lim←−
n→∞

Zp[Xn],

where the inverse limit is taken with respect to the natural homomorphism
Nn+1,n : Zp[Xn+1]→ Zp[Xn].

Lemma 4.7 (Distribution property). For every n ≥ 1,

Nn+1,n(∆†n+1) = ∆†n.

Proof. It is equivalent to showing that

Nn+1,n(∆n+1) = UE,p∆n.

Let Sn := (Zp/p
nZp)× (Zp/p

nZp)
×. A direct computation shows that

Nn+1,n(∆n+1)

=
∑

[x]∈X0(Npn+1),
(b,z)∈Sn

(Up ⊗Up ⊗ Id)[(x

(
pn b
0 1

)
, x

(
pn b+ z
0 1

)
, xτpn+1

(
1 0
0 z

)
)]

=
∑

[x]∈X0(Npn)

∑
(b,z)∈Sn

∑
c∈Zp/pZp

(Up ⊗Up ⊗ Id)[(x

(
pn b
0 1

)
, x

(
pn b+ z
0 1

)
, x

(
1 0
pnc 1

)
τpn+1

(
1 0
0 z

)
)]

=(Up ⊗Up ⊗Up)∆n.

This proves the assertion. �

Following the notation in §3.6, we let R = I1⊗̂OI2⊗̂OI3 be a finite ex-
tension of R0 = OJT1, T2, T3K. For a triple of ordinary Λ-adic quaternionic
forms

(f ,g,h) ∈ eSD(N,ψ1, I1)× eSD(N,ψ2, I2)× eSD(N,ψ3, I3),

we let F = f � g � h : D×E\D̂
×
E → R be the triple product given by

F(x1, x2, x3) = f(x1)⊗ g(x2)⊗ h(x3).

Let χ∗R : Q×\Q̂× → R× be the reciprocal of a square root of the character
ψ1I1 ⊗ ψ2I2 ⊗ ψ3I3 defined by

χ∗R(z) = ωa(z) 〈εcyc(z)〉−3 〈εcyc(z)〉1/2I1
〈εcyc(z)〉1/2I2

〈εcyc(z)〉1/2I3
∈ R×
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and set
F∗(x1, x2, x3) := F(x1, x2, x3) · χ∗R(ν(x3)).

Then F∗ naturally induces a ZpJT1, T2, T3K-linear map

F∗ : lim←−
n→∞

Zp[Xn]→ R.

The theta element ΘF attached to the triple product F is then defined by
the evaluation of F∗ at the Λ-adic diagonal cycle. In other words,

ΘF := F∗(∆†∞) ∈ R.

4.7. The construction of p-adic L-functions in the balanced case. We
let F = (f , g,h) be the triple of primitive Hida families of tame conductor
(N1, N2, N3) in §3.5. Recall that Σ− is the finite subset of prime factors of
N = lcm(N1, N2, N3) in Definition 3.9. LetN− =

∏
`∈Σ− `. In the remainder

of this section, we assume that
• #(Σ−) is odd,
• f , g and h satisfy the Hypothesis (CR, Σ−);
• N− and N/N− are relatively prime.

Let D be the definite quaternion algebra over Q with the discriminant N−
and let

(fD, gD,hD) ∈ eSD(N1, ψ1, I1)× eSD(N2, ψ2, I2)× eSD(N3, ψ3, I3)

be the primitive Jacquet-Langlands lift of (f , g,h) constructed in Theo-
rem 4.5.

Definition 4.8. LetN+
i = Ni/N

− for i = 1, 2, 3 andN+ = lcm(N+
1 , N

+
2 , N

+
3 ).

Then N = N+N−. Define

(fD?, gD?,hD?) ∈ eSD(N,ψ1, I1)× eSD(N,ψ2, I2)× eSD(N,ψ3, I3)

by

fD? :=
∑

I⊂Σ
(IIb)
f,0

(−1)|I|βI(f)−1 · Vdf/nff
D,

gD? :=
∑

I⊂Σ
(IIb)
g,0

(−1)|I|βI(g)−1 · Vdg/ngg
D,

hD? :=
∑

I⊂Σ
(IIb)
h,0

(−1)|I|βI(h)−1 · Vdh/nhh
D.

Define the triple product FD? : D×E\D̂
×
E → R by

FD? := fD? � gD? � hD?.

Then FD? is an eigenfunction of the operator UE,p with the eigenvalue
αp(F ) := a(p,f)a(p, g)a(p,h). We define the associated theta element ΘFD?

to be the p-adic L-functions attached to the triple (f , g,h) in the balanced
range.

4.8. Global trilinear period integrals.



50 MING-LUN HSIEH

4.8.1. The setting. In this subsection, we relate the evaluations of the p-
adic L-function ΘFD? at arithmetic points in the balanced range to certain
global trilinear period integral on D×A. The set Xbal

R of arithmetic points
in the balanced range, consisting of arithmetic points Q = (Q1, Q2, Q3) ∈
X+
I1
× X+

I2
× X+

I3
such that

kQ1 + kQ2 + kQ3 ≡ 0 (mod 2); kQ1 + kQ2 + kQ3 > 2kQi for all i = 1, 2, 3.

Let Q = (Q1, Q2, Q3) ∈ Xbal
R . Put

ki = kQi and κi = ki − 2 for i = 1, 2, 3.

We keep the notation in §3.8. Thus F = (f, g, h) denotes the specialization
FQ = (fQ1

, gQ2
,hQ3) of F at Q and ω1/2

F is the square root of the central
character ωF = ωfωgωh defined in (3.13). Let Π = ΠQ be the automorphic
representation of GL2(AE) defined by

ΠQ = πf ⊗ ω
−1/2
F × πg × πh.

Let (fD, gD, hD) = (fDQ1
, gDQ2

,hDQ3
) be the specializations in the sense of

Theorem 4.2 (2). Then (fD, gD, hD) belongs to the space

SDκ1+2(N1p
n, ω−1

f ,O(Q))×SDκ2+2(N2p
n, ω−1

g ,O(Q))×SDκ3+2(N3p
n, ω−1

h ,O(Q)),

where

ωf = ψ−1
1 ωκ1ε−1

Q1
, ωg = ψ−1

2 ωκ2ε−1
Q2

and ωh = ψ−1
3 ωκ3ε−1

Q3
.

Let ϕfD = Φ(fD), ϕgD = Φ(gD) and ϕhD = Φ(hD) be the associated adelic
lifts as in (4.4). We have

(ϕfD , ϕgD , ϕhD) ∈ ADκ1+2(N1p
n, ωf )×ADκ2+2(N2p

n, ωg)×ADκ3+2(N3p
n, ωh).

Let Q1,`(X), Q2,`(X) and Q3,`(X) be the polynomials defined in (3.20) and
put
(4.7)
ϕD?1 =

∏
`

Q1,`(V`)(ϕfD⊗ω
−1/2
F ), ϕD?2 =

∏
`

Q2,`(V`)ϕgD ; ϕD?3 =
∏
`

Q3,`(V`)ϕhD .

Note that

(4.8)
ϕD?1 = d

κ1/2
f ω

1/2
F (d̂f ) · Φ(fD?Q1

)⊗ ω−1/2
F ,

ϕD?2 = dκ2/2
g · Φ(gD?Q2

); ϕD?3 = d
κ3/2
h · Φ(hD?Q3

).

Let Lκ(A) := Lκ1(A)⊗Lκ2(A)⊗Lκ3(A) for any commutative ring A and
ρκ = ρκ1 ⊗ ρκ2 ⊗ ρκ3 . Define ρu

κ and ρκ,p likewise. For any Q-algebra R, let
D×E(R) := D×(R)×D×(R)×D×(R) and let νκE : D×E(R)→ R× be the map
ν
κ
E(x1, x2, x3) :=

∏3
i=1 ν(xi)

κi . Define the vector-valued automorphic form

~φD? : D×E(A)→ Lκ(C),

~φD?(x1, x2, x3) = ϕD?1 (x1)⊗ ϕD?2 (x2)⊗ ϕD?3 (x3) (xi ∈ D×(A)).
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Define Pκ ∈ Lκ(Z) by

(4.9)
Pκ =(X1Y2 −X2Y1)κ

∗
1(X3Y1 −X1Y3)κ

∗
2(X3Y2 −X2Y3)κ

∗
3 ,

κ∗i :=
κ1 + κ2 + κ3

2
− κi (i = 1, 2, 3).

Then Pκ is a basis of the line Lκ(C) fixed by D×∞ under the action of ρu
κ.

Define the automorphic form

(4.10)
φD?F : D×E(A)→ C,

φD?F (x1, x2, x3) = 〈~φD?(x1, x2, x3),Pκ〉κ,

where 〈 , 〉κ = 〈 , 〉κ1 ⊗ 〈 , 〉κ2 ⊗ 〈 , 〉κ3 . One verifies that

(4.11) φD?F (x1u∞, x2u∞, x3u∞) = φD?F (x1, x2, x3) for u∞ ∈ D×∞.

4.8.2. The global trilinear period integrals. Let nQ = max {c(εQ1), c(εQ2), c(εQ3), 1}
and let n ≥ nQ be a positive integer. Let t̆n ∈ D×E(Qp) be the matrix given
by

t̆n = (

(
1 p−n

0 1

)
,

(
1 0
0 1

)
,

(
0 p−n

−pn 0

)
) ∈ GL2(Ep).

We shall relate the interpolation to the global trilinear period integral

I(ρ(t̆n)φD?F ) =

∫
D×A×\D×A

φD?F (x

(
1 p−n

0 1

)
, x, x

(
0 p−n

−pn 0

)
)dτx.

Here dτx is the Tamagawa measure on A×\D×A.

Proposition 4.9. For every n ≥ nQ, we have

ΘFD?(Q) =
1

vol(R̂×N )
· I(ρ(t̆n)φD?F ) ·

ω
1/2
F,p (pn) |pn|−

k1+k2+k3
2

αp(F )nζp(2)
· 1

ω
1/2
F (d̂f )d

κ/2
F

,

where αp(F ) = a(p, f)a(p, g)a(p, h) and dκ/2F = d
κ1/2
f d

κ2/2
g d

κ3/2
h defined in

(3.15).

Proof. We begin with some notation. Let Q(FD?) : D×E\D̂
×
E → OCp

denote the value of FD? at the point Q ∈ SpecR(Qp). Namely,

Q(FD?)(x1, x2, x3) = Q1(fD?(x1))Q2(gD?(x2))Q3(hD?(x3)).

Let (fD?, gD?, hD?) = (fD?Q1
, gD?Q2

,hD?Q3
) denote the specialization of (fD?, gD?,hD?)

as in Theorem 4.2 (2). Put

F̂D? := fD?� gD?� hD?, F̂D?(x1, x2, x3) = fD?(x1)⊗ gD?(x2)⊗ hD?(x3).

By definition, we have

(4.12) Q(FD?)(x1, x2, x3) = 〈F̂D?(x1, x2, x3), Xκ1
1 Xκ2

2 Xκ3
3 〉κ.

Define the adelic lift FD? : D×E(A)→ Lκ(C) of F̂D? to be the function

FD?(x) = ρκ,p(xp)F̂
D?(x) (x ∈ D×E(A)).
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Then one verifies that

φD?F (x) = d
κ/2
F · 〈FD?(x),Pκ〉κ ·

∣∣νκE(x)
∣∣1/2
A

.

Let mk be the p-adic valuation of (κ1 + κ2 + κ3)! and let m > mk be a
positive integer. For a number A ∈ Cp, denote by A (mod pm) the residue
class of A in Cp modulo pmOCp . By definition, for any sufficiently large
integer s� n+m+mk ≥ 1,
(4.13)
ΘFD?(Q) (mod pm)

≡ αp(F )−s
∑

[x]∈X0(Nps)

∑
b∈(Zp/psZp),
z∈(Zp/psZp)×

Q(FD?)(x

(
ps b
0 1

)
, x

(
ps b+ z
0 1

)
, xτps)

× kh(z)zκ
∗
3 · χ∗Q(ν(x)) (mod pm),

where kh(z) := ω
−1/2
F ωh(z) for z ∈ Z×p and χ∗Q is the specialization of χ∗R at

Q

χ∗Q =ω
−1/2
F · εrκcyc (rκ :=

κ1 + κ2 + κ3

2
=
k1 + k2 + k3

2
− 3)

Putting

W ′s =
{

(b1, b2) ∈ (Zp/p
sZp)

2 | b1 − b2 ∈ (Zp/p
sZp)

×} ,
we see from (4.13) and (4.12) that
(4.14)
ΘFD?(Q) (mod pm) ≡ αp(F )−s

∑
x∈X0(Nps),
(b1,b2)∈W ′s

(b1 − b2)κ
∗
3kh(b1 − b2)χ∗Q(ν(x))

×Q(FD?)(x

(
ps b1
0 1

)
, x

(
ps b2
0 1

)
, xτps) (mod pm)

≡ αp(F )−s
∑

x∈X0(Nps)

∑
c∈pnZp/psZp

∑
(b1,b2)∈W ′s

kh(b1 − b2)χ∗Q(ν(x))

〈F̂D?(x
(
ps b1
cps 1 + b1c

)
), x

(
ps b2
cps 1 + b2c

)
, x

(
0 1
−ps c

)
), (b1 − b2)κ

∗
3Xκ1

1 Xκ2
2 Xκ3

3 〉κ.

To simplify the above expression, we note that by (4.3),

〈ρκ(x−1
p )FD?(xg1, xg2, xg3),Pκ〉κ = 〈F̂D?(xg1, xg2, xg3), ρκ(g′1⊗g′2⊗g′3)Pκ〉κ

with

g1 =

(
ps b1
cps 1 + b1c

)
, g2 =

(
ps b2
cps 1 + b2c

)
, g3 =

(
0 1
−ps c

)
,

we find the following congruence relation modulo pm

〈ρκ(x−1
p )FD?(xg1, xg2, xg3),Pκ〉κ

≡〈F̂D?(xg1, xg2, xg3), ρκ(

(
1 + b1c −b1

0 0

)
⊗
(

1 + b2c −b2
0 0

)
⊗
(
c −1
0 0

)
)Pκ〉κ

≡〈F̂D?(xg1, xg2, xg3), (b1 − b2)κ
∗
3Xκ1

1 Xκ2
2 Xκ3

3 〉κ.
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Substituting the above to (4.14), we see that ΘFD?(Q) (mod pm) equals

αp(F )−s
∑

x∈X0(Npn)

∑
c∈pnZp/psZp

∑
(b1,b2)∈W ′s

kh(b1 − b2)χ∗Q(ν(x))

× 〈ρκ(x−1
p )FD?(x

(
ps b1
cps 1 + b1c

)
, x

(
ps b2
cps 1 + b2c

)
, x

(
0 1
−ps c

)
),Pκ〉κ (mod pm)

≡αp(F )−s
∑

x∈X0(Npn)

∑
(b1,b2)∈W ′s

kh(b1 − b2)χ∗Q(ν(x))ν(xp)
−rκ

×
∑

c∈pnZp/psZp

〈FD?(x
(
ps b1
0 1

)
, x

(
ps b2
0 1

)
, xτpn

(
ps−n −p−nc

0 1

)
),Pκ〉κ (mod pm)

≡αp(F )−n
∑

x∈X0(Npn)

∑
(b1,b2)∈W ′n

kh(b1 − b2)ω
−1/2
F |·|rκA (ν(x))

× 〈FD?(x
(
pn b1
0 1

)
, x

(
pn b2
0 1

)
, xτpn),Pκ〉κ (mod pm).

The last congruence relation holds for any sufficiently large m, so we obtain
the expression

(4.15)

ΘFD?(Q) =αp(F )−n
∑

x∈X0(Npn)

∑
b1∈(Zp/pnZp)×,
b2∈Zp/pnZp

kh(b1)ω
−1/2
F |·|rκA (ν(x))

× 〈FD?(x
(
pn b1 + b2
0 1

)
, x

(
pn b2
0 1

)
, xτpn),Pκ〉κ.

By the definition (4.8),

~φD?(x1, x2, x3) = d
κ/2
F · FD?(x1, x2, x3)ω

−1/2
F (ν(x1))

∣∣νκE(x1, x2, x3)
∣∣1/2
A

for (x1, x2, x3) ∈ D̂×E , and using (4.11), we obtain

∑
x∈X0(Npn)

ω
−1/2
F |·|rκA (ν(x)) · 〈FD?(x

(
pn b1 + b2
0 1

)
, x

(
pn b2
0 1

)
, xτpn),Pκ〉κ

=
ω

1/2
F,p (pn) |pn|−rκ

vol(R̂×Npn)d
κ/2
F

∫
A×D×\D×A

φD?F (x

(
pn b1 + b2
0 1

)
, x

(
pn b2
0 1

)
, xτpn)dτx.
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Since kh = ω
−1/2
F ωh, we find that the right hand side of the equation (4.15)

equals

ω
1/2
F,p (pn) |pn|−rκ

αp(F )n vol(R̂×Npn)d
κ
F /2

∫
A×D×\D×A

∑
b1∈(Zp/pnZp)×,
b2∈Zp/pnZp

kh(b1)

× φD?F (x

(
pn b1 + b2
0 1

)
, x

(
pn b2
0 1

)
, xτpn)dτx

=
p2n(1− p−1)ω

1/2
F,p (pn) |pn|−rκ

αp(F )n vol(R̂×Npn)d
κ/2
F

∫
A×D×\D×A

φD?F (x

(
pn 1
0 1

)
, x

(
pn 0
0 1

)
, xτpn)dτx.

Since vol(R̂×N ) = vol(R̂×Npn)(1+p−1)pn, the proposition can be deduced from
the last equation directly by making change of variable. �

4.9. Ichino’s formula. We now apply Ichino’s formula to relate the global
trilinear period I(ρ(t̆n)φD?F ) to a product of central L-values of triple L-
functions, the local zeta integrals Iq(φ?q ⊗ φ̃?q) defined in (3.23) at primes
q 6= p and the following local zeta integral at p
(4.16)

Iord
p (φp⊗φ̃p, t̆n) :=

L(1,Πp,Ad)

ζp(2)2L(1/2,Πp)

∫
PGL2(Qp)

bp(Πp(gpt̆n)φp ⊗ Π̃p(t̆n)φ̃p)

bp(Πp(tn)φp, φ̃p)
dgp.

Here we recall that φp is any non-zero vector in the ordinary line Vord
π1,p

(χ1,p)⊗
Vord
π2,p

(χ2,p) ⊗ Vord
π3,p

(χ3,p) with characters χi,p defined in (3.19) and tn =(
0 p−n

−pn 0

)
) ∈ D×p ↪→ D×E(Qp) for any integer n ≥ nQ. For each posi-

tive integer M , we shall use the notation M̂ ∈ Q̂× to denote the idele with
M̂` = `v`(M) at each finite prime `.

Proposition 4.10. We have

I(ρ(t̆n)φD?F )2

〈FD, FD〉

=2#Σ−+1 vol(Ô×D)2 · L(1/2,Π ) ·
ω
−1/2
F (N̂+

1 ) · ω−1
F,p(p

n)αp(F )2n

L(1,Π ,Ad)
∏3
i=1[SL2(Z) : Γ0(Nipn)](N+

i p
n)κi/2

× Iord
p (φp ⊗ φ̃p, t̆n)

∏
q∈Σ−

ζq(1)3

ζq(2)3
·
∏
q|N+

Iq(φ
?
q ⊗ φ̃?q),

where

〈FD, FD〉 =〈U−np fD, fD〉N1pn〈U−np gD, gD〉N2pn〈U−np hD, hD〉N3pn .

Proof. We begin with the explanation of the representation theoretic
factorization for the automorphic form φD?F . Let (πDf , π

D
g , π

D
h ) be the image

of (πf , πg, πh) under the Jacquet-Langlands correspondence and let

πD1 = πDf ⊗ ω
−1/2
F , πD2 = πDg and πD3 = πDh .
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Let ΠD = πD1 � πD2 � πD3 be the Jacquet-Langlands transfer of Π and let
A(ΠD) be the unique automorphic realization of ΠD. With the isomorphism
Ψ : D̂(N−)× ' GL2(Q̂(N−)), we have a factorization

(4.17) A(ΠD) '
⊗
v∈ΣD

VΠD
v

⊗
v 6∈ΣD

VΠv .

Here (ΠD
∞ ,VΠD

∞
) = (ρu

κ, Lκ(C)) and for finite prime ` | N−, (Π D
` ,VΠD

`
) =

(µE` ◦ ν,C eµE` ) is the one dimensional representation given by a unramified
character µE` = (µ1,`, µ2,`, µ3,`) : E×` → C× with a basis eµE` . Consider
~φDF = ϕD1 � ϕD2 � ϕD3 ∈ A(ΠD) ⊗ Lκ(C). Let Xκ := Xκ1

1 Xκ2
2 Xκ3

3 ∈ Lκ(C)

and define φDXκ ∈ A(ΠD) by

φDXκ(x) := 〈~φD(x), Xκ〉κ (x ∈ D×E(A)).

