HIDA FAMILIES AND p-ADIC TRIPLE PRODUCT
L-FUNCTIONS
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ABSTRACT. We construct the three-variable p-adic triple product L-
functions attached to Hida families of elliptic newforms and prove the
explicit interpolation formulae at all critical specializations by estab-
lishing explicit Ichino’s formulae for the trilinear period integrals of au-
tomorphic forms. Our formulae perfectly fit the conjectural shape of
p-adic L-functions predicted by Coates and Perrin-Riou. As an appli-
cation, we prove the factorization of certain unbalanced p-adic triple
product L-functions into a product of anticyclotomic p-adic L-functions
for modular forms. By this factorization, we obtain a construction of the
square root of the anticyclotomic p-adic L-functions for elliptic curves
in the definite case via the diagonal cycle Euler system a la Darmon and
Rotger and obtain a Greenberg-Stevens style proof of anticyclotomic
exceptional zero conjecture for elliptic curves due to Bertolini and Dar-

mon.
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1. INTRODUCTION

The aim of this paper is to construct the three-variable p-adic triple prod-
uct L-functions attached to Hida families of ellptic newforms in the unbal-
anced and balanced case with explicit interpolation formulae at all critical
specializations. Let p be an odd prime. Let O be a valuation ring finite
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flat over Z,. Let I be a normal domain finite flat over the Iwasawa algebra
A = O[I'] of the topological group I' = 1 + pZ,,. Let

F=(f,g,h)

be the triplet of primitive Hida families of tame conductor (N7, No, N3) and
nebentypus (91, 9,13) with coefficients in I. Roughly speaking, we con-
struct a three-variable Iwasawa function over the weight space of F' inter-
polating the square root of the algebraic part of central values of the triple
product L-function attached to F'g and prove explicit interpolation formulae
at all critical specializations. We would like to emphasize that our formulae
completely comply with the conjectural form described in [CPR89], [Coa89al
and [Coa89b| and is compatible with other known p-adic L-functions. For
example, when g and h are primitive Hida families of CM forms by some
imaginary quadratic field, we show that the unbalanced p-adic L-function is
the product of theta elements & la Bertolini-Darmon. In order to state our
result precisely, we need to introduce some notation from Hida theory for el-
liptic modular forms and technical items such as the modified Euler factors
at p and the canonical periods of Hida families in the theory of p-adic L-
functions.

1.1. Galois representations attached to Hida families. For a primi-
tive cuspidal Hida family F = ) -, a(n,F)q" € I[q] of tame conductor
N, let pr: Gq = Gal(Q/Q) — GLa(FracI) be the associated big Galois
representation such that Tr pr(Froby) = a(¢, F) for primes ¢ { Nr, where
Froby is the geometric Frobenius at £ and let Vr denote the natural realiza-
tion of pr inside the étale cohomology groups of modular curves. Thus, Vr
is a lattice in (FracI)? with the continuous Galois action via px, and the
Gal(Qp /Qp)-invariant subspace Fil’ Vi := V;” fixed by the inertia group I,
at p is free of rank one over I (JOLt00, Corollary, page 558])). We recall the

specialization of Vr at arithmetic points. A point @ € SpecI(Q,) is called
an arithmetic point of weight kg and finite part eg if Qr: I' — AX&Q;
is given by Q(z) = z"@eg(z) for some integer kg > 2 and a finite order
character eg : I' — Q; Let %f be the set of arithmetic points of I. For
each arithmetic point @@ € }ffr, the specialization Vr, := Vr ®1¢ Qp is the
geometric p-adic Galois representation associated with the eigenform Fq of
constructed by Shimura and Deligne.

1.2. Triple product L-functions. Let V = Vf@x\)ng@@Vh be the triple
product Galois representation of rank eight over R a finite extension of the
three-variable Iwasawa algebra given by

R = IRpIRL.

Let %;—z C Spec R(Qp) be the weight space of arithmetic points of R given
by

%7—% = {Q = (Q1,Q2,Q3) € (%f—)g | kg, + ko, +kqs = 0 (mod 2)} :
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For each arithmetic point Q = (Q1,Q2,Q3) € %;;, the specialization Vg =
Vi 1 ®V9Q2 @ Vhg, is a p-adic geometric Galois representation of pure weight
wq = kg, + kg, + kg, — 3. Let w: (Z/pZ)* — pp—1 be the Teichmiiller
character. We assume that

(ev) V1hoths = w?® for some a € Z.

Then implies that the determinant det V =X 2{-:Cyc, where €.y, is the p-
adic cyclotomic character and X is a ‘R-adic p-ramified Galois character with

X(c) = (—1)* (c is the complex conjugation). Note that the specialization
wg+1

of X at @ can be written as the product Xy = XQEcyc 2 Wwith a finite order
character xq. We consider the critical twist

vi=vex

Then VT is self-dual in the sense that (VT)V(1) = V. Next we briefly recall
the complex L-function associated with the specialization Vg. For each place
¢, denote by Wq, the Weil-Deligne group of Q. To the ‘geometric p-adic

Galois representation A , we can associate the Weil-Deligne representation
WDg(VZ?) of Wq, over 6;0 (see [Tat79, (4.2.1)] for ¢ # p and [Fon94, (4.2.3)]
for £ = p). Fixing an isomorphism ¢, : Q, =~ C once and for all, we define
the complex L-function of VZ? by the Euler product