Under the isomorphism (4.17), we have the factorization φDXκ = ⊗vφDv , where

φD∞ = Xκ1
1 Xκ2

2 Xκ3
3 , φD` = eµE` for ` | N−,

φD` = ϕ1,` ⊗ ϕ2,` ⊗ ϕ3,` for ` 6∈ ΣD

as in §3.8.1. Recall that ϕi,` ∈ Vnew
πi,v for ` 6= p is a new vector and ϕi,p ∈

Vord
πi,p(χi,p) is an ordinary vector. In view of the definition of φD?F in (4.10),

we obtain the factorization φD?F = ⊗vφD?v , where
(4.18)

φD?v =



Pκ ∈ Lκ(C) if v =∞,

eµE` if v = ` ∈ Σ−,

ϕ1,p ⊗ ϕ2,p ⊗ ϕ3,p(= φp) if v = p,

Q1,`(V`)ϕ1,` ⊗Q2,`(V`)ϕ2,` ⊗Q3,`(V`)ϕ3,`)(= φ?` ) if v = ` 6∈ {p} ∪ Σ−.

Now consider the contragredient representation Π̃D. Let ϕ̃Di = ϕDi ⊗ ω
−1
i

and ϕ̃D?i = ϕD?i ⊗ω
−1
i for i = 1, 2, 3. Let Y κ = Y κ1Y κ2Y κ3 ∈ Lκ(C). Define

φ̃DY κ and φ̃D?F ∈ A(Π̃D) by

φ̃DY κ(x) := 〈ϕ̃D1 � ϕ̃D2 � ϕ̃D3 (x), Y κ〉κ; φ̃D?F (x) = 〈ϕD?1 � ϕ̃D?2 � ϕ̃D?3 (x),Pκ〉κ

for x ∈ D×E(A). Fixing an isomorphism

A(Π̃D) '
⊗
v∈ΣD

V
Π̃D
v

⊗
v 6∈ΣD

V
Π̃v
,

we then have a similar description for the factorizations φ̃DY κ = ⊗vφ̃Dv and
φ̃D?F = ⊗vφ̃D?v likewise.

For v 6∈ {∞}∪Σ−, let bv : VΠv ×VΠ̃v
→ C be a non-degenerate GL2(Ev)-

equivariant pairing such that bv(φ̃Dv , φDv ) = 1 for all but finitely many v. For
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v ∈ {∞} ∪ Σ−, let bDv : VΠD
v
× V

Π̃D
v
→ C be a D×E(Qv)-equivariant pairing

and define

Iv(φ
D
v ⊗ φ̃Dv ) =

L(1,Πv,Ad)

ζv(2)2L(1/2,Πv)

∫
D×v /Q

×
v

bDv (ΠD
v (xv)φ

D?
v ⊗ φ̃D?v )

bDv (φDv , φ̃
D
v )

dxv.

Here dxv is the Haar measure with vol(O×Dv/Z
×
v , dxv) = 1. In the notation

of [Ich08, page 282], we have

I(ρ(t̆n)φD?F )2 =I(ρ(t̆n)φD?F ) · I(ρ(t̆n)φ̃D?F ).

Therefore, according to [Ich08, Theorem 1.1, Remark 1.3], we obtain

I(ρ(t̆n)φD?F )2

〈ρ(τD
N+tn)φDXκ , φ̃DY κ〉

=
vol(Ô×D)

8
·
ζQ(2)2L(1/2,Π )

L(1,Π ,Ad)

× Iord
p (φp ⊗ φ̃p, t̆n)

∏
v∈{∞}∪Σ−

Iv(φ
D
v ⊗ φ̃Dv )

∏
q 6∈{p}∪Σ−

Iq(φ
?
q ⊗ φ̃?q),

From (4.5) and (4.2), we find that 〈ρ(τD
N+tn)φDXκ , φ̃DY κ〉 equals

(4.19)

ω
−1/2
F (N̂+

1 )ω−1
F,p(p

n) · 〈FD, FD〉 · αp(F )2n
3∏
i=1

vol(R̂×
Nip2n)

(N+
i p

2n)κi/2(κi + 1)

=ω
−1/2
F (N̂+

1 )〈FD, FD〉 ·
483 · ω−1

F,p(p
n)αp(F )2n∏3

i=1(N+
i p

2n)κi/2[SL2(Z) : Γ0(Ni)]

3∏
i=1

1

(κi + 1)

∏
q∈Σ−

ζq(1)6

ζq(2)3

We now proceed to compute the local zeta integrals Iv(φDv ⊗ φ̃Dv ) for v ∈
{∞} ∪ Σ−. Recall that the archimedean L-factors are given by

L(s,Π∞,Ad) = ΓR(s+ 1)3ΓC(s+ κ1 + 1)ΓC(s+ κ2 + 1)ΓC(s+ κ3 + 1);

L(s,Π∞) = ΓC(s+
κ1 + κ2 + κ3 + 3

2
)ΓC(s+ κ∗1 +

1

2
)ΓC(s+ κ∗2 +

1

2
)ΓC(s+ κ∗3 +

1

2
),

so we have

I∞(φD∞ ⊗ φ̃D∞) =
L(1,Π∞,Ad)

ζ∞(2)2L(1/2,Π∞)

∫
D×(R)/R×

〈ρuκ(x∞)Pκ,Pκ〉κ∏3
i=1〈Xκi , Y κi〉κi

dx∞

=
Γ(κ1 + 2)Γ(κ2 + 2)Γ(κ3 + 2)

4π2Γ(κ1+κ2+κ3
2 + 2)Γ(κ∗1 + 1)Γ(κ∗2 + 1)Γ(κ∗3 + 1)

· 〈Pκ,Pκ〉κ

= (4π2)−1(1 + κ1)(1 + κ2)(1 + κ3).

The last equality follows from Lemma 4.11 below. Now let q be a prime in
Σ−. According to [Pra90], πi,q = µiSt for i = 1, 2, 3 are unramified special
representations with µ1µ2µ3(q) = 1. Since

L(s,Πq,Ad) = ζq(s+ 1)3; L(s,Πq) = ζq(s+ 1/2)2ζq(s+ 3/2),
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we obtain

Iq(φ
D
q ⊗ φ̃Dq ) =

L(1,Πq,Ad)

ζq(2)2L(1/2,Πq)
· (1 + µ1,qµ2,qµ3,q(q)) = 2ζq(1)−2.

Substituting (4.19) and the above computation of Iq(φDq ⊗ φ̃Dq ) into Ichino’s
formula, we obtain

I(ρ(t̆n)φD?F )2

〈FD, FD〉ω−1/2
F (N̂+

1 )

= vol(Ô×D)2 · N
−

48
·
ζQ(2)2 · 483

8 · 4π2
· L(1/2,Π )

L(1,Π ,Ad)
·

ω−1
F,p(p

n)αp(F )2n∏3
i=1[SL2(Z) : Γ0(Nipn)](N+

i p
n)κi/2

×
∏
q∈Σ−

2ζq(1)3

ζq(2)3
· Iord
p (φp ⊗ φ̃p, t̆n)

∏
q 6∈{p,∞}∪Σ−

Iq(φ
?
q ⊗ φ̃?q),

and the proposition follows. �

Lemma 4.11. We have

〈Pκ,Pκ〉κ =
Γ(κ1+κ2+κ3

2 + 2)Γ(κ∗1 + 1)Γ(κ∗2 + 1)Γ(κ∗3 + 1)

Γ(κ1 + 1)Γ(κ2 + 1)Γ(κ3 + 1)
.

Proof. Let v1 = Xκ1
1 ⊗Y

κ2
2 ⊗X

κ∗1
3 Y

κ∗2
3 and v2 = Y κ1

1 ⊗X
κ2
2 ⊗X

κ∗2
3 Y

κ∗1
3 . Let

du be the Haar measure on SU(2)(R) with the volume vol(SU(2)(R),du) =
1. More precisely, du is given by∫

SU(2)(R)
Φ(u)du =

1

4π2

∫ 2π

0

∫ 2π

0

∫ π/2

0
Φ(u) sin 2θ dθ dϕd%,

(u =

(
α β

−β α

)
, α = cos θeiϕ, β = sin θei%)

for Φ ∈ L1(SU(2)(R)). Write 〈 , 〉 = 〈 , 〉κ for simplicity. Since Lκ(C)SU(2)(R) =
C ·Pκ, we see that

(4.20)
∫

SU(2)(R)
〈ρκ(u)v1, v2〉du · 〈Pκ,Pκ〉 = 〈v1,Pκ〉 · 〈Pκ, v2〉.

By definition,

Pκ =

κ∗1∑
n1=0

κ∗2∑
n2=0

κ∗3∑
n3=0

(
κ∗1
n1

)(
κ∗2
n2

)(
κ∗3
n3

)
(−1)κ

∗
1+κ∗2+κ∗3−n1−n2−n3

×Xκ∗2−n2+n3

1 Y
κ∗3+n2−n3

1 ⊗Xκ∗3+n1−n3

2 Y
κ∗1−n1+n3

2 ⊗Xκ∗1−n1+n2

3 Y
κ∗2+n1−n2

3 .

Then

〈v1,Pκ〉 = (−1)κ1+κ2

(
κ3

κ∗2

)−1

, 〈Pκ, v2〉 = (−1)κ1+κ∗1+κ3

(
κ3

κ∗1

)−1

.
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Let r = κ1+κ2+κ3
2 = κ∗1 + κ∗2 + κ∗3. A direct computation shows that∫

SU(2)(R)
〈ρκ(u)v1, v2〉du

= (−1)r
(
κ3

κ∗1

)−1 κ∗1∑
j=0

(
κ∗1
j

)(
κ∗2
j

)
(−1)j

∫
SU(2)(R)

|αα|r−j
∣∣ββ∣∣j du

= 2(−1)r(2r + 2)−1

(
κ3

κ∗1

)−1 κ∗1∑
j=0

(−1)j

(κ∗1
j

)(κ∗2
j

)(
r
j

)
= (−1)r(r + 1)−1

(
κ3

κ∗1

)−1 Γ(κ1 + 1)Γ(k∗1 + 1)

Γ(r + 1)

k∗1∑
j=0

(−1)j
(
k∗2
j

)(
r − j
κ1

)

= (−1)r(r + 1)−1

(
κ3

κ∗1

)−1 Γ(κ1 + 1)Γ(k∗1 + 1)

Γ(r + 1)
·
(
r − k∗2
κ1 − κ∗2

)
.

Substituting the above to (4.20), we obtain

〈Pκ,Pκ〉κ =
Γ(r + 2)

Γ(κ1 + 1)Γ(k∗1 + 1)
· Γ(k∗1 + 1)Γ(k∗2 + 1)

Γ(κ3 + 1)
· Γ(k∗3 + 1)Γ(k∗1 + 1)

Γ(κ2 + 1)
,

and the lemma follows. �

Definition 4.12 (The Gross periods of Hida families). Suppose that F is a
primitive I-adic Hida family which satisfies (CR, Σ−). Let FD be a primitive
Jacquet-Langlands lift of F with the tame conductor NF = N−N+

F . Put

ηFD := BNF (FD,FD) ∈ I,

where BNF is the Hecke-equivariant perfect pairing defined in Definition 4.3.
For each arithmetic point Q ∈ X+

I , writing ηFDQ for the specialization of ηF
at Q, define the Gross’ period ΩFDQ

of FQ by

ΩFDQ
= (−2

√
−1)kQ+1‖F◦Q‖2Γ0(NF◦

Q
) ·
Ep(FQ,Ad)

ηFDQ
· εΣ−(FQ),

where Ep(FQ,Ad) is the modified p-Euler factor in (3.10) and

εΣ−(FQ) :=
∏
`|N+
F

ε(1/2, πFQ,`)
∣∣N+
F
∣∣ 2−kQ

2
`

∈ Z
×
(p).

is the prime-to-Σ− part of the root number of FQ. We call ΩFDQ
the Gross

period for FQ because it first appeared in the Gross’ special value formula for
modular forms over imaginary quadratic fields. We will see from Remark 7.8
that the canonical period is an integral multiple of the Gross period in the
sense that there exists a non-zero u ∈ I such that ΩFDQ

= u(Q) ·ΩFQ for each
arithmetic point Q.
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Corollary 4.13. For each Q = (Q1, Q2, Q3) ∈ Xbal
R in the balanced range,

we have the interpolation formula(
ΘFD?(Q)

)2
= 2#(Σ−)+4N ·

L(1/2,ΠQ)

(
√
−1)kQ1

+kQ2
+kQ3

−1ΩfDQ1

ΩgDQ2

ΩhDQ3

·I bal
ΠQ,p
·
∏
q|N+

I ?
ΠQ,q

,

where I bal
ΠQ,p

is the normalized p-adic zeta integrals given by

(4.21) I bal
ΠQ,p

= Iord
p (φp, t̆n) ·B[n]

Π ord
p
·
ω

1/2
F,p (−p2n) |p|−n(k1+k2+k3)

p

αp(F )2nζp(2)2

with B
[n]

Π ord
p

defined in (3.27), and I ?
ΠQ,q

are the local zeta integrals at q
defined in (3.29).

Proof. To simplify our notation, we let f1 = f , f2 = g and f3 = h.
For a finite prime q, we put BΠF,q =

∏3
i=1Bπfi,q . By definition, we have

BΠF,q = ω
1/2
F,q (N+

f )BΠq if q 6= p and BΠF,q = 1 if q - pN . At the place p, from
Lemma 2.8 and the definition of Ep(fi,Ad) in (3.10), we see that

B
[n]

Π ord
p

BΠF,p

= ω
1/2
F,p (−p−2n)

3∏
i=1

αfi,p|·|
1
2
p (p2n)

ε(1/2, πfi,p)
· [SL2(Z) : Γ0(pci)]

(1 + p−1)
· Ep(fi,Ad).

Let f◦i be the associated newform of fi and ci = c(πfi,p). Write ‖f◦i ‖2 for
the Petersson norm ‖f◦i ‖2Γ0(Nf◦

i
). From the above equation and the Petersson

norm formula (2.18), we find that

ω
−1/2
F (N̂+

1 )ωF,p(p
−n)αp(F )2n

L(1,Π ,Ad)
∏3
i=1[SL2(Z) : Γ0(Nip2n)](N+

i p
2n)κi/2

=ω
−1/2
F (N̂+

1 )ωF,p(p
−n)αp(F )2n

∏
q|Np

BΠF,q

3∏
i=1

[SL2(Z) : Γ0(pci)]p−2n

2kiw(f◦i )‖f◦i ‖2(1 + p−1)(N+
i p

2n)κi/2
,

=ω
1/2
F (N̂−)ω

1/2
F,p (−1)αp(F )2n ·B[n]

Π ord
p

∏
q|N

BΠq

×
3∏
i=1

ε(1/2, πfi,p)

w(f◦i )(N+
i )κi/2

· 1

αfi,p|·|
1−ki

2
p (p2n)2ki‖f◦i ‖2Ep(fi,Ad)

=ω
1/2
F,p (−1) ·B[n]

Π ord
p

∏
q|N

BΠq

×
3∏
i=1

1

εΣ−(fi)2ki‖f◦i ‖2Ep(fi,Ad)

∏
q∈Σ−

ω
1/2
F,q (q)

ε(1/2, πf1,q)ε(1/2, πf2,q)ε(1/2, πf3,q)

=(−1)#(Σ−) · ω1/2
F,p (−1) ·B[n]

Π ord
p

∏
q|N

BΠq

3∏
i=1

〈U−np fDi , f
D
i 〉Nipn

2−1(
√
−1)ki+1ΩfDi

.
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In the last equality, we have used Lemma 4.4 and the fact that for q ∈ Σ−,

ε(1/2,Πq) = ω
−1/2
F,q (q)ε(1/2, πf1,q)ε(1/2, πf2,q)ε(1/2, πf3,q) = −1.

Substituting the above equation and the definition of I ∗Πq in (3.29) to Propo-
sition 4.10, we deduce from Proposition 4.9 that(

ΘFD?(Q)
)2

=
vol(Ô×D)2

vol(R̂×N )2
· (−2)#Σ−24N−

(
√
−1)k1+k2+k3+3

· L(1/2,Π )

ΩfDΩgDΩhD
·I bal

Πp

×
∏
q∈Σ−

BΠq ·
ζq(1)3

ζq(2)3

∏
q|N+

I ?
Πq ·
|N |2q ζq(2)2

ζq(1)2
.

Therefore, we obtain the corollary by noting that

vol(O×D)

vol(R̂×N )
=
∏
q|N+

ζq(1)

|N |q ζq(2)
,

and that for q ∈ Σ−,

BΠq =

3∏
i=1

ζq(2)〈ρ(τ q)Wπi , W̃πi〉
ζq(1)L(1, πi,Ad)

=

3∏
i=1

ε(1/2, πi,q)
ζq(2)

ζq(1)
= (−1)

ζq(2)3

ζq(1)3
.

This finishes the proof. �

5. The calculation of local zeta integrals (I)

5.1. Notation and conventions. Let q be a finite prime. LetG = GL2(Qq)
and Z = Q×q be the center of G. Denote by B the group of the upper tri-
angular matrices of G and by N the unipotent radical of B. Let π be an
irreducible unitary generic admissible representation of G. Define a real
number λ(π) by

λ(π) =

{
|λ| if π = χ1|·|λ � χ2|·|−λ with χ1, χ2 unitary and λ ∈ R,

−1
2 if π is a discrete series.

Recall that W(π) = W(π,ψQq
) is the Whittaker model of π with respect

to ψQq . It is well known that for any W ∈ W(π) and ε > 0, there exists a
Φε ∈ S(Qq) with

(5.1) W (

(
y 0
0 1

)
) = |y|

1
2
−λ(π)−ε Φε(y).

For characters χ, υ : Q×q → C×, let B(χ, υ) denote the induced represen-
tation given by

B(χ, υ) =

{
smooth functions f : G→ C | f(

(
a b
0 d

)
g) = χ(a)υ(d)

∣∣∣a
d

∣∣∣ 1
2
f(g)

}
.

Let K = GL2(Zq). We let 〈 , 〉 : B(χ, υ) × B(χ−1, υ−1) → C be the G-
invariant perfect pairing given by

〈f, f ′〉 :=

∫
K
f(k)f ′(k)dk,
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where dk is the Haar measure with vol(K,dk) = 1. If χυ−1 6= |·|−1, then
we let B(χ, υ)0 be the unique irreducible sub-representation of B(χ, υ) and
let B(υ, χ)0 be the unique irreducible quotient of B(υ, χ). It is well known
that B(χ, υ)0 = B(χ, υ) and B(υ, χ)0 = B(υ, χ) unless χυ−1 = |·|. The
above pairing 〈 , 〉 induces a G-invariant perfect paring 〈 , 〉 : B(χ, υ)0 ×
B(χ−1, υ−1)0 → C.

Intertwining operator. Define the normalized intertwining operatorM∗(υ, χ, s) :
B(υ|·|s, χ|·|−s)→ B(χ|·|−s, υ|·|s) by

M∗(υ, χ, s)f := γ(2s, υχ−1)

∫
Qp

f(

(
0 1
−1 0

)(
1 x
0 1

)
g)dx (g ∈ G).

Here γ(s,−) is the γ-factor as in (2.9), and the integral in the right hand side
is convergent absolutely for Re s sufficiently large and has analytic continu-
ation to all s ∈ C (cf. [Bum97, Proposition 4.5.7]). Let δ : G→ R+ be the

function given by δ(
(
a b
0 d

)
k) =

∣∣ad−1
∣∣ for k ∈ K. If χυ−1 6= |·|−1, then

M∗(υ, χ, s)|s=0 factors through B(υ, χ)0, and hence we have a well-defined
map M∗(υ, χ) : B(υ, χ)0 → B(χ, υ)0 given by

(5.2) M∗(υ, χ)f := M∗(υ, χ, s)(fδs)|s=0.

An integration formula. The following integration formula will be used fre-
quently in our computation. For F ∈ L1(ZN\G),

(5.3)

∫
ZN\G

F (g)dg =

∫
K

∫
Q×q

F (

(
y 0
0 1

)
k)

d×y

|y|
dk

=
ζq(2)

ζq(1)

∫
Q×q

∫
Qq

F (

(
y 0
0 1

)(
1 0
x 1

)
)dx

d×y

|y|

(cf. [MV10, 3.1.6, page 206]).

5.2. Local trilinear integrals and Rankin-Selberg integrals. Let π1, π2

and π3 be irreducible unitary generic admissible representation of G with
central characters ω1, ω2 and ω3. Suppose that ω1ω2ω3 = 1 and that π3 is a
constituent (an irreducible subquotient) of B(χ3, υ3). Assume further that
the following condition holds for (π1, π2;π3):

(Hb) λ(π1) + λ(π2) + |λ(π3)| < 1/2 and |λ(π3)| ≤ 1/2.

Put

J =

(
−1 0
0 1

)
∈ GL2(Qq).

For (W1,W2, f3) ∈ W(π1) × W(π2) × B(χ3, υ3), define the local Rankin-
Selberg integrals by

Ψ(W1,W2, f3) =

∫
ZN\G

W1(g)W2(J g)f3(g)dg;

Ψ̃(W̃1, W̃2, f̃3) =

∫
ZN\G

W̃1(J g)W̃2(g)f̃3(g)dg.
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The above integrals converge absolutely under the assumption (Hb). For
W̃1 ∈ W(π̃1), W̃2 ∈ W(π̃2) and f̃3 ∈ B(χ−1

3 , υ−1
3 ), define the local trilinear

integral by

Jq(W1⊗W2⊗f3, W̃1⊗W̃2⊗f̃3) :=

∫
Z\G
〈ρ(g)W1, W̃1〉〈ρ(g)W2, W̃2〉〈ρ(g)f3, f̃3〉dg.