LV, s) = [] Le(VE 5)
B {<oc0 B
of the local L-factors Lg(VTQ, s) attached to WDg(VTQ) Q0 C (|Del79l
(1.2.2)], |Tay04, page 85]). On the other hand, we denote by Tfo, =
QuTfq v (resp. Wng,ﬂth) the irreducible unitary cuspidal automorphic
representation of GLz(A) associated with f, (vesp. gq,,hg,) and let

-1
HQ: Tio, X Tag, X Tha, ®XQ

be the irreducible unitary automorphic representation of GLa(A) x GLa(A) x
GL2(A). Denote by L(s, IIg) the automorphic L-function defined by Gar-
rett, Piateski-Shapiro and Rallis attached to the triple product Il. The
analytic theory of L(s, IIg) such as functional equations and analytic con-
tinuation has been explored extensively in the literature (¢f. [PSR87]), and
thanks to [Ram00, Theorem 4.4.1], we have

1
o) = AV s) = \p
Lis+5,1lg) = AV, ) := Ty (5) - L(V g, 9).

Here I'y,+ (s) is the archimedean L-factor of VTQ and is a finite product of
Q A
four classical I'-functions (see (1.4])). Moreover, there is a positive integer
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N(Vg) and the root number a(VIQ) € {#£1} such that the complete L-

function A(Vg, s) satisfies the functional equation

AV, s) =e(Vh) - N(VH) ™ - AV, ).
We thus have a good understanding of the complex analytic behavior of
L(VZ)7 s). On the arithmetic side, Deligne’s conjecture for the critical central
value L(VZ?, 0) has been proved in [HK91]. In this article, we shall investigate
the p-adic analytic behavior of the algebraic part of L(V&, 0) viewed as a

function on the weight space %;% It is natural to first consider the behavior
of the root number E(VTQ) of VZ? (or 1lg) over the weight space. The global

root number
(V) = ] «(WDe(v))
{<oo
is defined as the product of local constants, where €(7) is the local epsilon
factor attached to a Weil-Deligne representation (cf. [Tat79, page 21|) with
respect to the standard choice of a non-trivial additive character of Q, and
measures on Q, in [Del79, 5.3]. For each arithmetic point @ € X%, we put

2(Q) = {z: prime factor of Ny NaN | (WDy(V)) = —1} .

It is known that there is a subset X~ of prime factors of N1 Ny N3 such that
¥~ =%7(Q) for all Q € X};. For the archimedean root number, we partition

the weight space %}2 into %71; U 36% U %% L xbal where 367]; is the unbalanced
range dominated by f given by

x’]fz = {(Q17Q27Q3) S x']-‘% ’ k:Ql + kQ2 -+ kQ3 S 2]{}@1}

(X%, and X% are defined likewise), and X2 is the balanced range
X ={(Q1,Q2,Q3) € X% | kg, + kg, + kg, > 2kq, for all i =1,2,3}.

The union f{%b = :{4; U .’{% U %% is called the unbalanced range. Then we
know that

e(WDwo (V) = +1 if Q € XE™;
e(WDoo(V])) = —1if Q € X",
1.3. The modified Euler factors at p and oo. Let Gq, be the decom-

position group at p. We consider the following rank four Gq,-invariant
subspaces of V:

Fily V i=Fil’ V} ® Vy ® Vi;
(1.1) Filba V :=Fil' V; @ Fil’ V; ® Vi, + Vy @ Fil' Vy @ Fil° Vj,
+Fil’ Vi ® Vg @ Fil° Vj,.

Let o € {f,bal}. Define the filtrations Filf VT := Fil, V® X! C V1. The
pair (FilJ VT, X%) satisfies the Panchishkin condition in [Gre94, page 217))
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in the sense that for each arithmetic point @ € X%, the Hodge-Tate numbers
of Filf VZ) are all positive, while the Hodge-Tate numbers of VT/ Fil} VZ) are

all non-positive (the Hodge-Tate number of Q,(1) is one in our convention).
Now we can define the modified p-Euler factor by

a+ v
19) € F'1+VT ‘: L’p(Fllo VQ,O) ‘ 1
(1.2) &(Fils Vo) WD, (FilZ Vi) . L, (v /FiF vi.0) L,(v.0)
g( p( g Q)) p( Q/ g Q,) p( Qv)

We note that this modified p-Euler factor is precisely the ratio between
the factor Eé\/?l) (V&) in [Coal89bl page 109, (18)] and the local L-factor
Lp(VTQ, 0).

In the theory of p-adic L-functions, we also need the modified Euler factor
SOO(VIQ) at the archimedean place observed by Deligne. It is defined to be

the ratio between the factor L’gﬁ) (Vg) in [Coa89bl page 103 (4)] and the
Gamma factor I'y,+ (0) and is explicitly given by
Q

Exc(VE) =(V=1)"1 if Q € X
5OO(VTQ) = (V)7 ke ks if Q € 2B

1.4. Hida’s canonical periods. To make our interpolation formula mean-
ingful, we must give the precise definition of periods for the motive VZ). We
begin by recalling Hida’s canonical period of a I-adic primitive cuspidal Hida
family F of tame conductor Nx. Let my be the maximal ideal of I. For a
subset X of the support of Nz, we consider the following

Hypothesis (CR, X). The residual Galois representation pr := px (mod my) :
Gq — GL2(F),) is absolutely irreducible and p-distinguished. Moreover, pr
is ramified at every ¢ € ¥ with £ = 1 (mod p).

When ¥ = () is the empty set, we shall simply write (CR) for (CR,0).
Recall that pr is p-distinguished if the semi-simplication of the restriction of
the residual Galois representation pr (mod my) to the decomposition at p is
a sum of two characters X} @ xF with Xj_? # X7 (mod my). Suppose that F
satisfies (CR). The local component of the universal cuspidal ordinary Hecke
algebra corresponding to F is known to be Gorenstein by [MWS86, Prop.2,
§9] and [Wil95 Corollary 2, page 482|, and with this Gorenstein property,
Hida proved in |[Hid88al Theorem 0.1| that the congruence module for F
is isomorphic to I/(nr) for some non-zero element nr € I. Moreover, for
any arithmetic point @ € .’{fr, the specialization nr, = Q(nr) generates
the congruence ideal of 5. We denote by ‘7:82 the normalized newform of
weight kg, conductor Ng = Nzp"® with nebentypus xq corresponding to
Fq. There is a unique decomposition xq = XpXq,(p)» Where x¢ and xq, ()
are Dirichlet characters modulo Nx and p"@ respectively. Let ag = a(p, Fg).
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Define the modified Euler factor £,(Fg, Ad) for adjoint motive of Fg by
EP(FQa Ad)

(1—ag’xe@P™ (1 — ag’xqp)p™e™?)  ifng =0,
—2ng .
=ag -1 ifng =1,x0,p =1,
s(xo.m)xe.m(=1) it ng >0, Xq.m) # 1
Here g(xq,(p)) 18 the usual Gauss sum. Fixing a choice of the generator nz
and letting ”‘FEQHIQ“()( No) be the usual Petersson norm of F¢), we define the

canonical period Qr, of F at Q by

&(Fo Ad)
LP(an)

By [Hid16, Corollary 6.24, Theorem 6.28|, one can show that for each arith-

metic point (), up to a p-adic unit, the period Q£ is equal to the product of

the plus/minus canonical period Q(+;F3)Q(—; Fg) introduced in [Hid94,

page 488].

(13) Q= (-2 DR BRI ) e C”.

1.5. Definitions of I'-factors and an exceptional finite set Y. We
recall the definition of I'-factors of VZQ following the recipe in [Del79]:

(1.4)

w 1
Te(s + L) (s + 1 ky, )Tels + ko, )Tals +kh,) it Q € X

FVE(S) . +1
= Te(s+ —5—)Tcls + b, )Ta(s + kg, Tels + kp,) if Q € xhl.

Here I'c(s) = 2(27)~*I'(s) and
" k‘Q + kQ + k‘Q .
ko, = ! 22 2 —kg,,1=1,2,3.
For each prime /, let 7q,, be the unique unramified quadratic character of

Q/. Let (f,9,h) = (fg,,90, hqs) be the specialization of F' at @ and put

¥ = {¢: finite prime | my, and 7, ¢ are supercuspidal; mp, ¢ is spherical} ;
Spg={leXF | mpem® Q. ™ o0 @ o for some o unramified character } .
Define X ¢, and X4 likewise. We introduce the finite set
(1.5) Eexczzghuthl_lEfg.
It is known that this set ey does not depend on any particular choice of
the specializations of (f, g, h).
1.6. Statement of the main results. We impose the following technical
assumption:
(sf) ged(Ny, No, N3) is square-free.

Our first result is the construction of the unbalanced p-adic triple product
L-functions:

Theorem A. In addition to and , we further suppose that
(1) ¥ =0,
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(2) f satisfies (CR).
Fiz a generator ng of the congruence ideal of f. There exists a unique ele-

ment Efg, € R such that for every Q = (Q1,Q2,Q3) € .’f%; in the unbalanced
range dominated by f, we have

L(Vi, 0)
(vV-1)*e 05

EEEVE) [ @+
@1 T £E€%exc

(L2(Q)* =Ty, (0)-

This p-adic L-function £{7 is unique up to a choice of generators of the

congruence ideal of f, i.e. it is unique up to a unit in I, but the ratio L{D /nf
is a genuine p-adic L-function. By symmetry, we actually obtain from The-
orem A two more p-adic L-functions £%, and E’} which interpolate central
L-values at f{% and %% respectively. These p-adic L-functions ct , E‘% and
E’FL‘ are called unbalanced p-adic triple product L-functions as they inter-
polate a square root of the critical central L-values of the triple product
L-function L(VI27 s) for @ € XWP at the unbalanced range; from the inter-

polation formula, these p-adic L-functions are distinguished by the choices
of the modified Euler factor at p and the complex periods. In the literature,
the one-variable unbalanced p-adic triple product L-functions were first con-
structed by Harris and Tilouine in [HT01b] (when Ny = N = N3 = 1).
Darmon and Rotger in [DR14] extended the method in [HT0Ib] to construct
a three-variable power series interpolating the global trilinear period of a
triplet of Hida families and proved the interpolation formulae at the bal-
anced range, which is in connection with the p-adic Abel-Jacobi image of
diagonal cycles in a triple product of modular curves. This is a p-adic ana-
logue of the classical Gross-Zagier formula and has obtained very significant
arithmetic application to certain equivariant BSD conjectures in [DR17]. On
the other hand, it is well known that the relation of the interpolation at the
unbalanced range to central L-values is suggested by the main identity of
Harris and Kudla [HK91], or in general, Ichino’s formula [Ich08], but the
interpolation formulae at the unbalanced range in the literature are not pre-
cise enough for more refined arithmetic applications such as the formulation
of corresponding Iwasawa-Greenberg main conjecture. Therefore, Theorem
A complements the literature by providing a precise relation of the values of
p-adic triple product L-functions at all arithmetic points in the unbalanced
range to central L-values of the complex triple product L-functions.