The following result is a generalization of [MV10, Lemma 3.4.2]. We provide
a different and more elementary proof and replace the assumption on the
temperedness with a much weaker hypothesis (Hb).

Proposition 5.1. With the assumption (Hb) for (π1, π2;π3), we have

Jq(W1 ⊗W2 ⊗ f3, W̃1 ⊗ W̃2 ⊗ f̃3) = ζq(1) ·Ψ(W1,W2, f3) · Ψ̃(W̃1, W̃2, f̃3).

Proof. Denote by Ψ : ZN → C× the character ω2 � ψQq . Let 〈〈, 〉〉 :

L2(ZN\G,Ψ)⊗L2(ZN\G,Ψ−1)→ C be the G-equivariant bilinear pairing
given by

〈〈F, F ′〉〉 =

∫
ZN\G

F (g)F ′(g)dg.

Let λ1 = λ(π1), λ2 = λ(π2) and λ3 = |λ(π3)|. By (Hb) and symmetry, we
may assume λ1 + λ3 < 1/2. Put

F1(g) =W1(g)f3(g), W4(g) = W̃2(g) ∈ L2(ZN\G,Ψ);

F2(g) =W̃1(J g)f̃3(g), W3(g) = W2(J g) ∈ L2(ZN\G,Ψ−1).

Then one verifies that

〈〈ρ(g)F1, F2〉〉 = 〈ρ(g)W1, W̃1〉〈ρ(g)f3, f̃3〉,
and hence, it is equivalent to showing that
(5.4)

Jq(W1 ⊗W2 ⊗ f3, W̃1 ⊗ W̃2 ⊗ f̃3) =

∫
ZN\G

〈〈ρ(g)F1, F2〉〉〈ρ(g)W3,W4〉dg

=ζq(1)〈〈F1,W3〉〉〈〈F2,W4〉〉.
Put

Kn =
n⋃
i=0

K

(
qi 0
0 1

)
K ⊂ G.

First we claim that if y1, y2 ∈ Q×q , then
(5.5)(

y−1
2 y1 y−1

2 x
0 1

)
∈ ZKn ⇐⇒ q−n ≤

∣∣y−1
2 y1

∣∣ ≤ qn and
∣∣x2
∣∣ ≤ qn |y1y2| .

To see the claim, we note that if |x| ≤ 1 or |x| ≤ |y|, then(
y x
0 1

)
∈ K

(
y 0
0 1

)
K,

and if |x| > 1 and |x| > |y|, then(
y x
0 1

)
∈ K

(
x−2y 0

0 1

)
K.
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By the Cartan decomposition, we find
(
y−1

2 y1 y−1
2 x

0 1

)
∈ ZKn if and only if

|x| ≤ max {|y1| , |y2|} and q−n ≤
∣∣y−1

2 y1

∣∣ ≤ qn or |x| > max {|y1| , |y2|} and
q−n ≤

∣∣x−2y1y2

∣∣ ≤ 1, and this proves the claim.
Now we proceed to prove the equation (5.4). Let IKn be the characteristic

function of ZKn and set

In =

∫
Z\G
〈〈ρ(g)F1, F2〉〉〈ρ(g)W3,W4〉IK2n(g)dg.

By a formal computation, we find that the integral In equals∫
Z\G

∫
ZN\G

F1(hg)F2(h) · 〈ρ(g)W3,W4〉IK2n(g)dhdg

=

∫
ZN\G

∫
Z\G

F1(hg)F2(h) · 〈ρ(g)W3,W4〉IK2n(g)dgdh

=

∫
(ZN\G)2

∫
F
ψQq(x)F1(g)F2(h) · 〈h−1

(
1 x
0 1

)
gW3,W4〉 · IK2n(h−1

(
1 x
0 1

)
g)dxdgdh

=

∫
K

∫
K

∫
Q×q

∫
Q×q

∫
Qq

ψQq(x)F1(

(
y1 0
0 1

)
k1)F2(

(
y2 0
0 1

)
k2)

× 〈ρ(

(
y−1

2 y1 y−1
2 x

0 1

)
k1)W3, ρ(k2)W4〉IK2n(

(
y−1

2 y1 y−1
2 x

0 1

)
) dx

d×y1

|y1|
d×y2

|y2|
dk1dk2.

To justify the above computation, it suffices to show that the integral∫
Q×q

∫
Q×q

∫
Qq

ψQq(x)F ′1(

(
y1 0
0 1

)
)F ′2(

(
y2 0
0 1

)
) · 〈
(
y−1

2 y1 y−1
2 x

0 1

)
W ′3,W

′
4〉

× IK2n(

(
y−1

2 y1 y−1
2 x

0 1

)
) dx

d×y1

|y1|
d×y2

|y2|

is absolutely convergent, where F ′1 = ρ(k1)F1, F ′2 = ρ(k2)F2, W ′3 = ρ(k1)W3

and W ′4 = ρ(k2)W4. From(5.1) and (5.5), we deduce that for any ε > 0 there
exist constants Cε and M such that∫

Q×q

∫
Q×q

∫
Qq

∣∣∣∣F ′1(

(
y1 0
0 1

)
F ′2(

(
y2 0
0 1

)∣∣∣∣ ∣∣∣∣〈ρ(

(
y−1

2 y1 y−1
2 x

0 1

)
)W ′3,W

′
4〉
∣∣∣∣

× IK2n(

(
y−1

2 y1 y−1
2 x

0 1

)
) dx

d×y1

|y1|
d×y2

|y2|

<Cε

∫∫
|y1|≤M,|y2|≤M,

q−n≤|y−1
2 y1|≤qn

∫
|x|2≤|y1y2|q2n

|y1y2|1−λ1−λ3−ε ∣∣y−1
2 y1

∣∣ 1
2
−λ2−ε

dx
d×y1

|y1|
d×y2

|y2|

<Cεq
n(3/2−λ2−ε)

∫
|y1|≤M

∫
|y2|≤M

|y1y2|
1
2
−λ1−λ3−ε d×y1d×y2 <∞.

For (g, h) ∈ G×G, we put

An(g, h) :=

∫
Qq

ψ(x)〈ρ(

(
1 x
0 1

)
g)W3, ρ(h)W4〉IK2n(h−1

(
1 x
0 1

)
g)dx.
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Then we have

An(

(
y1 0
0 1

)
k1,

(
y2 0
0 1

)
k2)

=

∫
Qq

ψQq(x)〈ρ(

(
y1 x
0 1

)
k1)W3, ρ(

(
y2 0
0 1

)
k2)W4〉IK2n(

(
y1y
−1
2 y−1

2 x
0 1

)
)dx

=

∫
Qq

∫
Q×q

ψQq((1− ν)x)W3(

(
νy1 0
0 1

)
k1)W4(

(
νy2 0
0 1

)
k2)Iqr−nZq(x)dxνdx

=

∫
Q×q

W3(

(
νy1 0
0 1

)
k1)W4(

(
νy2 0
0 1

)
k2)I1+qn−rZq(ν)

∣∣qr−n∣∣ d×ν,
where r = bvp(y1y2)

2 c. Therefore, there exists a positive integer m0 such that
if vp(y1y2) < 2n−m0, then

An(

(
y1 0
0 1

)
k1,

(
y2 0
0 1

)
k2) = ζq(1)W3(

(
y1 0
0 1

)
k1)W4(

(
y2 0
0 1

)
k2).

On the other hand, if vp(y1y1) ≥ 2n−m0, then we have∣∣∣∣An(

(
y1 0
0 1

)
k1,

(
y2 0
0 1

)
k2)

∣∣∣∣ <W2,W̃w,ε
qn−r |y1y2|

1
2
−λ2−ε

×
∫
Q×q

|ν|1−2λ2−2ε I1+qn−rZq(ν)d×ν < Cε · qm0/2 · |y1y2|
1
2
−λ2−ε .

We thus obtain

In =

∫
K

∫
K

∫
Q×q

∫
Q×q

F1(

(
y1 0
0 1

)
k1)F2(

(
y2 0
0 1

)
k2)

×An(

(
y1 0
0 1

)
k1,

(
y2 0
0 1

)
k2)

d×y1d×y2

|y1y2|
dk1dk2

=ζq(1)

∫
K

∫
K

∫
q−2n≤|y1y

−1
2 |≤q2n,

|y1y2|>|q|2n−m0

F1 ⊗W3(

(
y1 0
0 1

)
k1)

× F2 ⊗W4(

(
y2 0
0 1

)
k2)

d×y1d×y2

|y1y2|
dk1dk2 +Bn,

where

|Bn| <C ′ε
∫

q−2n≤|y1y
−1
2 |≤q2n,

|y1y2|≤|q|2n−m0

|y1y2|
1
2
−λ1−λ2−λ3−2ε d×y1d×y2

<C ′′ε |q|
2n( 1

2
−λ1−λ2−λ3−2ε) (4n+ 1).
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It follows that∫
ZN\G

〈ρ(g)F1, F2〉〈ρ(g)W3,W4〉dg = lim
n→∞

In

= ζq(1)

∫
ZN\G

F1(g)W3(g)dg

∫
ZN\G

F2(h)W4(h)dh.

This finishes the proof of (5.4). �

Denote by L(s, π1⊗π2) the local L-factor and by ε(s, π1⊗π2) := ε(s, π1⊗
π2,ψQq

) the ε-factors attached to π1 × π2 defined in [GJ78]. Define the
γ-factor

(5.6) γ(s, π1 ⊗ π2) := ε(s, π1 ⊗ π2)
L(1− s, π̃1 ⊗ π̃2)

L(s, π1 ⊗ π2)
.

The following corollary is the core of our calculations of local zeta integrals
Iv(φ

?
v ⊗ φ̃?v) at the non-archimedean places.

Corollary 5.2. Suppose that (π1, π2;π3) satisfies (Hb) and that χ3υ
−1
3 6= |·|.

If W̃1 = W1 ⊗ ω−1
1 , W̃2 = W2 ⊗ ω−1

2 and f̃3 = M∗(χ3, υ3)f3 ⊗ ω−1
3 , then

Jq(W1 ⊗W2 ⊗ f3, W̃1 ⊗ W̃2 ⊗ f̃3) = ζq(1)χ3(−1)

× γ(1/2, π1 ⊗ π2 ⊗ χ3) ·Ψ(W1,W2, f3)2.

Proof. This is an immediate consequence of the local functional equation
of GL(2)×GL(2) in[Jac72]. With the notation of [Jac72, page 12], we may
assume that

f3(g) = χ3|·|s+
1
2 (det g) · z(χ3υ

−1
3 |·|

2s+1, ρ(g)Φ) · 1

L(2s+ 1, χ3υ
−1
3 )
|s=0

is the Godement section attached to a Bruhat-Schwartz function Φ on Q2
q .

Since χ3υ
−1
3 6= |·|, one verifies that

M∗(χ3, υ3)f3(g) = υ3|·|−s+
1
2 (det g)·z(υ3χ

−1
3 |·|

−2s+1, ρ(g)Φ̂)· 1

L(2s+ 1, χ3υ
−1
3 )
|s=0,

where Φ̂ is the Fourier transform of Φ defined in [Jac72, Theorem 14.2 (3)].
Under the hypothesis (Hb), we have

Ψ(W1,W2, f3) =
Ψ(s,W1,W2,Φ)

L(2s+ 1, χ3υ
−1
3 )
|s=0,

Ψ̃(W1,W2,M
∗(χ3, υ3)f3) =

Ψ̃(s, W̃1, W̃2, Φ̂)

L(2s+ 1, χ3υ
−1
3 )
|s=0,

where Ψ(s,W1,W2,Φ) and Φ̃(s,W1,W2, Φ̂) are defined in [Jac72, (14.5) and
(14.6)].

Therefore, from [Jac72, Theorem 14.8] we can deduce that

Ψ̃(W̃1, W̃2, f̃3) =ω1(−1)υ3(−1)Ψ(W1,W2,M
∗(χ3, υ3)f3)

=ω1ω2υ3(−1)γ(1/2, π1 ⊗ π2 ⊗ χ3)Ψ(W1,W2, f3). �

5.3. The calculation of the p-adic zeta integrals.
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5.3.1. Preliminaries. We follow the notation in §3.7. Let (f, g, h) = (fQ1
, gQ2

,hQ3)
be the specialization of the triple of Hida families at a classical point Q =

(Q1, Q2, Q3) ∈ Xcls
R := Xcls

I1
×Xcls

I2
×Xcls

I3
. Let π1 = πf,p⊗ω

−1/2
F,p , π2 = πg,p and

π3 = πh,p of the central characters ω1 = ω−1
g,pω

−1
h,p, ω2 = ωg,p and ω3 = ωh,p

respectively. Let ΠQ,p := π1 × π2 × π3. For i = 1, 2, 3, since πi,p contains
a non-zero ordinary vector, by Proposition 2.2 πi must be a constituent of
the induced representation B(υi, χi) with Vord

πi (χi) 6= {0}. In view of the
discussion in Remark 2.5, we have χ1 = αf,pω

−1/2
F,p , χ2 = αg,p and χ3 = αh,p

with α?,p unramified characters defined there, and the ordinary assump-
tion implies that χiυ−1

i 6= |·|−1. Recall that if we let ξi ∈ Vord
πi (χi) and

ξ̃i ∈ Vord
π̃i

(υ−1
i ) be nonzero ordinary vectors for i = 1, 2, 3, then

φp = ξ1 ⊗ ξ2 ⊗ ξ3 and φ̃p = ξ̃1 ⊗ ξ̃2 ⊗ ξ̃3.

Put

w =

(
0 1
−1 0

)
; tn =

(
0 p−n

−pn 0

)
∈ SL2(Qp).

We introduce the normalized ordinary section in the induced representa-
tions and compute its local pairing.

Lemma 5.3. Let π be a constituent of the induced representation B(υ, χ) of
GL2(Qp) with the central character ω. Suppose that χυ−1 6= |·|−1. Let ford ∈
B(υ, χ) be the unique section such that (i) ford is supported in BwN(Zp) (ii)
ford(g) = 1 for all g ∈ wN(Zp). Then

ford ∈ B(υ, χ)ord(χ).

We call ford the normalized ordinary section. Moreover, put

f̃ord := M∗(υ, χ)ford ⊗ ω−1 ∈ B(υ−1, χ−1)ord(υ−1).

For n ≥ max {1, c(πp)}, we have

〈ρ(tn)ford, f̃ord〉 =
ω(p−n)ζp(2)χ|·|

1
2 (p2n)

ζp(1)
· γ(0, υχ−1).

In particular, ifW ord is the normalized ordinary Whittaker function in Corol-
lary 2.3, then

(5.7)
〈ρ(tn)W ord,W ord ⊗ ω−1〉
〈ρ(tn)ford, f̃ord〉

=
χ(−1)ζp(2)

ζp(1)
.

Proof. It is straightforward to verify that ford ∈ Bord(υ, χ)ord(χ) is an
Up-eigenfunction with eigenvalue χ|·|−

1
2 . By the integration formula [MV10,
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(3.2) page 207], 〈ρ(tn)ford, f̃ord〉 equals

〈ford, ρ(

(
0 −p−n
pn 0

)
)f̃ord〉

=
ζp(2)

ζp(1)

∫
Qp

ford(w

(
1 x
0 1

)
)f̃ord(w

(
1 x
0 1

)(
0 −p−n
pn 0

)
)dx

=
ζp(2)

ζp(1)
ford(w)f̃ord(

(
pn 0
0 p−n

)
)

= ω(p−n)
ζp(2)

ζp(1)
χ|·|

1
2 (p2n)γ(0, υχ−1).

The ratio of local pairings of ordinary Whittaker functions and ordinary
sections is computed by the above and Lemma 2.8. �

5.3.2. The unbalanced case. Suppose that Q is in the unbalanced range Xf
R.

We apply Corollary 5.2 to calculate the normalized p-adic zeta integral I unb
ΠQ,p

in (3.28).

Proposition 5.4 (p-adic zeta integral in the unbalanced case). Put

Ef (ΠQ,p) := γ(1/2, π2 ⊗ π3 ⊗ χ1)−1.

Then
I unb

ΠQ,p
= Ef (ΠQ,p) ·

1

L(1/2,ΠQ,p)
.

Proof. We write Πp = ΠQ,p for brevity. It is equivalent to proving that

(5.8) L(1/2,Πp) · Iord
p (φ?p ⊗ φ̃?p, tn) = Ef (Πp) ·

χ1υ
−1
1 |·|(−p2n)

B
[n]

Π ord
p

· ζp(2)2

ζp(1)2

for n ≥ max {c(π1), c(π2), c(π3), 1}, where Iord
p (φ?p ⊗ φ̃?p, tn) is the local zeta

integral defined in (3.24). We first treat the case where either (i) π1 is
principal series or (ii) π2 or π3 is discrete series. Then it is known that
(π2, π3;π1) satisfies (Hb) since each πi is a local component of a cuspidal
automorphic representation of GL2(A). Consider the realizations

VΠp := B(υ1, χ1)0�W(π2)�W(π3); V
Π̃p

:= B(υ−1
1 , χ−1

1 )0�W(π̃2)�W(π̃3)

of Πp and the contragredient representation Π̃p. For i = 1, 2, 3, let W ord
i =

W ord
πi ∈ W

ord(πi)(χi) be the normalized ordinary Whittaker functions such

thatW ord
πi (

(
y 0
0 1

)
) = χi|·|

1
2 (y)IZp(y) in Corollary 2.3; let ford

i ∈ B(υi, χi)
ord(χi)

be the normalized ordinary section in Lemma 5.3 and f̃ord
i := M∗(υi, χi)f

ord
i ⊗

ω−1
i ∈ B(υ−1

i , χ−1
i )ord

0 (υ−1
i ). First consider the case where π1 is the principal

series χ1 � υ1. Let (ford
1 )0 be the homomorphic image of ford

1 in B(υ1, χ1)0.
In view of (3.21), we may take

(5.9)
φp :=(ford

1 )0 ⊗W ord
2 ⊗W ord

3 , φ̃p := f̃ord
1 ⊗ W̃ ord

2 ⊗ W̃ ord
3 ,

φ?p :=(ford
1 )0 ⊗W ord

2 ⊗ θkpW ord
3 , φ̃?p = f̃ord

1 ⊗ W̃ ord
2 ⊗ θkpW̃ ord

3 ,
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where k is the Dirichlet character defined in (3.12) and θkp is the twisting
operator in (2.12). According to the definition (3.24) and Corollary 5.2, we
find that
(5.10)
Iord
p (φ?p ⊗ φ̃?p, tn)

=
L(1,Πp,Ad)

ζp(2)2L(1/2,Πp)
·
Jp(ρ(tn)W ord

2 ⊗ θkpW ord
3 ⊗ ford

1 , ρ(tn)W̃ ord
2 ⊗ θkpW̃ ord

3 ⊗ f̃ord
1 )

〈ρ(tn)W ord
2 , W̃ ord

2 〉〈ρ(tn)W ord
3 , W̃ ord

3 〉〈ρ(tn)f1, f̃ord
1 〉

=
I∗p

B
[n]

Π ord
p

· 〈ρ(tn)W ord
1 , W̃ ord

1 〉
〈ρ(tn)ford

1 , f̃ord
1 〉

· ζp(2)3

ζp(1)3
· 1

L(1/2,Πp)
,

where

I∗p =
ζp(1)υ1(−1)γ(1/2, π2 ⊗ π3 ⊗ υ1)

ζp(2)2
·Ψ(W ord

2 , θkpW
ord
3 , ρ(tn)ford

1 )2.

Note that the adelization kA = ω̆−1
f ω

1/2
F ; hence

k|Z×p = β−1
p ω

1/2
F |Z×p = υ−1

1 |Z×p ,

and a simple calculation shows that θkpW ord
3 (

(
a 0
0 1

)
) = υ−1

1 (a)IZ×p (a). We

proceed to calculate the local Rankin-Selberg integral

Ψ(W ord
2 , θkpW

ord
3 , ρ(tn)ford

1 )

=
ζp(2)

ζp(1)

∫
Q×p

∫
Qp

W ord
2 (

(
y 0
0 1

)(
1 0
x 1

)
)θkpW

ord
3 (

(
−y 0
0 1

)(
1 0
x 1

)
)υ1|·|

1
2 (y)

× ford
1 (

(
0 p−n

−pn 0

)
w

(
1 p−2nx
0 1

)
)dx

d×y

|y|

=
ζp(2)χ1υ

−1
1 |·|(−pn)

ζp(1)

∫
Q×p

W ord
2 (

(
y 0
0 1

)
)θkpW

ord
3 (

(
−y 0
0 1

)
)υ1|·|−

1
2 (y)d×y

=
ζp(2)χ1υ

−1
1 |·|(−pn)

ζp(1)

∫
Z×p

W ord
2 (

(
y 0
0 1

)
)d×y =

ζp(2)χ1υ
−1
1 |·|(−pn)

ζp(1)
.

We thus obtain
(5.11)

I∗p =
ζp(1)υ1(−1)

ζp(2)2
· χ1υ

−1
1 |·|(p2n)ζp(2)2γ(1/2, π2 ⊗ π3 ⊗ υ1)

ζp(1)2

=
χ1υ

−1
1 |·|(p2n)υ1(−1)

ζp(1)
· ε(1/2, π2 ⊗ π3 ⊗ υ1)L(1/2, π2 ⊗ π3 ⊗ χ1)

L(1/2, π2 ⊗ π3 ⊗ υ1)
.

Substituting (5.7) and (5.11) to (5.10) and noting that

ε(1/2, π2 ⊗ π3 ⊗ υ1)ε(1/2, π2 ⊗ π3 ⊗ χ1) = 1,

we immediately obtain (5.8).
Now we treat the remaining case, i.e. π1 = χ1|·|−

1
2 St is special, and π2

and π3 are principal series. Thus (π1, π3;π2) satisfies (Hb). Consider the
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realizations

VΠp :=W(π1)�W(π3)�B(υ2, χ2); V
Π̃p

:=W(π̃1)�W(π̃3)�B(υ−1
2 , χ−1

2 ).

By Corollary 5.2, we have

(5.12)

L(1/2,Πp) · Iord
p (φ?p ⊗ φ̃?p, tn) =

ζp(1)υ2(−1)γ(1/2, π1 ⊗ π3 ⊗ υ2)

ζp(2)2 ·B[n]

Π ord
p

×Ψ(ρ(tn)W ord
1 , θkpW

ord
3 , ford

2 )2 · 〈ρ(tn)W ord
2 , W̃ ord

2 〉
〈ρ(tn)ford

2 , f̃ord
2 〉

· ζp(2)3

ζp(1)3
.

We calculate the local Rankin-Selberg integral in the right hand side

Ψ(ρ(tn)W ord
1 , θkpW

ord
3 , ford

2 )

=
ζp(2)

ζp(1)

∫
Q×p

∫
Qp

W ord
1 (

(
y 0
0 1

)
w

(
1 x
0 1

)
tn)θkpW

ord
3 (

(
−y 0
0 1

)
w

(
1 x
0 1

)
)

× υ2|·|
1
2 (y)IZp(x)dx

d×y

|y|

=
ζp(2)χ1υ

−1
1 |·|(pn)υ1υ2(−1)

ζp(1)

∫
Q×p

θkpW
ord
3 (

(
y 0
0 1

)
w)χ1υ2(y)d×y

=
ζp(2)χ1υ

−1
1 |·|(pn)χ1(−1)

ζp(1)
γ(1/2, π3 ⊗ υ1χ2)

∫
Q×p

θkpW
ord
3 (

(
y 0
0 1

)
)υ1χ2(y)d×y

=
ζp(2)χ1υ

−1
1 |·|(pn)χ1(−1)

ζp(1)
γ(1/2, π3 ⊗ υ1χ2).

Substituting the above equation and (5.7) into (5.12) and using the formulae
of the local L-factor and ε-factor of π1 ⊗ π3 ⊗ υ2 in [GJ78, Proposition 1.4
(1.4.2)], we find that L(1/2,Πp) · Ip(φ?p ⊗ φ̃?p) equals

χ1υ
−1
1 |·|(p2n)ζp(2)2

B
[n]

Π ord
p
ζp(1)2

· ε(1/2, π1 ⊗ π3 ⊗ υ2)L(1/2, π1 ⊗ π3 ⊗ χ2)

L(1/2, π1 ⊗ π3 ⊗ υ2)

× ε(1/2, π3 ⊗ υ1χ2)2L(1/2, π3 ⊗ χ1υ2)2

L(1/2, π3 ⊗ υ1χ2)2

=
ζp(2)2

ζp(1)2
· χ1υ

−1
1 |·|(p2n)ω2ω3(−1)

B
[n]

Π ord
p

· ε(1/2, π2 ⊗ π3 ⊗ υ1)L(1/2, π2 ⊗ π3 ⊗ χ1)

L(1/2, π2 ⊗ π3 ⊗ υ1)
.

This proves (5.8) in the remaining case. �

Remark 5.5. Replacing φ?p ⊗ φ̃?p with φp ⊗ φ̃p in (3.24), we define the im-
proved p-adic zeta integral

I ∗ΠQ,p :=Iord
p (φp ⊗ φ̃p, tn) ·

B
[n]

Π ord
p

χ1υ
−1
1 |·|(−p2n)

· ζp(1)2

ζp(2)2
.



70 MING-LUN HSIEH

If π1 is principal series, then υ1χ2χ3 6= |·|−
1
2 , and

I ∗ΠQ,p =
1

ε(1/2, π2 ⊗ π3 ⊗ χ1)
· L(1/2, π2 ⊗ π3 ⊗ χ1)

L(1/2, π2 ⊗ π3 ⊗ υ1)
· L(1/2, υ1χ2χ3)2;

if π1 is special and υ1χ2χ3 = |·|−
1
2 , then

I ∗ΠQ,p =
1

ε(1/2, π2 ⊗ π3 ⊗ υ1)
· (−1)

L(1/2, υ1χ2υ3)L(1/2, υ1υ2χ3)
.

These equations will be used later for the interpolation formula of improved
p-adic L-functions. It can be obtained by the same computation in the above
proposition. We omit the details.

5.3.3. The balanced case. Now suppose that Q is in the balanced range Xbal
R .

We shall compute the normalized p-adic zeta integral I bal
Πp

in (4.21). Put

un =

(
1 p−n

0 1

)
∈ SL2(Qp); t̆n = (un, 1, tn) ∈ GL2(Ep)

for n ≥ max {c(π1), c(π2), c(π3), 1}. Observe that if L : π1 ⊗ π2 ⊗ π3 → C is
any GL2(Qp)-invariant trilinear form, then

L(π1(un)ξ1, ξ2, π3(tn)ξ3) =L(π1(un)ξ1, π2(tn)ξ2, ξ3)

=L(ξ1, π2(un)ξ2, π3(tn)ξ3).

Thus we may assume that
(Hb′)
either π3 = χ3 � υ3 is principal series or each of π1, π2 and π3 is special.

Proposition 5.6 (p-adic zeta integral in the balanced case). Under the
assumption (Hb′), we put

Ebal(ΠQ,p) := γ(1/2, π1 ⊗ π2 ⊗ χ3)−1γ(1/2, χ1χ2υ3)−2.

Then we have
I bal

ΠQ,p
= Ebal(ΠQ,p) ·

1

L(1/2,ΠQ,p)
.

Proof. We write Πp = ΠQ,p as before. By definition, this is equivalent
to proving

Iord
p (φp ⊗ φ̃p, t̆n) =αp(F )2nω

−1/2
F,p (−p2n) |pn|k1+k2+k3 · Ebal(Πp) ·

ζp(2)2

B
[n]

Π ord
p

· 1

L(1/2,Πp)

=χ1χ2χ3(−p2n) |p|3n · Ebal(Πp) ·
ζp(2)2

B
[n]

Π ord
p

· 1

L(1/2,Πp)
,

where Iord
p (φp ⊗ φ̃p, t̆n) is the local zeta integral in (4.16). The assumption

(Hb′) implies that (π1, π2;π3) satisfies (Hb), so we consider the realizations

VΠp =W(π1)�W(π2)�B(υ3, χ3)0; V
Π̃p

=W(π̃1)�W(π̃2)�B(υ−1
3 , χ−1

3 )0.

Let W ord
i = W ord

πi and W̃ ord
i = W ord

i ⊗ ω−1
i be the normalized ordinary

Whittaker functions for i = 1, 2. Let ford
3 be the normalized ordinary section
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in B(υ3, χ3)ord(χ3) in Lemma 5.3 and let f̃ord
3 := M∗(υ3, χ3)ford

3 ⊗ ω−1
3 .

Letting (ford
3 )0 be the holomorphic image of ford

3 in B(υ3, χ3)0 as before, we
may take

φp = W ord
1 ⊗W ord

2 ⊗ (ford
3 )0; φ̃p = W̃ ord

1 ⊗ W̃ ord
2 ⊗ f̃ord

3 .

From the definition (4.16), Corollary 5.2 and (5.7), we deduce that
(5.13)

Iord
p (φp ⊗ φ̃p, t̆n)

=
Jp(ρ(un)W ord

1 ⊗W ord
2 ⊗ ρ(tn)ford

3 , ρ(un)W̃ ord
1 ⊗ W̃ ord

2 ⊗ ρ(tn)f̃ord
3 )

ζp(2)2L(1/2,Πp) ·B[n]

Π ord
p

× 〈ρ(tn)W ord
3 , W̃ ord

3 〉
〈ρ(tn)ford

3 , f̃ord
3 〉

· ζp(2)3

ζp(1)3

=
I∗p

B
[n]

Π ord
p

· χ3(−1)ζp(1)2

ζp(2)
· ζp(2)3

ζp(1)3
· 1

L(1/2,Πp)
,

where

I∗p =
ζp(1)υ3(−1)γ(1/2, π1 ⊗ π2 ⊗ υ3)

ζp(2)2
·Ψ(ρ(un)W ord

1 ,W ord
2 , ρ(tn)ford

3 )2.

The local Rankin-Selberg integral Ψ(ρ(un)W ord
1 ,W ord

2 , ρ(tn)ford
3 ) equals∫

ZN\G
W ord

1 (g

(
1 p−n

0 1

)
)W ord

2 (J g)ford
3 (g

(
0 p−n

−pn 0

)
)dg

=
ζp(2)

ζp(1)

∫
Q×p

∫
Qp

W ord
1 (

(
y 0
0 1

)(
1 p−n

x 1 + xp−n

)
)W ord

2 (

(
−y 0
x 1

)
)

ford
3 (

(
p−ny 0

0 pn

)
w

(
1 −p−2nx
0 1

)
)
d×y

|y|
dx

=
ζp(2)

∣∣p2n
∣∣χ3υ

−1
3 (pn)|·|

1
2 (p−2n)

ζp(1)

∫
Q×p

∫
Zp

W ord
1 (

(
y yp−n(1 + xpn)−1

0 1

)
)

×W ord
2 (

(
−y 0
0 1

)
)υ3|·|−

1
2 (y)dxd×y

=
ζp(2) |pn|χ3υ

−1
3 (pn)χ2(−1)

ζp(1)

∫
Q×p

ψ(yp−n)IZp(y)χ1χ2υ3|·|
1
2 (y)d×y

=
ζp(2) |pn|χ3υ

−1
3 (pn)χ2υ3(−1)

ζp(1)
· L(1/2, χ1χ2υ3)

ε(1/2, χ1χ2υ3)L(1/2, χ−1
1 χ−1

2 υ−1
3 )

×
∫
Q×p

Ip−n(−1+pnZp)(y)χ−1
1 χ−1

2 υ−1
3 |·|

1
2 (y)d×y

=
ζp(2) |pn|χ1χ2χ3(pn)χ2υ3(−1)

ζp(1)
· γ(1/2, χ−1

1 χ−1
2 υ−1

3 ) · |p|
n
2

1− |p|
,
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so we find that

I∗p =υ3(−1)ε(1/2, π1 ⊗ π2 ⊗ υ3)
L(1/2, π1 ⊗ π2 ⊗ χ3)

L(1/2, π1 ⊗ π2 ⊗ υ3)

×
(
ζp(2) |p|

3n
2 χ1χ2χ3(pn) · γ(1/2, χ−1

1 χ−1
2 υ−1

3 )
)2

=υ3(−1)ζp(2)2 · χ1χ2χ3(p2n) |p|3n · χ1χ2υ3(−1)Ebal(Πp).

Substituting the above equation to (5.13), we obtain the desired formula. �

Remark 5.7. Keep the notation in §1.3. For • ∈ {f ,bal}, we put UQ :=

WDp(Fil+• V
†
Q) ⊗Qp,ιp

C be the Weil-Deligne representation of WQp associ-

ated with Fil+• V
†
Q by Fontaine [Fon94, (4.2.3)]. It is not difficult to show

that

E•(ΠQ,p) =
L(0, UQ)

ε(UQ)L(1, U∨Q)
,

and hence
I •ΠQ,p = Ep(Fil+• V

†
Q).

For example, if • = bal and πi = χi|·|−
1
2 St are special for i = 1, 2, 3, then

dimUN=0
Q = 3, where N is the monodromy operator, and one verifies that

L(s− 1
2 , UQ) = L(s, χ1χ2χ3)L(s, χ1χ2υ3)2, L(s+ 1

2 , U
∨
Q) = L(s, υ1υ2χ3)3 and

ε(UQ) = lims→0 L(1
2−s, χ

−1
1 χ−1

2 χ−1
3 )/L(s+ 1

2 , χ1χ2υ3) = −χ1χ2χ3|·|−1/2(p).

6. The calculation of local zeta integrals (II)

6.1. Setting. We continue to let F = (f, g, h) be the specialization of F =
(f , g,h) at a classical point Q = (Q1, Q2, Q3). In this section, we assume the
following minimal hypothesis for the unitary automorphic representations
(πf , πg, πh) attached to (f, g, h)

Hypothesis 6.1. For each prime q | N , there exists a rearrangement {f1, f2, f3}
of {f, g, h} such that

(1) cq(πf1) ≤ min {cq(πf2), cq(πf3)},
(2) the local components πf1,q and πf3,q are minimal,
(3) either πf3,q is a principal series or πf2,q and πf3,q are both discrete

series.

Recall that an irreducible admissible representation π of GL2(Qq) is mini-
mal if the conductor c(π) is minimal among the twists π⊗χ for all characters
χ : Q×q → C×.

Remark 6.2. Note that if the above hypothesis holds for (f, g, h), then it
also holds for specializations of (f , g,h) at any classical point by Remark 3.1.
Moreover, we observe that one can always find Dirichlet characters χ1, χ2

and χ3 modulo some M with M2 | N such that χ1χ2χ3 = 1 and (πf ⊗
χ1, πg ⊗ χ2, πh ⊗ χ3) satisfies Hypothesis 6.1.
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As before, we let π1 = πf,q ⊗ ω
−1/2
F,q , π2 = πg,q and π3 = πh,q; let Πq =

ΠQ,q = π1 × π2 × π3. Let q be a prime factor of N . Suppose that

ε(1/2,Πq) = +1 (q 6∈ Σ−).

The purpose of this section is to evaluate the local zeta integral defined in
(3.23)

Iq(φ
?
q ⊗ φ̃?q) =

L(1,Πq,Ad)

ζq(2)2L(1/2,Πq)

∫
PGL2(Qq)

bq(Πq(gq)φ
?
q , φ̃

?
q)

bq(Πq(τN,q)φq, φ̃q)
dgq

under Hypothesis 6.1. For i = 1, 2, 3, let ci = c(πi) be the exponent of the
conductors. Note that ω1/2

F,q is unramified, so under Hypothesis 6.1 and the
condition (sf), we may assume by symmetry that

c1 ≤ min {c2, c3, 1} ; π3 is minimal,

and that {π1, π2, π3} satisfies one of the following conditions:

• Case (Ia): π3 = χ3 � υ3 is a principal series with χ3 unramified
character of Q×q .
• Case (Ib): π1, π2 and π3 are discrete series.
• Case (IIa): π1 is a principal series; π2 and π3 are discrete series with
L(s, π2 ⊗ π3) 6= 1.
• Case (IIb): π1 is a principal series; π2 and π3 are discrete series with
L(s, π2 ⊗ π3) = 1.

For i = 1, 2, 3, let ξi ∈ Vnew
πi and ξ̃i ∈ π̃i(τci)Vnew

π̃i
be new vectors. Set

c∗ = max {c2, c3} > 0.

We recall the following choices of local test vectors φ?q ∈ VΠq and φ̃?q ∈ VΠ̃q

in (3.21) and (3.22) according to the polynomials Qi,q(X) for i = 1, 2, 3 in
(3.20). Put

w =

(
0 1
−1 0

)
, η =

(
q−1 0
0 1

)
and τn =

(
0 1
−qn 0

)
for n ∈ Z.

• Case (Ia) and (Ib):

φ?q =ξ1 ⊗ π2(ηc
∗−c2)ξ2 ⊗ π3(ηc

∗−c3)ξ3,

φ̃?q =ω2(qc2−c
∗
)ω3(qc3−c

∗
) · ξ̃1 ⊗ π̃2(ηc

∗−c2)ξ̃2 ⊗ π̃3(ηc
∗−c3)ξ̃3.

• Case (IIa): Let r = d c∗2 e. Then

φ?q = π1(ηr)ξ1 ⊗ ξ2 ⊗ ξ3, φ̃?q = ω1(q−r) · π̃1(ηr)ξ̃1 ⊗ ξ̃2 ⊗ ξ̃3.

• Case (IIb): If c1 = 0, then let υ1 : Q×q → C× be the unramified char-

acter with υ1(q) = βq(f) |q|
k1−1

2 , where βq(f) is the specialization of
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βq(f) at Q1 in Definition 3.3 and we have

φ?q =(π1(ηc
∗
)ξ1 − υ−1

1 |·|
1
2 (q)π1(ηc

∗−1)ξ1)⊗ ξ2 ⊗ ξ3,

φ̃?q =ω1(q−c
∗
) · (π̃1(ηc

∗
)ξ̃1 − ω1υ

−1
1 |·|

1
2 (q)π̃1(ηc

∗−1)ξ̃1)⊗ ξ̃2 ⊗ ξ̃3.

If c1 > 0, then

φ? = π1(ηc
∗−c1)ξ1 ⊗ ξ2 ⊗ ξ3, φ̃?q = ω1(qc1−c

∗
) · π̃1(ηc

∗−c1)ξ̃1 ⊗ ξ̃2 ⊗ ξ̃3.

In what follows, we let Wi = Wπi ∈ W(πi)
new be the normalized Whittaker

newforms and let W̃i = Wπi ⊗ω−1
i for i = 1, 2, 3. For a non-negative integer

n, put

U0(qn) = GL2(Zq) ∩
(

Zq Zq
qnZq Zq

)
.

6.2. The ramified case (Ia). In the case (Ia), π3 = χ3 � υ3 is a principle
series with c(χ3) = 0.

Proposition 6.3. In case (Ia), we have

Iq(φ
?
q ⊗ φ̃?q) =ε(1/2, π1 ⊗ π2 ⊗ χ3) · χ−2

3 |·|(q
c∗)ω3(−1)ε(1/2, π3)2 · 1

BΠq

· ζq(2)2

ζq(1)2
.

Proof. In this case, c3 = c(ω3) = c(ω1ω2) ≤ c2, so c∗ = c2. We use the
realizations

VΠq =W(π1) �W(π2) � B(χ3, υ3); V
Π̃q

=W(π̃1) �W(π̃2) � B(χ−1
3 , υ−1

3 ).

Let f3 ∈ B(χ3, υ3)new be the new section normalized so that f3(1) = 1 and
f̃3 = M∗(χ3, υ3)f3 ⊗ ω−1

3 . Let

f?3 = ρ(

(
qc3−c2 0

0 1

)
f3; f̃?3 = ω3(qc3−c2)·ρ(

(
qc3−c2 0

0 1

)
f̃3 = M∗(χ3, υ3)f?3⊗ω−1

3 .

We thus have

φ?q = W1 ⊗W2 ⊗ f?3 ; φ̃?q = W̃1 ⊗ W̃2 ⊗ f̃?3 .
By Corollary 5.2,
(6.1)

Iq(φ
?
q ⊗ φ̃?q) =

Jq(W1 ⊗W2 ⊗ f?3 , W̃1 ⊗ W̃2 ⊗ f̃?3 )

ζq(2)2L(1/2,Πq) ·BΠq

· 〈ρ(τc3)W3, W̃3〉
〈ρ(τc3)f3, f̃3〉

· ζq(2)3

ζq(1)3

=
I∗q
BΠq

· 〈ρ(τc3)W3, W̃3〉
〈ρ(τc3)f3, f̃3〉

· ζq(2)3

ζq(1)3
,

where

I∗q =
ζq(1) · χ3(−1)γ(1/2, π1 ⊗ π2 ⊗ χ3)

ζq(2)2L(1/2,Πq)
·Ψ(W1,W2, f3)2

There are three subcases:
(a) υ3 is ramified,
(b) υ3 is unramified and L(s, π2) = L(s, χ2) for some unramified charac-

ter χ2,
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(c) υ3 is unramified and L(s, π2) = 1.

Subcase (a): In this case, f3 ∈ B(χ3, υ3) is given by

f3(

(
1 0
x 1

)
) = Iqc3Zq(x)

by [Sch02, Prop. 2.1.2]. We have W2(

(
y 0
0 1

)
) = IZ×q (y) if L(s, π2) = 1 and

W2(

(
y 0
0 1

)
) = χ2|·|

1
2 (y)IZq(y) if L(s, π2) = L(s, χ2) for some unramified

character χ2. In any case, the integral Ψ(W1,W2, f
?
3 ) equals

ζq(2)χ3|·|
1
2 (qc3−c2)

ζq(1)

∫
Q×q

∫
Qq

W1(

(
y 0
0 1

)(
1 0
x 1

)
)W2(

(
−y 0
0 1

)(
1 0
x 1

)
)

× χ3|·|−
1
2 (y)f3(

(
1 0

qc3−c2x 1

)
)dxd×y

=
ζq(2)χ3|·|

1
2 (qc3−c2)

ζq(1)
|q|c2

∫
Q×q

W1(

(
y 0
0 1

)
)W2(

(
−y 0
0 1

)
)χ3|·|−

1
2 (y)d×y.

Note that π1 and π2 can not be both unramified special representations as
c(π1) ≤ 1 and υ3 is ramified. A standard calculation together with the recipe
of local L-factors for GL(2)×GL(2) in [GJ78, Proposition 1.4] shows that∫

Q×q

W1(

(
y 0
0 1

)
)W2(

(
−y 0
0 1

)
)χ3|·|−

1
2 (y)d×y = L(1/2, π1 ⊗ π2 ⊗ χ3).