Our main motivation is to use Theorem A to prove the factorization of
p-adic triple product L-functions into a product of anticyclotomic p-adic
L-functions. For example, if g and h are primitive Hida families of CM
forms associated with some imaginary quadratic field, then Eé is a product
of two square roots of anticyclotomic p-adic L-functions for modular forms
constructed in [BD96] and [CHIS|; in contrast, if f and g are primitive
Hida families of CM forms, then E{,-, is a product of two anticyclotomic
p-adic L-functions in [BDP13| divided by some Katz p-adic L-function. The
latter gives a strengthening of [DLR15, Theorem 3.9] and [Col16]. With this
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factorization, we can easily show that the square root of the anticyclotomic
p-adic L-functions in the definite case can be recovered by the Fuler system
of generalized Kato classes [DR17] (See Remark and provide a new
proof of the anticyclotomic exceptional zero conjecture for elliptic curves.
These factorizations of p-adic triple product L-functions are obtained via the
direct comparison of the explicit interpolation formulae of p-adic L-functions
at critical points. These examples are much simpler than the factorization
formulae of Katz p-adic L-functions for imaginary quadratic fields and p-adic
L-functions for the symmetric square of elliptic newforms, proved by Gross
and Dasgupta respectively, where no critical interpolation is available. In a
joint work with F. Castella [CH22|, we explore this Euler system construction
of the square root of the anticyclotomic p-adic L-functions for elliptic curves
and show the non-vanishing of the generalized Kato classes in the rank two
case for elliptic curves of rank two.

Next we state our second result about the balanced p-adic triple product
L-functions.

Theorem B. Let N = lem(Ny, N, N3) and N~ be the square-free product
of primes in X~ . In addition to and , we further suppose that p > 3
and

(1) #(X7) is odd,
(2) f,g and h satisfy (CR, ¥~ ),
(3) N = N+*N~ with ged(N+,N—) = 1.

Then there exists a unique element E%al € R satisfies the following interpo-

lation property: for any arithmetic point Q € f{lfgl, we have

L(V}),0)
(x /_1)’6@1%@2“?@3*19%1 )

xgp(FﬂgalvTQ). IJ a+eh2
(€Y exe

(El%al(g)>2 :I’Vé(()) .

9Q, QhQS

We must mention that the p-adic interpolation of global trilinear period
integrals attached to a triplet of p-adic families of modular forms in the
balanced range was first investigated by Greenberg and Seveso in a pioneering
work [GS16]. Our construction is ostensibly different from theirs for their
method heavily relies on the theory of Ash-Stevens while our approach is
built on classical Hida theory developed in [Hid88b]. Indeed, their method
treats more general setting, namely they do not restrict to the ordinary case,
while our approach is more well-suited for the future investigation on the
arithmetic of the balanced p-adic L-functions such as the p-invariants and
the Iwasawa-Greenberg main conjecture. The situation is more or less similar
to the two different constructions of two-variable p-adic L-functions for Hida
families given by Greenberg-Stevens and Mazur-Kitagawa. In any case, it is
definitely very interesting to compare these two different approaches in the
ordinary case.
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Remark 1.1. We discuss briefly the exceptional zero phenomenon for the
balanced p-adic L-functions. By the Ramanujan conjecture, the modified
p-Euler factor Sp(Fﬂ]jal VZ?) never vanishes unless either of fo .90, hgs is
special at p. For example, suppose that F = (f, g, h) is the triplet of prim-
itive Hida families passing through the p-stabilized newforms (fi, f2, f3) at-
tached to elliptic curves (F1, Eq, E3) over Q at the weight two specialization
Q. Let a; = a(p, fi) be the p-th Fourier coefficient of f; for i = 1,2,3.
Assume Fj is semi-stable at p (i.e. a; = #1). Then the modified p-Euler
factor &, (Fil}" VZ?) equals

(1 - ajasaz)? if E5 and F3 are semi-stable at p,
p-az?(l - offzg)z(l - ac;;g)Q otherwise.

We thus conclude that E%al posseses an exceptional zero at ) when either
(i) B2 and FEs3 are semi-stable at p and ajaeas = 1 or (ii) F5 and F3 has
good ordinary reduction at p and ag = asaj. In the case (i), we even have
the vanishing of the central value L(Vg, 0) = L(E1 x Ey x E3,2) =0 as the

global root number
E(VTQ) = a(WDp(VTQ)) = —ajagasz = —1,

so one might speculate about a p-adic Gross-Zaiger formula relating certain
“second partial derivatives” of E%al at @ to the p-adic Abel-Jacobi image of
diagonal cycle in the Shimura curve X N+ pn- attached to the quaternion
algebra ramified precisely at pN~ as [BDOT7, Theorem 1|. We hope to come
back to this question in the near future.

1.7. An outline of the proof. The construction of the unbalanced p-adic L-
function is based on Hida’s p-adic Rankin-Selberg convolution (cf. [Hid93|).
Denote by eS(N, x,I) C I[g] the space of ordinary I-adic cusp forms with
tame nebentypus x and by T(N, x,I) the universal ordinary cuspidal Hecke
algebra. Decompose the tame nebentypus 1 of f into a product of Dirich-

let characters vy (,) and ¢§p ) modulo p and Nj respectively and let x :=

1/}17(1,)@09). Let f € eS(N1, x,I) be the primitive Hida family of f twisted
by wgp) and let 15 € T (N1, x,I) ®1 FracI be the idempotent corresponding

to j" By the definition of congruence ideals, one can verify that ng - 1}
indeed belongs to T(N, x,I). In , we construct an auxiliary R-adic
modular form eH*™ € eS(N, x,I) ®1;, R C R[q], where 4; : I — R is the
homomorphism a — ¢ ® 1 ® 1, and then the unbalanced p-adic L-function is
defined to be

.,S,”IJ: := the first Fourier coefficient of 7y - 14 Try/n, (eH™) € R,

where Try/n, : eS(N, x,I) = eS(N1, x, I) is the usual trace map.