We obtain

Ψ(W1,W2, f
?
3 ) =

ζq(2)χ3|·|
1
2 (qc3−c2)

ζq(1)
|q|c2 L(1/2, π1 ⊗ π2 ⊗ χ3),

and hence

I∗q = χ−2
3 |·|(q

c2) · χ2
3|·|(qc3) · ε(1/2, π1 ⊗ π2 ⊗ χ3).

Substituting the above equation and the formula Lemma 6.4 below to (6.1),
we obtain the expression of Iq(φ?q ⊗ φ̃?q) as claimed in this subcase.

Subcase (b) and (c): Next we consider the case υ3 is unramified, so
π1 and π3 are spherical (c1 = c3 = 0). Note that in Subcase (b) where
L(s, π2) = L(s, χ2) for χ2 an unramified character, we must have π2 =

χ2|·|−
1
2 St is an unramified special representation. Define the function F :

ZN\G/K0(qc2)→ C by

F (g) = W1(g)W2(

(
−1 0
0 1

)
g)f3(g

(
q−c2 0

0 1

)
).
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We have

Ψ(W1,W2, f
?
3 ) =

ζq(2)

ζq(1)

∫
Q×q

∫
Qq

F (

(
y 0
0 1

)(
1 0
x 1

)
)dx

d×y

|y|

=
ζq(2)

ζq(1)
· (J−0 + J+

c2 +

c2−1∑
n=1

Jn),

where

J−0 =

∫
Q×q

∫
|x|≥1

F (

(
y 0
0 1

)(
1 0
x 1

)
)dx

d×y

|y|
,

Jn =

∫
Q×q

∫
qnZ×q

F (

(
y 0
0 1

)(
1 0
x 1

)
)dx

d×y

|y|
,

J+
c2 =

∫
Q×q

∫
|x|≤|q|c2

F (

(
y 0
0 1

)(
1 0
x 1

)
)dx

d×y

|y|
.

Using the identity(
y 0
0 1

)(
1 0
x 1

)
= (−x) ·

(
yx−2 x−1

0 1

)
w

(
1 x−1

0 1

)
and the formula

W2(

(
y 0
0 1

)
w) =

{
− |$|χ2|·|

1
2 (y)IZq(y) in subcase (b),

ε(1/2, π2) · ω2(q−c2)Iq−c2Z×q (y) in subcase (c),

we find that

J−0 =

∫
Q×q

F (

(
y 0
0 1

)
w)

d×y

|y|

=υ−1
3 |·|

1
2 (qc2)

∫
Q×q

W1(

(
y 0
0 1

)
)W2(

(
y 0
0 1

)
w)χ3|·|−

1
2 (y)d×y

=− |q| · υ−1
3 |·|

1
2 (qc2) ·

{
L(1/2, π1 ⊗ χ2χ3) in subcase (b),
0 in subcase (c).

On the other hand, it is easy to see that

J+
c2 = |q|c2

∫
Q×q

F (

(
y 0
0 1

)
)
d×y

|y|
= χ−1

3 |·|
1
2 (qc2)L(1/2, π1 ⊗ π2 ⊗ χ3).

It remains to calculate Jn in subcase (c). We have

Jn =
∑
m∈Z

(1− |q|) |q|n χ3|·|
1
2 (q−c2)W1(

(
qm 0
0 1

)
)χ3|·|−

1
2 (qm)f3(

(
1 0

qn−c2 1

)
)A(m)

n (1),

where

A(m)
n (1) =

∫
Z×q

W2(

(
qmy 0

0 1

)(
1 0
qn 1

)
)d×y.

By Lemma 6.5 below, we find that Jn = 0 unless n = c2 − 1 and

Jc2−1 = χ−1
3 |·|

1
2 (qc2) · χ3υ

−1
3 |·|(q).
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Combining the above calculations, in either subcase (b) or subcase (c), we
obtain

Ψ(W1,W2, f3) =
ζq(2)

ζq(1)
· (J−0 + J+

c2 +

c2−1∑
n=1

Jn)

=
ζq(2)χ−1

3 |·|
1
2 (qc2)

ζq(1)
· L(1/2, π1 ⊗ π2 ⊗ χ3)

L(1, χ3υ
−1
3 )

.

This shows that

I∗q =
ζq(1)γ(1/2, π1 ⊗ π2 ⊗ χ3)Ψ(W1,W2, f

?
3 )2

ζq(2)2L(1/2,Πq)
=
χ−2

3 |·|(qc2)ε(1/2, π1 ⊗ π2 ⊗ χ3)

ζq(1)L(1, χ3υ
−1
3 )2

.

The above equation with Lemma 6.4 below and (6.1) yield that

Iq(φ
?
q ⊗ φ̃?q) = χ−2

3 |·|(q
c2)ε(1/2, π1 ⊗ π2 ⊗ χ3) · 1

BΠq

· ζq(2)2

ζq(1)2
.

This completes the proof. �

Lemma 6.4. Let π be a constituent of B(χ, υ) of central character ω. Sup-
pose that χ is unramified. Let c = c(π) be the exponent of the conductor. Let
Wπ be the new vector in W(π)new with Wπ(1) = 1 and W̃π = Wπ⊗ω−1. Let
f ∈ B(υ, χ) and f̃ = M∗(χ, υ)f ⊗ ω−1.

(1) Suppose that π is a principal series and f ∈ B(χ, υ)new is the new
section with f(1) = 1. Then

〈ρ(τc)Wπ, W̃π〉
〈ρ(τc)f, f̃〉

= χ2|·|(q−c)ε(1/2, π)2ω(−1) · L(1, χυ−1)2 · ζq(1)2

ζq(2)
.

(2) Suppose that π is an unramified special representation with χυ−1 =

|·|−1, i.e. π = υ|·|−
1
2 St. Let f be the section in B(χ, υ)U0(q) with

f(w) = 1. Then

〈ρ(τc)Wπ, W̃π〉
〈ρ(τc)f, f̃〉

=
ζq(1)2

ζq(2)
.

Proof. We first consider the case π is a principal series. Suppose that
c = 0. Then we have

〈f,M∗(χ, υ)f ⊗ ω−1〉 =γ(0, χυ−1)
L(0, χυ−1)

L(1, χυ−1)
=
L(1, χ−1υ)

L(1, χυ−1)
,

〈Wπ,Wπ〉 =
L(1, π,Ad)ζq(1)

ζq(2)
,

and hence
〈Wπ, W̃π〉
〈f, f̃〉

= L(1, χυ−1)2 · ζq(1)2

ζq(2)
.
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Suppose that c > 0. Then υ is ramified and f is supported in BU0(qc)

(cf. [Sch02, Proposition 2.1.2]), and hence 〈ρ(τc)f, f̃〉 = 〈f, ρ(τ−1
c )f̃〉 equals∫

K
f(k)f̃(kτ−1

c )dk = vol(U0(qc)) · ω(qc) ·M∗(χ, υ)f(τ−1
c )

= vol(U0(qc)) · ω(qc) · γ(0, χυ−1)f(

(
1 0
0 q−c

)
)

= |q|c (1 + |q|)−1ε(1/2, χυ−1) · χ(qc).

In addition, 〈ρ(τc)Wπ, W̃π〉 = ε(1/2, π)ζq(1), so we obtain that

〈ρ(τc)Wπ, W̃π〉
〈ρ(τc)f, f̃〉

=
ζq(1)2

ζq(2)
χ2|·|(q−c)ε(1/2, π)2ω(−1).

Now we consider the case π is an unramified special representation. Then
c = 1 and we may assume f(w) = 1, i.e. f is supported in BwU0(q). An
elementary computation shows that

M∗(χ, υ)f(1) = ζq(2)(1− |q|−1); M∗(χ, υ)f(w) = ζq(2).

Then 〈ρ(τ1)f, f̃〉 equals∫
wU0(q)

f(kτ1)f̃(k)dk = vol(U0(q)) · f(τ1)M∗(χ, υ)f(1) = (−υ|·|−
1
2 (q)) · ζq(2)2

ζq(1)2
.

Combined with the formulas

〈ρ(τ1)Wπ, W̃π〉 = ε(1/2, π)ζq(2) = (−υ|·|−
1
2 (q)) · ζq(2),

the lemma in this case follows. �

Lemma 6.5. Let π is an irreducible admissible generic representation of
GL2(Qq) and let Wπ ∈ W(π)new be the normalized Whittaker newform with
Wπ(1) = 1. Let χ : Q×q → C× with χ(q) = 1. Suppose that L(s, π) =
L(s, π ⊗ χ) = 1. Put

A(m)
n (χ) :=

∫
Z×q

Wπ(

(
qmy 0

0 1

)(
1 0
qn 1

)
)χ(y)d×y.

If χ 6= 1, then A(m)
n (χ) = 0 unless m = c(π)− c(π⊗χ) and n = c(π)− c(χ);

in this case

A
(c(π)−c(π⊗χ))
c(π)−c(χ) (χ) = ε(1, χ) · ε(1/2, π)

ε(1/2, π ⊗ χ)
· χ(−1)ζq(1).

If χ = 1 is the trivial character, then A
(m)
n (1) = 0 unless m = 0 and

n ≥ c(π)− 1; in this case,

A
(m)
c(π)−1(1) = − |q| ζq(1) and A(m)

n (1) = 1 if n ≥ c(π).

Proof. LetA(m)
n = A

(m)
n (χ) and c = c(π). Let ϕn(a) := Wπ(

(
a 0
0 1

)(
1 0
qn 1

)
)

for a ∈ Q×q . Then ϕn belongs to the Krillov model K(π) of π with re-
spect to ψQq . Since L(s, π) = 1, ϕ := IZ×q is a new vector in K(π) and
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K(π̃) (cf. [Sch02, §2.4]). Then π(

(
0 1
−qc 0

)
)ϕ(a)ω−1(a) = α ·ϕ(a) for some

α ∈ C×. By the functional equation, we have∫
Q×q

ϕn(a)χ(a) |a|s−
1
2 d×a = γ(s, π⊗χ)−1

∫
Q×q

π(w)ϕn(a)ω−1(a)χ−1(a) |a|
1
2
−s d×a,

where

γ(s, π ⊗ χ)−1 =
L(s, π ⊗ χ)

L(1− s, π̃ ⊗ χ−1)ε(s, π ⊗ χ)
.

By the relation

π(w)ϕn(a) =π(

(
1 −qn
0 1

)
w)ϕ(a) = ψQq(−aqn)π(

(
1 0
0 q−c

)(
0 1
−qc 0

)
)ϕ(a)

=α · ψQq(−aqn) · ϕ(qca)ω(a),

we find that α = ε(1/2, π) and∑
m∈Z

∫
Z×q

ϕn(qmy)χ(y)d×y · χ(qm) |qm|s−
1
2

=γ(s, π ⊗ χ)−1ε(1/2, π) · |qc|s−
1
2 ·
∫
Q×q

ψQq(−
a

qc−n
)χ−1|·|

1
2
−s(a)ϕ(a)d×a.

Let t = |q|s. From the above equation, we deduce that∑
m∈Z

A(n)
m · χ(qm) |qm|−

1
2 · tm = γ(s, π ⊗ χ)−1 · ε(1/2, π)χ(−1) |qc|−

1
2 · tc

×


0 if c− n 6= c(χ) > 0 or c− n ≥ 2, c(χ) = 0,

χ(q−c(χ))ε(1, χ)ζq(1) if c− n = c(χ) > 0,

1 if c− n ≤ 0, c(χ) = 0,

− |q| ζq(1) if c− n = 1, c(χ) = 0.

Since L(s, π) = L(s, π ⊗ χ) = 1, we have

γ(s, π ⊗ χ)−1 = ε(0, π ⊗ χ)−1t−c(π⊗χ).

Comparing the coefficients of tm, if χ 6= 1, we find that A(m)
n 6= 0 only when

c− n = c(χ), and m = c− c(π ⊗ χ). In this case

A(m)
n = χ(−q−m−c(χ)) |q|

m−c
2 ε(1/2, π) · ε(1, χ)

ε(0, π ⊗ χ)
ζq(1).

If χ = 1, and A(m)
n = 0 unless m = 0, and

A(0)
n =


1, if c− n ≤ 0

− |q| ζq(1), if c− n = 1

0 if c− n ≥ 2.

This completes the proof. �
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6.3. The case (Ib). In this case π1 = χ1|·|−
1
2 St is an unramified special

representation, and π2 and π3 are discrete series with the local root number
ε(1/2,Πq) = 1. We first remark that if L(s, π2 ⊗ π3) 6= 1, then by the
minimality of π3 combined with [GJ78, Proposition (1.2)], this implies that
π3 = π̃2 ⊗ σ for some unramified character σ of Q×q and π2 is also minimal.
Hence, in view of [Pra90, Proposition 8.5] π2 and π3 must be unramified
special in case (Ib) if L(s, π2 ⊗ π3) 6= 1.

Proposition 6.6. In case (Ib),

(1) if L(s, π2 ⊗ π3) = 1, then we have

Iq(φ
?
q⊗φ̃?q) = χ2

1|·|(qc
∗
)ε(1/2, π2⊗π3⊗υ1)ε(1/2, π2)2ε(1/2, π3)2 · 1

BΠq

· ζq(2)2

ζq(1)2
;

(2) if L(s, π2 ⊗ π3) 6= 1, then c1 = c2 = c3 = 1 and

Iq(φ
?
q ⊗ φ̃?q) = Iq(φq ⊗ φ̃q) =

2 |q|
BΠq

· ζq(2)2

ζq(1)2
.

Proof. Now we suppose that π1 = χ1|·|−
1
2 St is unramified special. Let

υ1 = χ1|·|−1. We use the realizations

VΠq = B(υ1, χ1)0�W(π2)�W(π3); V
Π̃q

= B(υ−1
1 , χ−1

1 )0�W(π̃2)�W(π̃3).

Here B(υ1, χ1)0 is the unique irreducible quotient space of B(υ1, χ1) and
B(υ−1

1 , χ−1
1 )0 is the unique irreducible sub-representation of B(υ−1

1 , χ−1
1 ) as in

§5.1. Let f1 ∈ B(υ1, χ1)U0(q) be the unique function supported in BwN(Zq)
with f1(1) = 1. Then the holomorphic image f0

1 of f1 in Vπ1 = B(υ1, χ1)0

is a new vector. Let f̃1 = M∗(υ1, χ1)f ⊗ ω−1
1 . We may assume that c2 ≥ c3

(so c∗ = c2). Let W ?
3 = ρ(

(
qc3−c2 0

0 1

)
)W3 and W̃ ?

3 = W ?
3 ⊗ ω

−1
3 . Then

φ?q = f0
1 ⊗W2 ⊗W ?

3 ; φ̃q = f̃1 ⊗ W̃2 ⊗ W̃ ?
3 .

By Corollary 5.2 and Lemma 6.4 (2), we obtain
(6.2)

Iq(φ
?
q ⊗ φ̃?q) =

Jq(W2 ⊗W ?
3 ⊗ f1, W̃2 ⊗ W̃ ?

3 ⊗ f̃1)

ζq(2)2L(1/2,Πq) ·BΠq

· 〈ρ(τc1)W1, W̃1〉
〈ρ(τc1)f1, f̃1〉

· ζq(2)3

ζq(1)3

=
γ(1/2, π2 ⊗ π3 ⊗ υ1)Ψ(W2,W

?
3 , f1)2

L(1/2,Πq)
· 1

BΠq

.

In what follows, if L(s, π2 ⊗ π3) 6= 1, then we write π2 = χ2|·|−
1
2 St and

π3 = χ3|·|−
1
2 St with χ2, χ3 unramified. Using the integration formula (5.3),
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we find that Ψ(W2,W
?
3 , f1) equals

ζq(2)

ζq(1)

∫
Q×q

∫
Qq

W2(

(
y 0
0 1

)
w

(
1 x
0 1

)
)W3(

(
y 0
0 1

)
w

(
qc3−c2 x

0 1

)
)

× υ1|·|
1
2 (y)IZq(x)dx

d×y

|y|

=
ζq(2)χ1|·|

1
2 (qc2)

ζq(1)

∫
Q×q

W2(

(
y 0
0 1

)
τc2)W3(

(
y 0
0 1

)
τc3)υ1|·|

1
2 (y)IZq(x)dx

d×y

|y|

=
ζq(2)

ζq(1)
· χ1|·|

1
2 (qc2) · ε(1/2, π2)ε(1/2, π3)

{
1 if L(s, π2 ⊗ π3) = 1,

L(−1/2, χ1χ2χ3) if L(s, π1 ⊗ π3) 6= 1.

If L(s, π2 ⊗ π3) = 1, then one verifies easily that γ(1/2, π2 ⊗ π3 ⊗ υ1) =
ε(1/2, π2 ⊗ π3 ⊗ υ1) and L(s,Πq) = 1, so we obtain the claimed expression
of Iq(φ?q ⊗ φ̃?q) in this case by substituting the above equation into (6.2).

Suppose that L(s, π2 ⊗ π3) 6= 1. Then c1 = c2 = c3 = 1 and ε(1/2, πi) =

−χi|·|−
1
2 (q) for i = 1, 2, 3. Hence, W ?

3 = W3 and

Ψ(W2,W
?
3 , f1)2 = Ψ(W2,W3, f1)2 = |q|2 · ζq(2)2

ζq(1)2
· L(−1/2, χ1χ2χ3)2.

On the other hand, by [Pra90, Proposition 8.6], ε(1/2,Πq) = 1 implies that

χ1χ2χ3(q) = − |q|
3
2 .

By [GJ78, Proposition 1.4], ε(1/2, π2 ⊗ π3 ⊗ υ1) = |q|−1 and

L(1/2, π2 ⊗ π3 ⊗ χ1)

L(1/2, π2 ⊗ π3 ⊗ υ1)
=

L(1/2, χ1χ2χ3)

L(−3/2, χ1χ2χ3)
= 2L(1/2, χ1χ2χ3),

and a simple computation of the Langlands parameter for Πq shows

L(s,Πq) = L(s, χ1χ2χ3)L(s− 1, χ1χ2χ3)2.

We thus obtain

γ(1/2, π2 ⊗ π3 ⊗ υ1) = 2 |q|−1 · L(1/2,Πq)

L(−1/2, χ1χ2χ3)2
.

The desired formula of Iq(φ?q⊗ φ̃?q) = Iq(φq⊗ φ̃q) in this case can be deduced
immediately by combining (6.2) with the above formulae of Ψ(W2,W

?
3 , f1)

and the γ-factor. �

Remark 6.7. In the case where L(s, π2⊗π3) 6= 1, i.e. πi are special unram-
ified, the integral Iq(φ?q ⊗ φ̃?q) was computed in [II10, page 1405-1406], from
which we have Iq(φ?q⊗ φ̃?q) = 2 |q| (1 + |q|). Our computation agrees with the
result therein (note that BΠq = ζq(2)3ζq(1)−3).
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6.4. The ramified case (IIa). In this case, π2, π3 are discrete series and
L(s, π2⊗π3) 6= 1. As we have remarked in the previous subsection, π3 ' π̃2⊗
σ for some unramified character σ of Q×q and π1 must be spherical. Let τQq2

be the quadratic character associated with the unramified quadratic field
extension Qq2 of Qq. We say a discrete series π is of type 1 if π ' π ⊗ τQq2

and is of type 2 if π 6' π ⊗ τQq2
.

The following lemma for minimal supercuspidal representations should be
well-known to experts. We include a proof here for the reader’s convenience.

Lemma 6.8. Let π be a minimal supercuspidal representation with central
character ω.

(1) Let χ be a charatcer of Q×q . Then we have the following conductor
formula

c(π ⊗ χ) =

{
c(π) if c(π) ≥ 2c(χ),

2c(χ) if c(π) < 2c(χ).

Here recall that c(?) denotes the exponent of the conductor of ?.
(2) If π is of type 1, then c(π) is even and L(s, π ⊗ π̃) = ζq(2s). If π is

of type 2, then c(π) is odd and L(s, π ⊗ π̃) = ζq(s).

Proof. Let c = c(π) ≥ 2. To prove the first assertion, we begin with an
immediate consequence of [JL70, Proposition 2.11 (i)]. Let χ0 = χ|Z×q and
ω0 = ω|Z×q . If χ0ω0 6= 1, then there exists a character σ such that

(6.3) c(π ⊗ σ) = c+ c(π ⊗ χ)− 2c(χω)

and if χ0 6= 1, ω−1
0 , then either of the following condition holds:

(i) σ|Z×q 6= 1, χ0 and

c(σ) = c− c(χω), c(σχ−1) = c(π ⊗ χ)− c(χω),

(ii) σ|Z×q = 1, c(χ) = c(π ⊗ χ)− c(χω) and c(χω)− c ≥ −1;
(iii) σ|Z×q = χ0, c(χ) = c(π)− c(χω) and c(χω)− c(π ⊗ χ) ≥ −1.

To see it, we set ρ = χ−1
0 ω−1

0 , ν = ω−1
0 , m = c(χω), p = m − c(π ⊗ χ) and

n = m − c(π) in the equality proved in [JL70, Proposition 2.11 (i)], from
which we see immediately that the equality shows the existence of desired σ
by noting that Cn(ρ−1ω−1) 6= 0 if and only if n = c(π ⊗ ρ). Note that (6.3)
implies that

c(π ⊗ χ) ≥ 2c(χω) for all χ
by the minimality of π. In particular, c(ω) ≤ c/2. Suppose that c(χ) > c/2.
Then c(χω) = c(χ) and σ satisfies either (i) or (ii). In case (ii), we have
c(π ⊗ χ) = 2c(χ). In case (i), c(σ) = c − c(χ) < c/2, and hence we also
have c(π ⊗ χ) = c(χ) + c(σχ−1) = 2c(χ). Now we suppose that c(χ) ≤ c/2.
If χ0 = ω−1

0 , then c(π ⊗ χ) = c(π̃) = c, so we may assume χ0 6= ω−1
0 .

It suffices to show c(π ⊗ χ) ≤ c. Note that c(χω) ≤ c/2. In case (iii),
c(π ⊗ χ) ≤ c(χω) + 1 ≤ c, and in the case (ii), c(π ⊗ χ) = c(χ) + c(χω) ≤ c.
We consider case (i). We have c(σ) = c− c(χω) ≥ c/2. If c(σ) > c/2, then

c(π ⊗ χ) = c(χω) + c(σ−1χ) = c(χω) + c(σ) = c.
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If c(σ) = c/2, then we also have c(π ⊗ χ) ≤ c/2 + c/2 = c. This finishes the
proof of the first assertion.

We proceed to show the second assertion. This is [Hid90, Proposition
6.1]. We give a more elementary proof. The local L-factor of L(s, π ⊗ π̃)
is given in [GJ78, Corollary (1.3)]. To see the parity of the conductor, we
note that π ' π ⊗ τQq2

if and only if ε(s, π ⊗ χ) = ε(s, π ⊗ χτQq2
) for all

character χ : Q×q → C× as π is supercuspidal. Since τQq2
is unramified, this

is equivalent to saying (−1)c(π⊗χ) = 1 for all χ. It follows from part (1) that
π is of type 1 if and only if c(π) is even. �

Proposition 6.9. Let r =
⌈
c(π2)

2

⌉
. We have

Iq(φ
?
q ⊗ φ̃?q) =χ−2

1 |·|(q
r) · ε(1/2, π2 ⊗ π3 ⊗ χ1) · 1

BΠq

· ζq(2)2

ζq(1)2

×

{
(1 + |q|)2 if π2 is of type 1,

1 if π2 is of type 2.

Proof. After an unramified twist, we may assume that π1 = χ1�υ1 with
χ1 = |·|s−

1
2 and υ1 = |·|

1
2
−s for some s ∈ C and π3 = π̃2. Let π = π2 be a

minimal discrete series. We use the realizations as in (6.5). Let f1 be the

normalized new vector in B(|·|s−
1
2 , |·|

1
2
−s) and let f?1 = ρ(

(
q−r 0
0 1

)
)f1. As

in the previous cases, by Corollary 5.2 we obtain
(6.4)

Iq(φ
?
q ⊗ φ̃?q)

=
ζq(1)Jq(W2 ⊗W3 ⊗ f?1 , W̃2 ⊗ W̃3 ⊗ f̃?1 )

ζq(2)2L(1/2,Πq)BΠq

· 〈Wπ1 , W̃π1〉
〈f1, f̃1〉

· ζq(2)3

ζq(1)3

=
ζq(1)γ(1/2, π2 ⊗ π3 ⊗ χ1) ·Ψ(W2,W3, f

?
1 )2

ζq(2)2L(1/2,Πq)
· 〈Wπ1 , W̃π1〉
〈f1, f̃1〉

· 1

BΠq

· ζq(2)3

ζq(1)3
.

Define the function W : ZN\G→ C by

W(g) := W2(g)W3(

(
−1 0
0 1

)
g).

We compute Ψ(W2,W3, f
?
1 ) in the following two subcases.

Subcase (a): πi = χi|·|−
1
2 St are unramified special for i = 2, 3. Then π2

is of type 2 and r = 1. We have

Ψ(W2,W3, f
?
1 ) = vol(K0(q))(J1 + J2),

where

J1 = |q|−s
∫
Q×q

W(

(
y 0
0 1

)
) |y|s−1 d×y,

J2 =
∑

x∈Z/qZ

|q|s
∫
Q×q

W(

(
y 0
0 1

)(
1 x
0 1

)
w) |y|s−1 d×y.
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By a direct calculation, we find that

J1 = |q|−s L(s, χ2χ3),

J2 = |q|s · q · |q|2 · χ−1
2 χ−1

3 |·|
−s(q) · L(s, χ1χ2) = |q|χ1χ2(q−1)L(s, χ2χ3).

Note that ω2ω3 = χ2
2χ

2
3|·|
−2 = 1. Hence

Ψ(W2,W3, f
?
1 ) =

1

1 + q
|q|−s · (1 + χ2χ3|·|s−1(q)) · L(s, χ2χ3)

=
ζq(2)

ζq(1)
|q|1−s L(s, χ2χ3)L(s− 1, χ2χ3)

ζq(2s)

=
ζq(2)

ζq(1)
|q|1−s L(1/2, π2 ⊗ π3 ⊗ χ1)

L(1, χ1υ
−1
1 )

.

Subcase (b): π2 and π3 are supercuspidal. In this case, Ψ(W2,W3, f
?
1 )

equals
ζq(2)

ζq(1)

∫
Q×q

∫
Qq

W(

(
y 0
0 1

)(
1 0
x 1

)
) |y|s−1 f1(

(
1 0
x 1

)
)

(
q−r 0
0 1

)
)dxd×y

=
ζq(2)

ζq(1)
|q|−rs

∑
n∈Z

Jn,

where

Jn =

∫
Q×q

∫
qnZ×q

W(

(
y 0
0 1

)(
1 0
qn 1

)
)) |y|s−1 f3(

(
1 0

qn−r 1

)
)dxd×y

= |qn| (1− |q|)
∑
m∈Z
|qm|s−1 · f1(

(
1 0

qn−r 1

)
)

∫
Z×q

W(

(
qmu 0

0 1

)(
1 0
qn 1

)
)d×u

= |qn| (1− |q|)
∑
m∈Z
|qm|s−1 f1(

(
1 0

qn−r 1

)
)
∑
χ∈Ẑ×q

A(m)
π2,n(χ)A(m)

π3,n(χ−1)χ(−1),

where
A(m)
πi,n(χ) :=

∫
Z×q

Wi(

(
qmu 0

0 1

)(
1 0
qn 1

)
)du.

In the case χ 6= 1, by Lemma 6.5, we have

A(m)
π2,n(χ)A(m)

π3,n(χ−1)χ(−1) = |q|c−n ζq(1)2

if n = c− c(χ) and

m = c− c(π ⊗ χ) =

{
0 if n ≥ r,
2n− c if n < r,

by Lemma 6.8 (2), and A(m)
π2,n(χ)A

(m)
π3,n(χ−1) = 0 otherwise. If χ = 1, then

A(m)
π2,n(1)A(m)

π3,n(1) = |q|2 ζq(1)2

if c− n = 1. Therefore, if n < r, then

Jn =(1− |q|) |q|n |q|(2n−c)(s−1) |q|2(r−n)s · |q|c−n ζq(1)2# {χ | c(χ) = c− n}

=(1− |q|) |q|(2r−c)s+c−n .
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If r ≤ n < c− 1, then

Jn =(1− |q|) |q|n .

If n = c− 1, then

Jc−1 = (1− |q|) |q|c−1 (|q| (q − 1− 1) + |q|2)ζq(1)2 = (1− |q|) |q|c−1 .

If n ≥ c, then J≥c = |q|c. Combining the above equations, we find that
Ψ(W2,W3, f

?
1 ) equals

ζq(2)

ζq(1)
|q|−rs

∑
n∈Z

Jn =
ζq(2)

ζq(1)
|q|−rs

(
J−r−1 +

r∑
n=1

Jn + J+
c

)

=
ζq(2)

ζq(1)
|q|−rs (|q|(2r−c)s |q|c+1−r + |q|r − |q|c + |q|c)

=
ζq(2)

ζq(1)
|q|−rs

{
|q|

c
2 (1 + |q|) if c is even (π2 is of type 1),

|q|
c+1

2 (1 + |q|s) if c is odd (π2 is of type 2).

On the other hand, when π2 and π3 are supercuspidal, it is easy to see that

L(1/2, π2 ⊗ π3 ⊗ χ1)

L(1, χ1υ
−1
1 )

=

{
1 if π2 is of type 1,
1 + |q|s if π2 is of type 2.

We thus conclude that in either subcase (a) or subcase (b),

Ψ(W2,W3, f
?
1 ) =

ζq(2)

ζq(1)
|q|r(1−s) L(1/2, π2 ⊗ π3 ⊗ χ1)

L(1, χ1υ
−1
1 )

{
1 + |q| if π2 is of type 1,
1 if π2 is of type 2.

Substituting the above equation and Lemma 6.4 into (6.4), we find that
Iq(φ

?
q ⊗ φ̃?q) equals

ζq(2)γ(1/2, π2 ⊗ π3 ⊗ χ1) ·Ψ(W2,W3, f
?
1 )2

ζq(1)2L(1/2,Πq)BΠq

· ζq(1)2L(1, χ1υ
−1
1 )2

ζq(2)

=ε(1/2, π2 ⊗ π3 ⊗ χ1)χ−2
1 |·|(q

r) · 1

BΠq

· ζq(2)2

ζq(1)2
·

{
(1 + |q|)2 if π2 is of type 1,

1 if π2 is of type 2

by noting that L(s,Πq) = L(s, π2⊗ π3⊗χ1)L(s, π2⊗ π3⊗ υ1). This finishes
the proof. �

6.5. The ramified case (IIb). Finally, we consider the case where π2 and
π3 are discrete series, π3 is minimal and L(s, π2⊗π3) = 1. It is also assumed
that π1 = χ1 � υ1 is a principal series with c(χ1) = 0 and c(υ1) ≤ 1.

Proposition 6.10. Let c∗ = max {c2, c3}. We have

Iq(φ
?
q⊗φ̃?q) = ω1(−1)χ−2

1 |·|(q
c∗)ε(1/2, π1)2 ·ε(1/2, π2⊗π3⊗χ1)· 1

BΠq

· ζq(2)2

ζq(1)2
.

Proof. In this case, we use the realizations
(6.5)
VΠq = B(χ1, υ1) �W(π2) �W(π3); V

Π̃q
= B(χ−1

1 , υ−1
1 ) �W(π̃2) �W(π̃3).
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Let f1 ∈ B(χ1, υ1)new be the new vector with f1(1) = 1. Define the section
f?1 ∈ B(χ1, υ1)U0(qc

∗
) by

f?1 = ρ(

(
q−c

∗
0

0 1

)
)f1 − υ−1

1 |·|
1
2 (q)ρ(

(
q1−c∗ 0

0 1

)
)f1 if c1 = c(υ1) = 0

and f?1 = ρ(

(
q1−c∗ 0

0 1

)
)f1 if c1 = 1. Then f?1 is the section supported in the

BU0(qc
∗
) with f?1 (1) = χ1|·|

1
2 (qc1−c

∗
)L(1, χ1υ

−1
1 )−1. Let f̃1 = M∗(χ1, υ1)f1⊗

ω−1
1 . Then we have

f̃?1 =ρ(

(
q−c

∗
0

0 1

)
)f̃1 · ω1(p−c

∗
)− υ−1

1 |·|
1
2 (q)ρ(

(
q1−c∗ 0

0 1

)
)f̃1 · ω1(p1−c∗)

=M∗(χ1, υ1)f?1 ⊗ ω−1
1 if c1 = 0.

A direct computation shows that Ψ(W2,W3, f
?
1 ) equals

ζq(2)

ζq(1)

∫
Q×q

∫
Qq

W2(

(
y 0
0 1

)(
1 0
x 1

)
)W3(

(
−y 0
0 1

)(
1 0
x 1

)
)

× χ1|·|
1
2 (y)f?1 (

(
1 0
x 1

)
)dx

d×y

|y|

=
χ1|·|

1
2 (qc1−c

∗
)

L(1, χ1υ
−1
1 )

ζq(2) |q|c
∗

ζq(1)

∫
Qq

W2(

(
y 0
0 1

)
)W3(

(
−y 0
0 1

)
)χ1|·|−

1
2 (y)d×y

=
ζq(2)χ1(qc1−c

∗
) |q|

c1+c∗
2

ζq(1)L(1, χ1υ
−1
1 )

.

The last equality follows from the fact that either L(s, π2) = 1 or L(s, π3) = 1
in case (IIb). By Corollary 5.2, the above equation and Lemma 6.4 (1), we
find that Iq(φ?q ⊗ φ̃?q) equals

Jq(W2 ⊗W3 ⊗ f?1 , W̃2 ⊗ W̃3 ⊗ f̃?1 )

ζq(2)2L(1/2,Πq)BΠq

· 〈ρ(τc1)Wπ1 , W̃π1〉
〈ρ(τc1)f1, f̃1〉

· ζq(2)3

ζq(1)3

=
γ(1/2, π2 ⊗ π3 ⊗ χ1)Ψ(W2,W3, f

?
1 )2

L(1/2,Πq)BΠq

· χ2
1|·|(q−c1)ε(1/2, π1)2ω1(−1)L(1, χ1υ

−1
1 )2

=
χ−2

1 (qc
∗
) |q|c

∗
ε(1/2, π2 ⊗ π3 ⊗ χ1)

BΠq

· ζq(2)2

ζq(1)2
· ε(1/2, π1)2ω1(−1).

The lemma follows. �

6.6. The p-adic interpolation of normalized local zeta integrals I ∗ΠQ,q .
In this subsection, we compute the normalized local zeta integrals I ∗ΠQ,q =

I ∗Πq in (3.29) and show these integrals can be p-adically interpolated by an
Iwasawa function in Q ∈ X+

R. We begin with recalling some facts. If F ∈ IJqK
is a primitive Hida family of tame conductor N and Q ∈ X+

I is a classical
point, as in the introduction we denote by VFQ the associated p-adic Galois
representation, and for each prime `, let WD`(VFQ) be the representation
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of the Weil-Deligne group W ′Q`
attached to VFQ . Let ` 6= p be a prime.

On the automorphic side, denote by RecQ`
the local Langlands reciprocity

map from the set of isomorphism classes of irreducible representations of
GLn(Q`) to the set of isomorphism classes of n-dimensional representations
of Weil-Deligne group W ′Q`

over Qp ([HT01a]). Then
(6.6)

RecQq(πFQ,`⊗|·|
1−kQ

2
` ) = WD`(VFQ); ε`(1/2, πFQ) = |N |

kQ
2
` ε(WD`(VFQ)).

We recall the following standard fact for the p-adic interpolation of local
constants in Hida families.

Lemma 6.11. There exists ε`(F) ∈ I× such that

ε`(F)(Q) = ε(WDq(VFQ))

for every classical point Q ∈ X+
I . Moreover, if G ∈ IJqK is another primitive

Hida family, then there exists ε(F ⊗ G) ∈ (I⊗̂OI)× such that

ε`(F ⊗ G)(Q1, Q2) = ε(WD`(VFQ1
⊗ VGQ2

))

for every classical points (Q1, Q2) ∈ X+
I × X+

I .

Proof. This is a simple consequence of the description of ρF |GQ`
together

with the rigidity of automorphic types of Hida families in §3.2. We can
actually make explicit the construction of ε`(F) as follows. Let Q ∈ X+

I be
any arithmetic point. If πFQ,` is a principal series, then ρF ,`⊗〈εcyc〉1/2I |GQ`

'
αF ,`ξ1ε

1/2
cyc ⊕ α−1

F ,`ξ2ε
1/2
cyc is reducible with ξ1, ξ2 : GQ`

→ Q
× finite order

characters and αF ,` : GQ`
→ I× unramified, and it is not difficult to see that

ε`(F) = ε(0, ξ)ε(0, ξ′) · αF ,`(Frobn1−n2
` ) 〈εcyc〉

1
2
I (Frobn1+n2

` ) · |`|n1+n2
` ,

where n1 = c(ξ1) and n2 = c(ξ2). If πF ,Q is special, then ρF ,`|GQ`
⊗〈εcyc〉1/2I

is a non-split extension of ξ by ξεcyc for a finite order character ξ : GQ`
→

Q
×, and letting n′ = c(ξ), we have

ε(F) = ε(0, ξ)2 〈εcyc〉−1
I εcyc(Frobn

′
` ) ·

{
−〈εcyc〉1/2I if n′ = 0,

1 if n′ > 0.

If πFQ,` is supercuspidal, then ρF ,`|GQ`
= ρ0⊗〈εcyc〉−1/2

I for some irreducible
representation ρ0 : GQ`

→ GL2(Q) of finite image and of conductor `n′′ , and
we have

ε`(F) = ε(WD`(ρ0)) · 〈εcyc〉
1
2
I (Frobn

′′
` ).

The case ρF ⊗ ρG can be treated in the same manner by the formulae of
ε-factors in [GJ78]. We omit the details. �

We recall that the finite set Σexc in (1.5) is the set of primes q ∈ Σ
(IIa)
f t

Σ
(IIa)
g t Σ

(IIa)
h such that either of πf,q, πg,q, πh,q is supercuspidal of type 1.
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Proposition 6.12. With Hypothesis 6.1, for each q | N with q 6∈ Σ−, there
exists a unique element fF ,q ∈ R×, which we call the fudge factor at q such
that

I ∗ΠQ,q = fF ,q(Q) ·

{
(1 + q−1)2 if q ∈ Σexc,

1 otherwise.

for all Q ∈ X+
R.

Proof. We shall express I ∗Πq in terms of epsilon factors of Galois repre-
sentation under the setting in §6.1. As before, let (f, g, h) = (fQ1

, gQ2
,hQ3)

be a triplet of p-stabilized newforms of weights (k1, k2, k3). Let χF : GQ →
R× be the unique character such that χ−2

F = (det ρf ⊗ det ρg ⊗ det ρh)ε−1
cyc.

Then χF is unramified at q. If χF is the specialization of χF at Q, then

RecQq(ω
−1/2
F |·|

wQ+1

2
q ) = χFQ |WQq

.

As before, c2 = cq(πg), c3 = cq(πh) and c∗ = max {c2, c3}. Write |·| for |·|q.
Recall that

I ?
ΠQ,q

= Iq(φ
?
q ⊗ φ̃?q) ·BΠq ·

ζq(1)2

|N |2 ζq(2)2
· ω−1

F,q(df )|dκF |.

Here dκF = dκ1
f d

κ2
g d

κ3
h is a product of the adjustment of levels defined in §3.4.

Let Frobq be the geometric Frobenius element in the Weil group WQq .
Case (Ia) and (Ib): Suppose we are in the situation of either §6.2 or §6.3.

Then we have vq(df ) = 0, vq(dg) = c∗ − c2 and vq(dh) = c∗ − c3. Thus

ω−1
F,q(df )

∣∣dκF ∣∣ = |q|κ2(c∗−c2)+κ3(c∗−c3) (κi = ki − 2).

In Case (Ia) with c3 = 0, by Proposition 6.3 we obtain

I ?
Πq = ω2ω3(q−c2)ε(1/2, π2)2 |q|(κ3−2)c2 .

Hence, we find that fF ,q = det ρg det ρh(Frobc
∗
q ) |q|−2c2

· ε(g)2. Consider
Case (Ia) with c3 > 0 (c∗ = c2). Let α∗q(h) : WQq → I× be the unramified

character sending Frobq to a(q,h) and let αq(h) = a(q, h) := χ3|·|
1−k3

2 (q).
By local Langlands correspondence for GL(2),

ε(WDq(Vf ⊗ Vg)) = ε(
2− k1 − k2

2
, πf ⊗ πg).

This implies that

ε(1/2, π1 ⊗ π2 ⊗ χ3) = ε(WDq(Vf ⊗ Vg)⊗ α∗q(h)χF ).

By Proposition 6.3 and (6.6), we thus obtain

I ?
Πq = ε(WDq(Vf⊗Vg)⊗α∗q(h)χFQ)·αq(h)−2c∗ |q|2c

∗
·detVh(Artq(−1))·ε(Vh)2.

Here Art : Q×q →W ab
Qq

is the Artin map. Therefore, by Lemma 6.11 we find
that

fF ,q = ε(f⊗g)·α∗q(h)χFQ(Frobc
′
q )·α∗q(h)εcyc(Frob−2c∗

q ) det ρh(Artq(−1))·ε(h)2,
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where c′ is the exponent of the conductor of πf,q × πg,q. In case (Ib) with
L(s, π2 ⊗ π3) = 1, we see from Proposition 6.6 that

I ?
Πq =ε(WDp(Vg ⊗ Vh)⊗ α∗q(f)χFQ) · αq(f)2c∗χF (qc

∗
)

× ε(WDq(Vg))
2ε(WDq(Vh))2 · |q|2(c2+c3−2c∗) .

It follows that

fF ,q = ε(g ⊗ h) · α∗q(f)2χF (Frobc
∗
q ) · α∗q(f)χF (Frobc

′′
q ) |q|2(c2+c3−2c∗) ,

where c′′ is the exponent of the conductor of πg,q×πh,q. If L(s, πg,q⊗πh,q) 6= 1,
then I ∗Πq = 2

∣∣q−1
∣∣.

We proceed to treat Case(IIa) and (IIb). So πf,q is principal series while
πg,q and πh,q are discrete series.

Case (IIa): In the setting of §6.4, we have vq(df ) = r = d c∗2 e and vq(dg) =
vq(dh) = 0; then

ω−1
F,q(df )

∣∣dκF ∣∣q = ωF,q(q
−r) |q|κ1r .