In the balanced case, Hida theory for definite quaternion algebras plays
an important role. Let D be the definite quaternion algebra over Q of the
absolute discriminant N~ and for each positive integer m, let X,, be the
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definite Shimura curve of level I'; (p" V) associated with D as described in
[ILV1I) §2.1]. These are curves of genus zero equipped with a natural finite
covering map Qyy, : )N(m — )Z'm,l. We let J,,, = Pic )N(m ®z Zp and let Jo :=
T&nnﬁm Jm be the inverse limit induced by a&,,. Then J is a A-module
with Hecke action, and its ordinary part Jgéd is equipped with the action of
the X 7-new quotient of the universal ordinay cuspidal Hecke algebra of level
['1(Np>®). The I-module eS” (N, 1) := Homy (JZ4,1) is called the space of
Hida families of definite quaternionic forms. Due to the lack of g-expansions,
we do not have the notion of primitive Hida families on definite quaternion
algebras. Nonetheless, using the idea of Pollack and Weston [PW11] and
Hida theory, for a primitive Hida family F satisfying (CR, ¥7), it can be
shown that there exists Hecke eigenform FP € eSP(N,I), unique up to a
unit in I, characterized by the following properties (i) P shares the same
Hecke eigenvalues with F; (ii) FP is non-zero modulo my (Theorem [4.5)).
We shall call 7P the primitive Jacquet-Langlands lift of F. Let J94 :=
Ind@odni@odnt and JE = lim  Jord. With the assumption (2) in
Theorem B, we thus obtain the primitive Jacquet-Langlands lift FP = fP X
g”RhP € Hom(J%4 R). On the other hand, in Deﬁnitionm, we construct
a collection of regularized diagonal cycles Al in Jord which are compatible
with respect to a,, and thus get the big diagonal cycle Al = @m%o Al €
Jggd. In order to achieve the optimal integrality of p-adic L-functions, we
actually take a modification FP* € Hom(J%4, R) of FP in Definition
and then define the balanced p-adic L-function

Opp = FPX(AL ) eR

to be the value of the modified FP* at Al,. This p-adic L-function © pp
is an analogue of theta elements a la Bertolini and Darmon ([BD96]) in the
triple product setting.

To obtain the interpolation formula in Theorem A and B, we first prove
that the interpolation ZFf(Q) at Q € %fz (resp. Lpx-(Q) at Q € XB1) is
given by the global trilinear period integral of certain automorphic forms in
the cuspidal automorphic representation Il of GLa(Af) (resp. the automor-
phic representation HQD of (D ® Apg)* via the Jacquet-Langlands transfer),
where E = Q® Q& Q is the split étale cubic Q-algebra (See Proposition
and . Thanks to Ichino’s formula in [IchO8|, we can show that the square
of this global trilinear period integral is a product of the central L-value
L(1/2,1ly) and certain local zeta integrals I,(¢} ® ¢y) (See §3.8.2] for defi-
nitions), which we shall call local Ichino integrals in the introduction. The
proof of the interpolation formulae therefore boils down to the determination
of the values of these local Ichino integrals. In the literature, local Ichino in-
tegrals were only computed for some special cases [II10], [NPS14] and [Hul7].
Local Ichino integrals at the real place are completely determined in a re-
cent work [CCI9|, but the explicit calculation of local Ichino integrals at
non-archimedean places in the generality we need is a highly laborious task
and occupies a substantial part of this paper. The key ingredient in our
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computation is Proposition a generalization of [MV10), Lemma 3.4.2] by
removing several restrictive conditions therein, which reduces the calculation
of local Ichino integrals to that of certain local Rankin-Selberg integrals in
[GJ78 (1.1.3)]. With local theory of L-functions on GL(2) x GL(2) devel-
oped by Jacquet in [Jac72|, we are able to work out the calculation of local
Rankin-Selberg integrals under and certain minimal hypothesis (See Hy-
pothesis . It turns out that the p-adic Ichino integral gives the modified
p-Euler factor &,(Filf VZ?), while local Ichino integrals at ramified places ¢

only contributes p-adic units if £ € Yexe or (1 +£71)2 if £ € Yeye. This mini-
mal hypothesis, roughly speaking, requires F' to be minimal in the sense that
F' has the minimal conductor among Dirichlet twists. By taking a suitable
Dirichlet twist F' = (f ® x1,9 ® X2, h ® x3) with x1x2x3 = 1 which satisfies
the minimal hypothesis, we obtain the desired p-adic L-functions

E{,ﬂ = Z'f/®xl; chal .= Opp.

The interpolation formulae is a direct consequence of the explicit evaluation
of local Ichino integrals and the comparison between the canonical periods of
F and its Dirichlet twist F’ established in We conclude this paragraph
by mentioning that the method of this paper has been extended by Isao
Ishikawa in [Ish17] to construct p-adic twisted triple product L-functions
attached a Hida family of Hilbert modular form over a real quadratic field
and a Hida family of elliptic modular forms.

This paper is organized as follows. In §2] we recall basic definitions
and facts about classical elliptic modular forms and automorphic forms on
GL2(A). In we give the construction of the unbalanced p-adic triple
product L-functions .,%Ff The key items used in the construction of H?*"*
the test A-adic forms g* and h*, are introduced in Definition [3.3] The main
formula is derived in Corollary [3.13] where we show the interpolation of the
square of .i”Ff at the unbalanced range is the product of the central L-value
of the triple product L-function and local Ichino integrals at the prime p and
ramified primes. In §4 we consider the balanced case. We review Hida’s
theory for definite quaterninoic forms in §4.4] and In particular, we
present a slightly explicit version of the control theorem in Theorem
and explain the notion of primitive Jacquet-Langlands lifts in Theorem
The construction of the big diagonal cycle Al and the balanced p-adic L-
functions are given in and §4.71 The relation between the interpolation
of the square of our balanced p-adic L-functions and the product of the cen-
tral L-value and local Ichino integrals is given in Corollary In 5] we
prepare the tools for the computation of local Ichino integrals and carry out
the calculations at the p-adic place, and in we elaborate the calculation
of local Ichino integrals at ramified primes. In particular, we show in §6.6]
that the local Ichino integrals at ramified places can be interpolated into a
unit in the ring R of three-variable Iwasawa functions. In §7] we prove the
main results (Theorem and show that the canonical periods of a prim-
itive Hida family and its Dirichlet twists are equal up to a unit in I by the
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method of level-raising. Finally, we prove the factorization of anticyclotomic
p-adic L-functions and give applications in
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Notation. The following notations will be used frequently throughout the
paper. Let A be the ring of adeles of Q. If v is a place of Q, let Q, be the
completion of Q with respect to v, and for a € A*, let a, € Q) be the v-
component of a. Denote by |-|, (or simply |-| if there is no fear of confusion)
the absolute value on Q, normalized so that |-| is the usual absolute value
on R if v = 0o and |¢|, = ¢7! if v = £ is finite. Let |-|, be the absolute value
on A* given by |a|, =[], |av|,- Let (,(s) be the usual local zeta function
of Q,. Namely,
s

Gools) =7 ETC) Gols) = (1= 079

Define the global zeta function (q(s) of Q by (q(s) = [, ¢»(s). In particu-
lar, (q(2) = 71 - ((2) = /6.

For a prime £, let v, : QeX — C* be the valuation normalized so that
ve(f) = 1. We shall regard Q; and Q, as subgroups of A and A* in a
natural way. To avoid possible confusion, denote w; = (w¢,) € A* by the
idele defined by @y, = ¢ and @y, = 1 if v # /.

Let 1q : A/Q — C* be the additive character with the archimedean
component ¥ (z) = exp(2my/—1z) and let g, : Q; — C* be the local
component of g at £.

If R is a commutative ring and G = GLa(R), we denote by p the right
translation of G on the space of C-valued functions on G: p(g)f(g') = f(¢'g)
and by 1 : G — C the constant function 1(¢g) = 1. For a function f : G — C
and a character x : R* — C*, let f ® x : G — C denote the function
f®x(g) = f(g)x(det g).

Let Gq = Gal(Q/Q) be the absolute Galois group of Q and if x :
(Z/NZ)* — C* is Dirichlet character modulo N, denote by c;(x) < vg(V)
the f-exponent of the conductor of y. We shall identify y with the Galois
character x : Gq — C* via class field theory.

If w: Q\A* — Q" is a finite order Hecke character, we denote by
we : Q) — C* the local component of w at £. On the other hand, we
write w = w(g)w“), where w(,) and w® are finite order Hecke characters
of conductor ¢-power and of prime-to-¢ conductor respectively. With every
Dirichlet character y of conductor IV, we can associate a Hecke character xa,
called the adelization of x, which is the unique finite order Hecke character
Xa : Q\AX/R,(1+ NZ)* — C* of conductor N such that xa(ww;) =
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x(£)~1 for any prime £t N. We often identify Dirichlet characters with their
adelization whenever no confusion arises. Then x(¢) = x(¢)~! for £1 N.

2. CLASSICAL MODULAR FORMS AND AUTOMORPHIC FORMS

In this section, we recall basic definitions and facts about classical elliptic
modular forms and automorphic forms on GLa(A). The main purpose of this
section is to set up the notation and introduce some Hecke operators on the
space of automorphic forms which will be frequently used in the construction
of p-adic L-functions.

2.1. Classical modular forms. Let C*°($)) be the space of C-valued smooth
functions on the upper half complex plane $). Let k be any integer. Let v =

(2 b> € GLI (R) act on z € by v(z) = % and for f = f(2) € C®(§),

d cz+d’
define
- 3
Fliv(z) = f(y(2))(cz + d) ™ (dety)=.
Recall that the Maass-Shimura differential operators dx and £ on C*°($)) are
given by
1 0 k 1 0
b= (L Yande=- 2
g 27r\/—1(8z 2\/—1y) anc e 27n/—1y 0z
(cf. [Hid93l (1a, 1b) page 310]). Let N be a positive integer and x : (Z/NZ)* —
C* be a Dirichlet character modulo N. Let m be a non-negative integer.