By Proposition 6.9 and (6.6), we find that

I ?
Πq = ε(WDq(Vg⊗Vh)⊗α∗f,qχF )·α∗f,q(Frob−2r

q )

{
(1 + |q|)2 if π2 is of type 1,

1 if π2 is of type 2.

Case (IIb): In the setting of §6.5, we have vq(df ) = c∗ − c1 and vq(dg) =
vq(dh) = 0. Then

ω−1
F,q(df )

∣∣dκF ∣∣q = ωF,q(q
c1−c∗) |q|κ1(c∗−c1) .

If c1 > 0, we set αq(f) := a(q,f). If c1 = 0, then set αq(f) := a(q,f) −
βq(f), where β(q,f) is a root of the Hecke polynomial of f at q fixed in
Definition 3.3. Define α∗f ,q : WQq → I×1 to be the unramified character

with α∗f ,q(Frobq) = αq(f). By definition, RecQq(χ1ω
1/2
F |·|

1−kQ1
2 ) = α∗f,q the

specialization of α∗f ,q at Q1. From Proposition 6.10, we obtain the following
expression of I ?

Πq
:

I ?
Πq = ε(WDq(Vg⊗Vh)⊗α∗f,qχF )·α∗f,q(Frob−2c∗

q )·ε(WDq(Vf ))2 |q|2c1 ·detVf (Artq(−1)).

In either case, it is easy to see by Lemma 6.11 that

fF ,q = εq(f⊗g)·α∗f ,qχF (Frobc
′
q )·α∗f ,q(Frob−2c∗

q )·εq(f)2 det ρf (Artq(−1)) |q|2c1 ,

where c′ is the exponent of the conductor of πf,q × πg,q. This completes the
proof in all cases. �

7. The interpolation formulae

7.1. Proof of the main results. We complete the proofs of the main
results in this section. We retain the notation in the introduction. For
Q = (Q1, Q2, Q3), recall that ω1/2

FQ
= ωa−

wQ−3

2 ε
1/2
Q1
ε
1/2
Q2
ε
1/2
Q3

and that

ΠQ = πfQ1
× πgQ2

× πhQ3
⊗ ω−1/2

FQ
.
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In terms of L-functions attached to Galois representations in the introduc-
tion, we have

L(s+
1

2
,ΠQ) = Γ

V†Q
(s) · L(V†Q, s),

where Γ
V†Q

(s) = L(s+ 1
2 ,ΠQ,∞) is the Γ-factor of V†Q in (1.4). The set Σ−

in Definition 3.9 is given by

Σ− =
{
` | N | ε(WD`(V

†
Q)) = −1 for some Q ∈ X+

R

}
.

Theorem 7.1. Suppose that p is an odd prime and that (ev) and (sf) hold.
After we enlarge the coefficient ring O to some finite unramified extension
over O, the following statements hold.

(1) If Σ− = ∅ and f satisfies the Hypothesis (CR), then there exists an
element LfF ∈ R such that for every Q = (Q1, Q2, Q3) ∈ Xf

R in the
unbalanced range dominated by f , we have

(LfF (Q))2 =Γ
V†Q

(0) ·
L(V†Q, 0)

(
√
−1)2kQ1 Ω2

fQ1

· Ep(Fil+f VQ) ·
∏

`∈Σexc

(1 + `−1)2,

where ΩfQ1
is the canonical period attached to the p-stabilized form

fQ1
as in Definition 3.12.

(2) If p > 3, #Σ− is odd, f , g and h all satisfy Hypothesis (CR,Σ−),
and N− and N/N− are relatively prime, then there exists a unique
element Lbal

F ∈ R such that for any arithmetic point Q ∈ Xbal in the
balanced range, we have

(
Lbal
F (Q)

)2
=Γ

V†Q
(0) ·

L(V†Q, 0)

(
√
−1)kQ1

+kQ2
+kQ3

−1ΩfDQ1

ΩgDQ2

ΩhDQ3

× Ep(Fil+bal VQ) ·
∏

`∈Σexc

(1 + `−1)2,

where ΩfDQ1

,ΩgDQ1

and ΩhDQ3

are the Gross periods in Definition 4.12

Proof. By the observation in Remark 6.2, there exists Drichlete charac-
ters χ = (χ1, χ2, χ3) modulo M with M2 | N such that

• χ1χ2χ3 = 1;
• the triple F ′ of primitive Hida families attached to the Dirichlet
twists (f |[χ1], g|[χ2],h|[χ3]) given by

F ′ = (f ⊗ χ1, g ⊗ χ2,h⊗ χ3)

satisfies Hypothesis 6.1 at all classical points.

Enlarging O if necessary, we may choose a square root
√

fF ′ ∈ R× of the
fudge factor fF ′ :=

∏
q|N/N− fF ′,q defined in Proposition 6.12. On the other

hand, by Proposition 7.5 and Proposition 7.7 in the next subsection, there
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exist u1 ∈ I×1 and u2 ∈ R× such that for all arithmetic points Q ∈ X+
R, we

have the equalities

Ω(f⊗χ1)Q1
=u1(Q1) · ΩfQ1

;

ΩfDQ1
⊗χ1

ΩgDQ2
⊗χ2

ΩhDQ3
⊗χ3

=u2
2(Q) · ΩfDQ1

ΩgDQ2

ΩhDQ3

.

Now we define

LfF := L f⊗χ1

F ′
·
√
ψ1,(p)(−1)(−1) ·

√
fF ′
−1 · u1;

Lbal
F := ΘF ′D? · 2

−#Σ−+4
2

√
N
−1√

fF ′
−1 · u2.

Then we can verify directly that LfF (resp. Lbal
F ) enjoys the desired inter-

polation formulae by Corollary 3.13 (resp. Corollary 4.13) combined with
Proposition 6.12, the p-adic computation Proposition 5.4 (resp. Proposi-
tion 5.6) and Remark 5.7. �

Remark 7.2. The reason for the appearance of the extra fudge factor∏
`∈Σexc

(1 + `−1)2 is not clear to the author, but a similar factor H0 ap-
peared in p-adic L-functions for adjoint representations [Hid88a, Corollary
7.12].

7.2. The comparison between the canonical periods of Hida families
with twists. Let f ∈ eS(N,ψ, I) be a primitive Hida family of the tame
conductor N and of the brach character ψ. We assume that f satisfies (CR).
Let q 6= p be a prime. We further suppose that f isminimal at q, i.e. for some
arithmetic point Q ∈ X+

I , the unitary cuspidal automorphic representation
π := πfQ of GL2(A) associated with the specialization fQ is minimal at
q. Note that this definition does not depend on the choice of arithmetic
points by the rigidity of automorphic types for Hida families. Let χ be a
Dirichlet character modulo a power of q and let f ] be the primitive Hida
family corresponding to the twist f |[χ] and let N ] be the tame conductor of
f ]. The aim of this subsection is to use the method of level-raising to show
the two periods ΩfQ and Ω

f]Q
defined in Definition 3.12 are equal up to a

unit in I. We will also prove the same result for the Gross periods of the
primitive Jacquet-Langlands lifts fD and the twist f ]D.

Remark 7.3. We recall some generalities on congruence ideals following the
discussion in [Hid88a, page 363-366]. Let R be a domain. Let T be a finite
reduced R-algebra with a R-algebra homomorphism λ : T → R. For any
T -module M , we denote

M [λ] := {x ∈M | rx = 0 for all r ∈ Kerλ} .

Then
C(λ) := λ(T [λ]) = λ(AnnT (Kerλ)).

Let H be a free T -module of rank d. Suppose that T is Gorenstein, i.e.
T ' HomR(T,R) as T -modules and that we have a perfect pairing 〈 , 〉 :
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H × H → R such that 〈tx, y〉 = 〈x, ty〉 for t ∈ T . Then T [λ] is free R-
module of rank one and hence H[λ] is free R-module of rank d with a basis
{e1, . . . , ed}. We have

C(λ)d = (det〈ei, ej〉).

Let ψ(q) be the q-primary component of ψ. If χ = 1 or ψ−1
(q) , then N

] = N

and the Atkin-Lehner involution ηq at q ([Miy06, page 168]) induces the
isomorphism eS(N, I)m

f]
' eS(N, I)mf

, so we find that C(f ]) = C(f).

Lemma 7.4. Suppose that χ 6= 1, ψ−1
(q) . Then C(f ]) = C(f) · Eq(f), where

Eq(f) =


(q − 1)(a(q,f)2 − ψI(q)(1 + q)2) if q - N,
1− q−1 if πq is a ramified principal series,
1− q−2 if πq is unramified special,
1 if πq is supercuspidal

(recall that ψI is the I-adic character ψ 〈εcyc〉−2 〈εcyc〉I).

Proof. We shall follow the notation in §3.3. Let T] := T(N ], I) and let
m] be the maximal ideal ofT] containing the operator Uq, {Tq − a(q,f)}q-Npq
and {Uq − a(q,f)}q|Np, q 6=q. Since χ 6= 1, ψ−1

(q) , we have a(q,f ]) = 0, and the
twisting morphism |[χ−1] induces an isomorphism

|[χ−1] : eS(N ], I)m
f]
' eS(N ], I)m] [Uq = 0]

asT]-modules. Let r0 = 2 if q - N , r0 = 1 if q | N and πq is not supercuspidal
and r0 = 0 if πq is supercuspidal. For brevity, we put

S(Nqr) := eS(Nqr, I)m] ⊗I Frac I for r ∈ Z≥0.

According to the possible list of tame conductors of newforms in eS(Nqr, I)m]
[DT94, page 436], all newforms in eS(Nqr, I)m] have tame conductor dividing
Nqr0 . It follows hat Uq = 0 on S(Nqr0) and that

S(Nqr+1) = S(Nqr)⊕ VqS(Nqr) if r ≥ r0.

Here recall that Vq(
∑

anq
n) = q

∑
anq

qn. Combined with the relation
UqVq = q, the above facts implies that

eS(N ], I)m
f]
⊗I Frac I ' S(N ])[Uq = 0] = S(Nqr0)[Uq = 0] = S(Nqr0).

and hence

(7.1) T(N ], I)m
f]
' T]

m]
= T(Nqr0 , I)m] .

We are going to apply the discussion in Remark 7.3 to compare the con-
gruence ideals. For each positive integer M not divisible by p, put

Hp(M) = lim←−
n→∞

H1
ét(X1(Mpn)/Q,Zp)⊗Zp O.

Let {, }M : Hp(M)×Hp(M)→ Λ denote the Hecke-equivariant perfect pair-
ing defined in [Oht95, Definition (4.1.17)]. Let Hp(M)m := (Hp(M)⊗Λ I)m.
By [Wil95, Corollary 1 and 2, page 482], Hp(M)m is a free T(M, I)m-module
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of rank two and T(M, I)m is Gorenstein under the Hypothesis (CR). Let
H = Hp(N)m and H] = Hp(Nq

r0)m] . Suppose that we have an injective
I-linear map iq : H→ H] such that

(i) iq(H[λf ]) ⊂ H][λf] ];
(ii) the I-submodule iq(H) is a direct summand of H].

Let i∗q be the adjoint map of i. Recall that i∗ : H] → H is the unique map
such that {iq(x), y}Nqr0 =

{
x, i∗q(y)

}
N
. We have

(7.2) C(f ])2 = C(f)2 det(i∗qiq|H[λf ]).

We proceed to construct the map iq and compute the composition iqi∗q . Let
λ = λf . For an integer d relatively prime to Np, Sd denotes the Hecke

operator [ΓN

(
d 0
0 d

)
ΓN ]. Then we have Sd = σd 〈d〉I 〈d〉

−2 ∈ T, where σd

is the diamond operator.
Case q - N (r0 = 2): Define iq : H→ H] by

iq(x) = qx− VqTqx− SqV 2
q x.

Then one verifies directly that Uqiq = 0, which implies (i). The property (ii)
is a consequence of Ihara’s lemma [Rib84, Theorem 4.1]. A direct computa-
tion shows that

i∗q = q[ΓNΓNq]− S−1
q Tq[ΓN

(
q 0
0 1

)
ΓNq] + S−1

q [ΓN

(
q2 0
0 1

)
ΓNq],

and hence i∗qiq|H[λ] is a scalar given by

i∗qiq|H[λ] = λ(Sq)
−1q(1− q)(λ(Tq)

2 − (1 + q)2λ(Sq)).

Note that λ(Sq) = ψI(q).
Case q | N (r0 = 1): Define iq : H→ H] by

iq(x) = x− q−1VqUqx.

A direct computation shows that the adjoint map i∗q is given by

i∗q = [ΓN

(
q 0
0 1

)
ΓNq]− q−1Uq[ΓNΓNq]

and that

i∗qiq = −q−1

(
[ΓN

(
q 0
0 1

)
ΓNq]Vq − q−1Uq[ΓNΓNq]Vq

)
Uq.

Let s = vq(N) and τqs :=

(
0 1
−qs 0

)
∈ GL2(Qq). It is easy to see that

τqs · [ΓNΓNq]Vq · τ−1
qs = S−1

q ·Uq.

The restriction of [ΓNΓNq]Vq to H[λ] is given by

λ(Sq)
−1·
(
τ−1
qs Uqτqs |H[λf ]

)
= λ(Uq)

−1·

{
q if πf,q is a ramified principal series,
1 if πf,q is unramified special.
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We thus find that

i∗qiq|H[λ] = −q−1λ(Uq)(q−q−1λ(Uq)λ(S−1
q )(τ−1

q Uqτq|H[λ])) = −λ(Uq)Eq(1,Ad ρf ).

The assertion follows from (7.2) and the above computation of i∗qiq|H[λ]. �

Proposition 7.5. There exists a unit u ∈ I× such that for any arithmetic
point Q, we have

ΩfQ = u(Q) · Ω
f]Q
.

Proof. Let f◦Q and f ]◦Q be the newforms corresponding to fQ and f ]Q of
conductors Npn and N ]pn respectively. If χ = ψ−1

(q) , then N = N ] and f ]◦Q is
the image of f◦Q acted by the Atkin-Lehner involution at q, from which we
can deduce the assertion easily if χ = 1 or ψ−1

(q) . Suppose that χ 6= 1, ψ−1
(q) .

From (2.18), we see that

‖f ]◦Q‖2Γ0(N]pn)

‖f◦Q‖2Γ0(Npn)

=
[SL2(Z) : Γ0(N ])]

[SL2(Z) : Γ0(N)]
·
ε(1/2, πq)Bπq⊗χq
ε(1/2, πq ⊗ χq)Bπq

.

A direct computation shows that if q - N , then the right hand side equals

N ]

N
· L(1, πq,Ad)−1 = q−3 · (ψ−1

I (q)Eq(f))(Q),

and if q | N , then it is equal to

N ]

N


1− q−1 if q | N and πq is a ramified principal series,
1− q−2 if πq is special,
1 if πq is supercuspidal.

In any case, it is clear that there exists a unit u′ ∈ I× such that

‖f ]◦Q‖2Γ0(N]pn)

‖f◦Q‖2Γ0(Npn)

= u′(Q) · Eq(f)(Q)

for all arithmetic points Q. Therefore, the assertion follows from Defini-
tion 3.12, Lemma 7.4 and the fact that Ep(fQ,Ad) = Ep(f ]Q,Ad). �

The definite case. Now we consider the Gross periods of definite quaternionic
Hida families. Assume that f satisfies Hypothesis (CR,Σ−). Let fD ∈
eSD(N,ψ, I) be the primitive Jacquet-Langlands lift of f . Let qc be the
conductor of χ. Let Pχ be the element in the group ring O[GL2(Qq)] defined

as follows: Pχ = 1 if χ = 1, Pχ =

(
0 1
−N 0

)
if χ = ψ−1

(q) , and

Pχ := g(χ−1)−1
∑

b∈(Zq/qcZq)×

χ(b) ·
(

1 bq−c

0 1

)
if χ 6= 1, ψ−1

(q) , where g(χ−1) is the Gauss sum of χ−1. Put

fD|[χ](x) := Pχ(fD)(x)χ(ν(x)) ∈ eSD(Nq2c, ψχ2, I)

for x ∈ D̂× and ν(x) the reduced norm of x.
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Lemma 7.6. The quaternionic form fD|[χ] is a primitive Jacquet-Langlands
lift of f ]. In other words, fD|[χ] ∈ eSD(N ], ψχ2, I)[λf]D ] is a generator over
I.

Proof. First we claim that fD|[χ] ∈ eSD(N ], ψχ2, I)[λf]D ]. This is clear
if χ = 1 or ψ−1

(q) . If χ 6= 1, ψ−1
(q) , then λf](Uq) = 0, and it is not difficult to

show that Uq(f
D|[χ]) = 0 by a direct computation. This shows the claim.

To see that fD|[χ] is primitive, it suffices to show that fD|[χ] is non-
vanishing modulo the maximal ideal mI of I. Let f̄ := fD⊗χ◦ν (mod mI) ∈
SD2 (N ]pt, ψχ2, F̄p) for some positive integer t. Define two operators on
SD2 (N ]pt, ψχ2, F̄p) by

L1 =
∑

a∈Zq/qcZq

ψQq
(aq−c)ρ(

(
1 aq−c

0 1

)
; L2 =

∑
b∈(Zq/qcZq)×

χ−1(b)ρ(

(
b 0
0 1

)
).

Then

L2L1(fD|[χ] (mod mI)) =
∑
b

∑
a

ψQq
(abq−c)ρ(

(
1 aq−c

0 1

)
)f̄

=qcf ′ − qc−1
∑

b∈Zq/qZq

ρ(

(
1 bq−1

0 1

)
)f̄

=qc−1(q −
(
q−1 0
0 1

)
Uq)f̄ .

Suppose that fD|[χ] (mod mI) = 0. Then we deduce from the above equation
that either

(q −
(
q−1 0
0 1

)
a(f, q)χ(q))f̄ =0 if q | N,

or

(q − a(f, q)

(
q−1 0
0 1

)
− ψ(q)

(
q−2 0
0 1

)
)f̄ =0 if q - N.

In any case, this implies that f̄ = 0 by Ihara’s lemma for definite quater-
nion algebras [CH18, Lemma 5.5] and hence fD (mod mI) = 0, which is a
contradiction. �

Proposition 7.7. Let f ]D be a primitive Jacquet-Langlands lift of f ]. There
exists u ∈ I× such that for every arithmetic point Q ∈ X+

I , we have

ΩfDQ
= u2(Q) · Ω

f]DQ
.

Proof. Let f ′ := fD|[χ]. Then f ]D = v · f ′ for some v ∈ I× by
Lemma 7.6. Let f = U−np fDQ be the LkQ−2(Cp)-valued p-adic modular form
obtained by Theorem 4.2 (2). Taking a nonzero vector u ∈ LkQ−2(Cp), we let
ϕ = Φ(f)u = 〈Φ(f),u〉kQ−2 be the matrix coefficient of the vector-valued au-
tomorphic forms associated with f and u as in (4.4) and let ϕχ := Pχϕ⊗χ◦ν.
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Choosing v with 〈u,v〉kQ−2 = 1, define ϕ′ = Φ(f)v and ϕ′χ likewise. By
Lemma 4.4 and (4.5), we have

ηf ′(Q)

ηfD(Q)
=
〈U−np f ′Q,f

′
Q〉N]pn

〈U−np fDQ ,f
D
Q〉Npn

= S1 · S2

where

S1 :=

(
N ]

N

) kQ−2

2

·
vol(R̂×N )

vol(R̂×
N])

, S2 :=
χp(p

−n)〈ρ(τD
N]pn

)ϕχ, ϕ
′
χ〉

〈ρ(τDNpn)ϕ,ϕ′〉
.

It is easy to see that

S1 =
[SL2(Z) : Γ0(N ])](N ])

kQ−2

2

[SL2(Z) : Γ0(N)]N
kQ−2

2

.

On the other hand,

S2 =
χ(N̂ ])〈ρ(τD

N]pn
)Pχ(ϕ),Pχ(ϕ′)〉

〈ρ(τDNpn)ϕ,ϕ′〉

=χ(N̂ ]) ·
〈ρ(τD

N]pn,q
)Pχ(Wπq),Pχ(Wπq)⊗ ω−1

q 〉
〈ρ(τDNpn,q)Wπq ,Wπq ⊗ ω−1

q 〉
.

If χ = 1 or ψ−1
(q) , S1 = S2 = 1. Suppose that χ 6= 1, ψ−1

(q) . Then PχWπq(

(
a 0
0 1

)
) =

IZ×q (a)χ−1
q (a), so we have PχWπq ⊗ χq = Wπq⊗χq , and hence

S2 = χ(N̂) ·
〈ρ(τD

N]pn,q
)Wπq⊗χ,Wπq⊗χ ⊗ χ−2

q ω−1
q 〉

〈ρ(τN,q)Wπq ,Wπq ⊗ ω−1
q 〉

= χ(N̂) ·
Bπq⊗χq
Bπq

.