Denote by N, ,Em] (N, x) the space of nearly holomorphic modular forms of
weight k, level N and character y, consisting of slowly increasing functions
f € C>®(H) such that e™1f =0 and

() =xts tor (2 5) emo

(¢f. [Hid93, page 314]). Let Ni(N,x) = U_o NH(N, x).(cf. [Hid93, (1a),
page 310]) By definition, N,EO] (N,x) = Mg(N,x) is the space of classical
holomorphic modular forms of weight &, level N and character y. Denote
by Sk(N,x) the space of holomorphic cusp forms in My (N, x). Let 67" =
Ok+om—2 - Oks20k. If f € Ni(N,x) is a nearly holomorphic modular form
of weight k, then 0" f € Nijom (N, x) has weight &k +2m ([Hid93, page 312].
For a positive integer d, define

Vaf(z) =d- f(dz); Uaf(z) =

and recall that the classical Hecke operators Ty for primes £ 1 N are given by
Tof = Uef +X(OF Vi f.

We say f € Ni(N,x) is a Hecke eigenform if f is an eigenfunction of all the
Hecke operators Ty for £4 N and the operators Uy for ¢ | N.
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If fe Mp(N,x), let
fla) =Y a(n, f)g"
n>0

be the g-expansion (at the infinity cusp). If & is a Dirichlet character modulo
M, define f|[x] € Mp(NM? xk?) the twist of f by k to be the unique
modular form with the g-expansion

filEl) = > aln, frn)g™

n>0, (n,M)=1

2.2. Automorphic forms on GLy(A). Let N be a positive integer. Define
open-compact subgroups of GLy(Z) by

(V) ={g € GLa@) 9= (§ 1) tmod N2 |,

Ui(N) = {g € Up(N) | g = (; D (mod NZ)}.

Let w : Q*\A* — C* be a finite order Hecke character of level N. We

extend w to a character of Uy(NN) defined by w((i Z)) = [Iyn weldy) for

a b € Up(N), where wy : Q; — C* is the f-component of w. Denote by

d
A(w) the space of automorphic forms on GLg(A) with central character w.
For any integer k, let Ax(N,w) C A(w) be the space of automorphic forms
on GL2(A) of weight k, level N and character w. Namely, Ag(N,w) consists
of automorphic forms ¢ : GLa(A) — C such that

plagusour) =p(g)eY 0w (ur)
(Oé S GLQ(Q),UOO = <

cosf sinf
—sinf cosf

) , ur € Up(NV)).

Let A?(N,w) be the space of cusp forms in A (N, w).

Next we introduce important local Hecke operators on automorphic forms.
At the archimedean place, let Vi : Ap(N,w) — Ag12(N,w) be the normal-
ized weight raising/lowering operator in [JL70), page 165| given by
(2.1)

Vi= (_gﬂ) ((é _01> ®1+ (? é) ® ﬁ) € Lie(GLy(R)) ®g C.

The level-raising operator V; : Ax(N,w) — Ai(N/,w) at a finite prime ¢ by

Vel = o ()

If d =[], £"*9) is an positive integer, define Vy : Ax(N,w) — Ax(Nd, x) by

Vd — H er(d)'
l
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Define the operator Uy on ¢ € Ax(N,w) by
. Wy T
xEZ[/EZ4
Note that UyVpp = ¢y and that if £ | N, then Uy, € Endc Ag(N,w). For each
prime ¢ 1 N, let Ty € Endc Ax(N,w) be the usual Hecke operator defined by
Ty = Uy + w(we) Ve

We introduce the twisting operator ¢ attached to a Dirichlet character x of
modulo #° for some s > 0. Let £"* be the conductor of k. If n > 0, define the
Gauss sum g(k) by

ox)= > wa)e
x€(Z /L Z)*
For ¢ € Ay (N,w), we define /¢ : GLa(A) — C by
o — LV Ugp if n =0,

(2.2) 1 z/w)

07 =
T law Y w @ Yo ifn>0.
2€(Z/InZ)x 0 1

2.3.  We briefly recall a well-known connection between modular forms and
automorphic forms. With each nearly holomorphic modular form f € Ny (N, x),
we associate a unique automorphic form ®(f) € Ax(N, x ') defined by the
equation

(2.3) P(f)(agoott) = (flrgoo) (V1) - X' ()

for a € GL(Q), goo € GL3 (R) and u € Up(N) (cf. [Cas73| §3]). We call
&(f) the adelic lift of f. Conversely, we can recover the form f from &(f)
by

(24 v =y sa(f 7))

The weight raising/lowering operators are the adelic avatar of the Maass-
Shimura differential operators d;" and ¢ on the space of automorphic forms.
A direct computation shows that the map @ is equivariant for the Hecke
action in the sense that

(2.5) (o' f) =VIo(f), @(ef) =V-2(f),

for a positive integer d,

(2.6) O(Vaf) = d'"2Vad(f),

and for a finite prime £

(2.7) O(Tpf) = LT 0(f); B(ULf) = (271U (f),

In particular, f is holomorphic if and only if V_ @(f) = 0. For f € My(N, x)
and k a Dirichlet character modulo a /-power, one verifies that

(2.8) O(f|[k]) = 07 B(f) @ rip.
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2.4. Preliminaries on irreducible representations of GL2(Q,).

2.4.1. Measures. We shall normalize the Haar measures on Q, and Q) as
follows. If v = 0o, dx or dy denotes the usual Lebesgue measure on R and
the measure d*y on R* is ]y\_l dy. If v = £ is a finite prime, denote by dz
the Haar measure on Qg with vol(Zy,dz) = 1 and by d*y the Haar measure
on Q, with vol(Z;,d*y) = 1. Define the compact subgroup K, of GL2(Q,)
by K, = O(2,R) if v = 0o and K, = GLy(Z,) if v is finite. Let dk, be the
Haar measure on K, so that vol(K,,dk,) = 1. Let dg, be the Haar measure

on PGL2(Q,) given by dg, = |yv]_l dx,d*y,dk, for g, = <%’ 'ﬁv> k, with
yveQ;}(axver and k, € K.