From the above computations of S1 and S2, we see that

ηf ′(Q)

ηfD(Q)
=
χ(N̂)ε(1/2, πq ⊗ χq)(N ])

kQ−2

2

ε(1/2, πq)N
kQ−2

2

· [SL2(Z) : Γ0(N ])]

[SL2(Z) : Γ0(N)]

ε(1/2, πq)Bπq⊗χq
ε(1/2, πq ⊗ χq)Bπq

=
εΣ−(f ]Q)

εΣ−(fQ)
·
‖f ]◦Q‖2Γ0(N])

‖f◦Q‖2Γ0(N)

(by (2.18)),

and the lemma follows. �

Remark 7.8. If f satisfies (CR,Σ−), then ηfD indeed generates the congru-
ence ideal associated with the homomorphism λf : TD(N,ψ, I) → I. This
strengthens [CH18, Prop. 6.1] by replacing (CR+) there with a weaker hy-
pothesis (CR, Σ−) here. Note that TD(N,ψ, I) is isomorphic to the N−-new
quotient of T(N,ψ, I). In particular, this implies that the congruence ideal
(ηfD) contains (ηf ) and (ηfD) = (ηf ) if the residual Galois representation
ρf (mod mI) is ramified at all ` ∈ Σ−. This implies Hida’s canonical period
of f is an integral multiple of the Gross period of f .
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8. Applications to anticyclotomic p-adic L-functions

8.1. Primitive Hida families of CM forms. In this section, we show that
when g and h are primitive Hida families of CM forms, then the unbalanced
p-adic triple product L-function specializes to a product of theta elements á
la Bertolini and Darmon in [BD96]. As a consequence, the anticyclotomic
exceptional zero conjecture can be deduced from the theorem of Greenberg
and Stevens. Let K be an imaginary quadratic field over Q of the absolute
discriminant DK . Suppose that pOK = pp, where p is the prime induced
by the fixed embedding Q ↪→ C ' Qp. Let K∞ be the Z2

p-extension of
K and let Γ∞ = Gal(K∞/K) be the Galois group. Let Kp∞ be the p-
ramified Zp-extension in K∞ and Γp∞ = Gal(Kp∞/K) be the Galois group.
Let c be an ideal of OK coprime to p. For each ideal a prime to pc, define
σa ∈ Gal(K(cp∞)/K) be the image of a under the geometrically normalized
Artin map sending q to the geometric Frobenius Frobq. For each place w of
K, we let Artw : K×w → GabK denote the restriction of the Artin map to K×w .
Then Artp induces an embedding Λ→ OJΓp∞K given by [z] 7→ Artp(z)|Kp∞ .
Let Iw

p := Artp(1 + pZp)|Kp∞ ⊂ Γp∞ . Let pb := [Γp∞ : Iw
p ]. Note that b = 0

if the class number hK of K is prime to p. Fixing a topological generator
γp of Γp∞ such that γp

b

p = Artp(1 + p)|Kp∞ , let l : Gal(K∞/K)→ Zp be the
logarithm defined by the equation

σ|Kp∞ = γ
l(σ)
p .

For each variable S, let ΨS : Γ∞ → OJSK× be the universal character defined
by

ΨS(σ) = (1 + S)l(σ), σ|Kp∞ = γ
l(σ)
p .

Enlarge the coefficient ring O so that O contains an algebraic integer v ∈ Z
×

such that vpb = 1 + p. For any finite order character ψ : GK → O× of tame
conductor c, we define

θψ(S)(q) =
∑

(a,pc)=1

ψ(σa) ·Ψ−1
v−1(1+S)−1

(σa)q
‖a‖ ∈ OJSKJqK.

Let V : GQ → GabK be the transfer map and put ψ+ = ψ ◦ V . Then
θψ(S) is a primitive Hida families in eS(C,ψ+τK/Qω

−1,OJSK), where C =
#(OK/c)DK and τK/Q is the quadratic character associated with K/Q.

8.2. Anticyclotomic p-adic L-functions for modular forms. Let N be
a positive integer relatively prime to p. Let f ∈ S2r(Np,1) be a p-stabilized
newform of weight 2r ≥ 2, tame conductor N and trivial nebentypus and
let χ be a ring class character of K with the conductor cOK . We recall
the anticyclotomic p-adic L-functions associated with (f, χ) in the definite
setting. Decompose N = N+N−, where N+ (resp. N− ) is a product of
primes split (resp. non-split) in K. Suppose that

• (Np, cDK) = 1,
• N− is a square-free product of an odd number of primes,
• the residual Galois representation ρ̄f,p satisfies (CR, suppN−).
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Let f◦ be the normalized newform of conductor N◦ = Npnp corresponding
to f . Enlarging O so that it contains all Fourier coefficients of f , let T :=
T2r(N

◦,1) be the Hecke algebra of level Γ0(N◦) and let λf◦ : T → O be
the homomorphism induced by f◦. Denote by TN− be the N−-new quotient
of the T. Then λf◦ factors through TN− , and we denote by λf◦,N− the
resulting morphism. Let ηf◦ ∈ O (resp. ηf◦,N−) be the congruence number
corresponding to λf◦ (resp. λf◦,N−). It is clear that ηf◦,N− is a divisor of
the congruence number ηf◦ of f◦.

Let K−∞ be the anticyclotomic Zp-extension of K. Let c be the complex
conjugation. We define the logarithm l̃ : Γ∞ → Zp by l̃(σ) := l(σ1−c|Kp∞ ).
Then the map l̃ factors through the Galois group Γ−∞ := Gal(K−∞/K) and
induces an isomorphism l̃ : Γ−∞ ' Zp asKp∞ and the cyclotomic Zp-extension
K+
∞ are linearly disjoint. Let γ− be the generator of Γ− such that l̃(γ−) = 1.

If ζ ∈ µp∞ is a p-power root of unity, denote by εζ : Γ−∞ → µp∞ the character
defined by εζ(γ

−) = ζ. Fixing a factorization N+OK = NN, by [BD96],
[CH18, Thm. A] and [Hun17, Thm. A], there exists a unique Iwasawa
function Θf/K,χ(W ) ∈ OJW K such that for each primitive pn-th root of
unity ζ,
(8.1)(

Θf/K,χ(ζ − 1)
)2

=(2π)−2rΓ(r)2 ·
L(f◦/K ⊗ χεζ , r)

Ωf◦,N−
· αp(f)−2np(2r−1)n · Ep(f, ζ)2−np

× u2
K

√
DKcD

k−2
K χεζ(σN) · εp(f◦),

where

– αp(f) ∈ O× is the p-th Fourier coefficient of f ,
– L(f◦/K⊗χεζ , s) is the Rankin-Selberg L-function of f◦ and the CM
form θψεζ attached to χεζ ,

–

Ep(f, ζ) :=

{
(1− αp(f)−1pr−1χ(p))(1− αp(f)pr−1χ(p)) if ζ = 1,

1 if ζ 6= 1.

– Ωf◦,N− is the Gross period of f◦ defined by

Ωf◦,N− := 22r · ‖f◦‖2Γ0(Nf◦ ) · η
−1
f◦,N− .

– uK = #(O×K)/2 and εp(f◦) ∈ {±1} is the local root number of f◦ at
p.

When χ = 1 is the trivial character, we write Lf for Lf,1.

8.3. Factorization of p-adic triple product L-functions. Let f ∈ eS(N,ωk−2, I)
be the primitve Hida family passing through f at some arithmetic point Q1

of weight kQ1 = 2r and trivial finite part εQ1 = 1. Let ` - Np be a rational
prime split in K and let χ be a ring class character of conductor `mOK for
some m > 0. Suppose that χ = ξ1−c for some ray class character ξ modulo
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`mOK . Consider the primitive Hida families of CM forms

g = θξ(S2) ∈ eS(C, ξ+τK/Qω
−1,OJS2K);

h = θξ−1(S3) ∈ eS(C, ξ−1
+ τK/Qω

−1,OJS3K)

with C = DK`
2m. Let F = (f , g,h) be the triple of primitive Hida families

and let LfF ∈ R = IJS1, S2K be the associated unbalanced p-adic L-function
in Theorem 7.1 with a = −r in (ev).

Proposition 8.1. Set

W2 = v−1(1 + S2)1/2(1 + S3)1/2 − 1; W3 = (1 + S2)1/2(1 + S3)−1/2 − 1.

Then we have

LfF (Q1, S1, S2) =±w−1 ·Θf/K(W2) ·Θf/K,ξ1−c(W3) ·
ηf◦

ηf◦,N−
∈ OJS1, S2K,

where w = w(W2,W3) is a unit in OJS1, S2K given by

w := u2
KD

2r−3/2
K `m/2ξΨW1ΨW2(σ1−c

N ).

Proof. For i = 2, 3, taking ζi primitive pni-th roots of unity with ni > 0,
we let Q2 = ζ2ζ3v − 1 and Q3 = ζ2ζ

−1
3 v − 1, so gQ2

and hQ3 are CM forms
of weight one. Let Ti = v−1(1 + Si)− 1, i = 2, 3 and let

X1 := Ψ
−1/2
T2

Ψ
−1/2
T3

◦ V : GQ → OJS1, S2K×

be a square root of detVg detVh. There is a decomposition of Galois repre-
sentations

IndQ
K ξΨ

−1
T2
⊗ IndQ

K ξ
−1Ψ−1

T3
⊗X−1

1 = IndQ
K Ψc−1

W2
⊕ IndQ

K χΨc−1
W3

.

Following the notation in the introduction with Q = (Q1, Q2, Q3), we thus
have

V†Q =Vf (r)⊗ IndQ
K ε2 ⊕ Vf (r)⊗ IndQ

K χε3;

Fil+f V†Q =αf,pε
r
cyc ⊗ (ε2,p ⊕ ε−1

2,p ⊕ χpε3,p ⊕ χ−1
p ε−1

3,p),

where εi = εζi : Γ−∞ → µp∞ is the finite order character with εi(γ
−) = ζi,

i = 2, 3. Now we explicate the items that appear in the formula of LfF (Q)
in Theorem 7.1:

• The L-values

Γ
V†Q

(0) · L(V†Q, s) = 4(2π)−4rΓ(r)4 · L(f◦/K ⊗ ε2, r) · L(f◦/K ⊗ χε3, r),

• By definition, ε2 and ε3 are of conductors pn2OK and pn3OK , so the
modified Euler factor at p is given by

Ep(Fil+f V†Q) =
1

ε(r, αf,pχpε3,p)ε(r, αf,pχ
−1
p ε−1

3,p)ε(r, αf,pε2,p)ε(r, αf,pε
−1
2,p)

=αp(f)−2(n2+n3) · |p|(1−2r)(n2+n3) · ε2,p(−1)ε3,p(−1)

=αp(f)−2(n2+n3) · |p|(1−2r)(n2+n3) .

• Ωf = (−2
√
−1)2r+1‖f◦‖2Γ0(N◦) · η

−1
f◦ and Σexc = ∅.
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Comparing with the interpolation formula of Θf in (8.1), we find that(
LfF (Q1,vζ2ζ3 − 1,vζ2ζ

−1
3 − 1)

)2
= w(ζ2−1, ζ3−1)−2·Θf/K(ζ2−1)2Θf/K,χ(ζ3−1)2

for all non-trivial p-power roots of unity ζ2, ζ3, and hence the proposition
follows. �

Remark 8.2 (An Euler system construction for Θf/K). This square root
Θf/K of the anticyclotomic p-adic L-function in the definite setting is con-
structed by using Gross points in definite quaternion algebras, and a priori
there is no obvious Euler system construction. Below we explain how Θf/K

can be actually recovered by the Euler system of generalized Kato classes à
la Darmon and Rotger. Suppose that the weight kQ1 = 2. In [DR17], Dar-
mon and Rotger introduce a one-variable generalized Kato classes κ(f, gh) ∈
H1(Q, Vf⊗Vg⊗OJSKVh) and prove that the image of κ(f, gh) under the Cole-
man map over the anticyclotomic Zp-extension, which we denote by Col, is
given by the one-variable unbalanced p-adic L-function LfF (Q1,vS−1,vS−
1) ([DR17, Theorem 5.3]). On the other hand, in virtue of Proposition 8.1
combined with a result of Vatsal on the non-vanishing of central L-values
with anticyclotoic twist, we conclude that when χ is sufficiently ramified,

Col(κ(f, gh)) = LfF (Q1,vS − 1,vS − 1) = Θf/K(S) · (non-zero constant).

In a work joint with F. Castella [CH22], we will make use of the explicit
version of the above equation to prove first cases of a conjecture of Darmon-
Rotger on the non-vanishing of generalized Kato classes.

8.4. An improved p-adic L-function. Let

Z = (1 + T1)−1(1 + T2)(1 + T3) ∈ R0.

In this subsection, we introduce a two-variable improved p-adic L-function
L ∗

F ∈ R/(Z) attached to F = (f , g,h) a triple of primitive Hida families as
in §3.5. To lighten the notation, we let αp(?) := a(p, ?) be theUp-eigenvalues
of Hida families ? ∈ {f , g,h}. Then we have the following

Proposition 8.3. Suppose that ψ−1
1 ω1+a is unramified at p. Then there

exists an improved p-adic L-function L∗F ∈ R/(Z) such that

LfF (mod Z) = (1− ψ1ω
−a−1(p)αp(g)αp(h)

αp(f)
) · L∗F .

Moreover, for Q = (Q1, Q2, Q3) ∈ Xf
R with Z(Q) = 0, we have

(L∗F (Q))2 =
L(1/2,ΠQ)

(
√
−1)2kQ1 Ω2

fQ1

· E∗(ΠQ,p),

where

E∗(ΠQ,p) :=
1

ε(WDp(Fil+f V†Q))
·

Lp(Fil+f V†Q, s)Lp(U
′
Q, s)

2

Lp(V
†
Q/Fil+f V†Q, s)Lp(V

†
Q, s)

|s=0,

where U ′Q = (Fil0 VfQ1
)∨ ⊗ Fil0 VgQ2

⊗ Fil0 VhQ3
⊗ ψ−1

1 ωa+1.
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Proof. Let G := g? · h? (mod Z). Then the argument in Lemma 3.4
shows that

G ∈ S(N,ψ1,(p)ψ1
(p)
, I1)⊗̂I1R/(Z),

so we can define Gaux as Haux in (3.8), replacing H by G and define L ∗
F

by
L ∗

F := a(1, 1∗
f̆

(TrN/N1
(Gaux)) ∈ R/(Z).

In what follows, we shall keep the notation in §3.8. For eachQ = (Q1, Q2, Q3) ∈
Xf
R with R(Q) = 0, i.e. kQ1 = kQ2 + kQ3 and εQ1 = εQ2εQ3 , let F =

(f, g, h) = (fQ1
, gQ2

,hQ3). Applying the proof of Proposition 3.7 to the
improved p-adic L-function L ∗

F , we obtain

(8.2)
L f

F (Q)

I(ρ(tn)φ?F )
=

L ∗
F (Q)

I(ρ(tn)φ?,∗F )
,

where φ?,∗F := ρ(J∞)ϕ?f � ϕ?g � ϕ?h, and I(ρ(tn)φ?,∗F ) is the global trilinear
period integral

I(ρ(tn)φ?,∗F ) =

∫
A×GL2(Q)\GL2(A)

φ?,∗F (xtn, x, x)dτx.

Letting α1 = ω
−1/2
F,p (p)a(p, f)p1−

kQ1
2 , α2 = a(p, g)p1−

kQ2
2 and α3 = a(p, h)p1−

kQ3
2 ,

one verifies that

φ?F = 1⊗ 1⊗ (1− |p|α3 · πh(

(
p−1 0
0 1

)
)) · φ?,∗F

and that

I(ρ(tn)φ?) = I(ρ(tn)φ?,∗F )− |p|
3
2 α1α2α3 · I(ρ(tn−1)φ?,∗F )

for n sufficiently large. From the above equation, (8.2) and Proposition 3.7,
we can deduce that

L f
F (Q) = (1− |p|

1
2 ωg,pωh,p(p)α

−1
1 α2α3) ·L ∗

F (Q).

Now as in Theorem 7.1, we apply the above construction to a suitable Dirich-
let twist F ′ of F so that F ′ satisfies the minimal hypothesis and define

L∗F := L ∗
F ′
·
√
ψ1,(p)(−1)(−1)IF ′

−1
. Then L∗F clearly does the job.

To see the interpolation formula, applying the proof of Corollary 3.13 and
Theorem 7.1 to L ∗

f , we can show that

(L ∗
F (Q))2 =

L(1/2,ΠQ)

Ω2
fQ1

·I ∗ΠQ,p ·
∏
q|N

IF ,q(Q) ·
∏

`∈Σexc

(1 + `−1),

where I ∗ΠQ,p is the improved p-adic zeta integral defined in Remark 5.5.
Then the interpolation formula follows from the expression of I ∗ΠQ,p given
in Remark 5.5. �
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8.5. An alternative proof of anticyclotomic exceptional zero con-
jecture. We return to the setting in §8.2 and §8.3. Suppose that f = f◦ is
the newform attached to an elliptic curve E/Q of conductor Np with split
multiplicative reduction at p. For a ring class character χ, put

Lp(f/K ⊗ χ, s) := Θf/K,χ(vs − 1) for s ∈ Zp.

Then we know Lp(f/K, 0) = 0. Write phK = $OK with $ ∈ K× and let
log$/$ : C×p → Cp be the p-adic logarithm such that log$/$($/$) = 0.
We provide a Greenberg-Stevens style proof of the anityclotomic exceptional
zero conjecture for elliptic curves that was proved in [BD99].

Theorem 8.4 (Bertolini and Darmon). Let qE be the Tate period of E.
Then we have

dLp(f/K, s)
ds

|s=0 = ±
log$/$(qE)

ordp(qE)
·

√√√√L(E/K, 1)u2
KD

1/2
K

4π2Ωf,N−
.

Proof. By [CH18, Theorem D], we can choose a ring class character χ of
`-power conductor with ` - Np split in K such that Lp(f/K ⊗ χ2, 0) 6= 0.
Let f = f(T ) ∈ ZpJT KJqK be the primitive Hida family passing through
f at the weight two specialization T = u2 − 1 with u := 1 + p. Let
F = (f(T ),θχ(S2),θχ−1(S3)) be the triple of Hida families and let LfF =

LfF (T, S2, S3) be the unbalanced p-adic L-function attached to F in Theo-
rem 7.1. Fixing a lift L̃∗F ∈ R of L∗F (mod Z), we define analytic functions
on Z3

p:

Lp(k1, k2, k3) :=LfF (uk1 − 1,vk2 − 1,vk3 − 1);

L∗p(k1, k2, k3) :=L̃∗F (uk1 − 1,vk2 − 1,vk3 − 1)

for (k1, k2, k3) ∈ Z3
p. Let af (k1) = αp(f)(uk1 − 1),

ag(k2) = αp(g)(vk2 − 1) = χ(Frobp)v
l(Frobp)(1−k2);

ah(k3) = χ−1(Frobp)v
l(Frobp))(1−k3).

It is clear that
af (2) = 1; ag(1)ag(1) = 1.

By Proposition 8.3, there exists H(T1, S1, S2) ∈ R and H(k1, k2, k3) =
H(uk1 − 1,vk2 − 1,vk3 − 1) such that
(8.3)

Lp(k1, k2, k3) = (1−ag(k2)ah(k3)

af (k1)
)·L∗p(k1, k2, k3)+H(k1, k2, k3)·(u−k1+k2+k3−1)

(the nebentypus ψ1 = 1, ψ2 = ψ3 = ω−1 and a = −1). We may assume
L(f/K, 1) 6= 0, so the root numbers of f and its quadratic twist f⊗τK/Q are
+1. This in turns implies that the root numbers of f and f ⊗ τK/Q are −1,
and hence the one-variable Iwasawa function Lp(k1, 1, 1) vanishes identically.
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Taking the derivative with respect to k1 on the both sides of (8.3), we find
that

0 =
∂Lp
∂k1

(2, 1, 1) = a′f (2) · L∗p(2, 1, 1)−H(2, 1, 1) · logp u.

This implies that

H(2, 1, 1) · logp u = a′f (2) · L∗p(2, 1, 1);

By an elementary calculation and a theorem of Greenberg-Stevens [GS93,
Theorem 3.18],

a′g(1) =
logp$

hK
; a′f (2) = −1

2
·

logp(qE)

ordp(qE)
.

It follows that
∂Lp
∂k2

(2, 1, 1) =
∂Lp
∂k3

(2, 1, 1) = (−
logp$

hK
) ·L ∗(2, 1, 1) +H(2, 1, 1) · logp u

=(−
logp$

hK
− 1

2

logp(qE)

ordp(qE)
) · L∗p(2, 1, 1).

By Proposition 8.1, we have

Lp(2, k2, k3) =v(k2, k3) · Lp(f/K,
k2 + k3 − 2

2
)Lp(f ⊗ χ2,

k2 − k3

2
)

for some nowhere vanishing analytic function v(k2, k3). Letting v = v(1, 1) 6=
0, we find that

v · L′p(f/K, 0)Lp(f/K ⊗ χ2, 0) =
∂Lp
∂k2

(2, 1, 1) +
∂Lp
∂k3

(2, 1, 1)

=(−1)(
logp(qE)

ordp(qE)
+

2 logp$

hK
) · L∗p(2, 1, 1)

=(−1)
log$/$(qE)

ordp(qE)
· L∗p(2, 1, 1).

On the other hand, the interpolation formula in Proposition 8.3 shows that

L∗p(2, 1, 1)2 = v2 · (2π)−2L(f/K, 1)

Ωf,N−
· u2

K

√
DK · Lp(f/K ⊗ χ2, 0)2.

Combining the above two equations, we obtain

(L′p(f/K, 0))2 =

(
log$/$(qE)

ordp(qE)

)2

· L(f/K, 1)

4π2Ωf,N−
· u2

K

√
DK ,

and the theorem follows. �
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