2.4.2. Representations. Denote by x Hwv the irreducible principal series rep-
resentation of GL2(Q,) attached to two characters x,v : Q) — C* such
that yv=! # Hi If v = oo is the archimedean place and k > 1 is an integer,
denote by Dy(k) the discrete series of lowest weight k if & > 2 or the limit
of discrete series if k = 1 with central character sgn” (the k-the power of the
sign function). If v is finite, denote by St the Steinberg representation and
by xSt the special representation St ® x o det.

2.4.3. L-functions and e-factors. For a character x : Q) — C*, let L(s, x)
be the complex L-function and (s, x) := £(s, X, P¥q, ) be the e-factor (cf. [Sch02,
Section 1.1]). Define the ~-factor

L(l -5 X_l)
L(s,x)

If 7 is an irreducible admissible generic representation of GL2(Q,), denote
by L(s, ) the L-function and by e(s, 7) := (s, 7, %q,) the e-factor defined
in [JL70, Theorem 2.18]. Let 7 denote the contragradient representation of
7. Denote by L(s, 7, Ad) the adjoint L-function of 7 determined in [GJ78].

(2.9) v(s,x) = e(s,x) -

2.4.4. Conductors and new vectors. Let £ be a prime. Let (m,V;) be an
irreducible admissible infinite dimensional representation of GL2(Qg), where
Vr a realization of m. For a non-negative integer n, let

ny _ Z, Z
Ul(g ) = GLQ(Z@) N (ﬁnZg 1 +€”Zg) .

Let ¢(m) be the exponent of the conductor of . By definition, ¢(7) is the

c(m)
smallest integer such that VEE) e space of Uy (£9™))-fixed vectors is
non-zero. Define the subspace V2V by

pmew _ {g €V, | ﬂ(‘é 2))5 — ¢ for all (‘C‘ 2) € ul(edﬂ))} .

Proposition 2.1 (Multiplicity one for new vectors). We have
dimc V% = 1.
Proor. This is [Cas73, Theorem 1]. O

In the sequel, we call V**V the new line of .
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2.4.5. Whittaker models. Every admissible irreducible infinite dimensional
representation 7 of GL2(Q,) admits a realization of the Whittaker model
W(r) = W(m,1q, )associated with the additive character 1, . Recall that
W(m) is a subspace of smooth functions W : GL2(Q,) — C such that

* W(((l) T) g) =q, (x)W(g) for all z € Qy,
e if v = oo is the archimedean place, there exists an integer M such
that

01

The group GL2(Q,) (or the Hecke algebra of GL2(Q,)) acts on W(r) via the
right translation p. We introduce the (normalized) local Whittaker newform
Wy in W(r) in the following cases. If v = oo and m = Dy(k), then the
Whittaker local newform W, € W(r) is defined by

(2.10)

T cosf  sind E _on =
Wz (g 1) <—sin9 0080)) =Tr, (y) - y2e ™ - sgn(z) ypp (x)e T

w(((g §)) =0l s o - o

(y,z€ R*, z,0 € R).

Here Ig, (a) denotes the characteristic function of the set of positive real
numbers. If v = £ is a finite prime, then the local Whittaker newform W is
the unique function in W(7)""V such that W, (1) = 1.

2.5. Ordinary lines in irreducible representations of GL3(Q,). Let
p be a prime. Let (m,V;) be an irreducible admissible generic represen-
tation of GL2(Q,) with central character w : Q) — C*. Let N(Z,) =

{ <1 x) |z € Zp}. Define the local Uj-operator and the local level-raising

0 1
operator V}, in EndC(VfrV(Z”)) by

(211) U :=xezp2/pzpw<(§ e we=a((*y e

For a Dirichlet character k of conductor p”, we define the local twisting
operator 0 € End V by

§— p_IVpUpﬁ ifn=0,

ot Y @[t TP e a0
w€(Z/pnZ)> 0 1

For a character x : Q¢ — C*, define the subspace V2"(x) by

(212) 656 =

vt = {€ ) [ U = x-H) € n(( § =g re ).

Proposition 2.2 (Multiplicity one for ordinary vectors). The space Vo' (x)
is non-zero if and only if w is either the principal series x B x~'w or the
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special representation X|-|_%St. In this case,
dimg Vord(x) = 1.
PRrROOF. Replacing 7w by 7 ® X_lH%, we may assume Y = H% For each
n, let
VIO, — 1] = {€ € Ve | Upé =& m(w)é =€ for all u € U (")}

Let Vord = yord(].)2 ) Let ¢(w) be the exponent of the conductor of w and

*

¢* :=max{l,c(w)}. Then it is easy to see that

Vord U V n] - 1
n>c*
1 1
Suppose that 7 = |-|2 Bw|-|” 2 or the Steinberg representation St. We claim

that V" [U, — 1] is non-zero for some n. If w is ramified or 7 is Steinberg,
then ¢(r) > ¢* and the new line V2% = VI™I[U, — 1] is not zero. If w is
unramified, then 7 is sphercial, and it is well known that dimc VE} = 2 and
the characteristic polynomial of Uy on v i given by (X — 1)(X — w(p)p),
so V! ][Ug — 1] is non-zero.

Now suppose that V' =£ 0. Then 7 must be a principal series or special

representation since U, is a unipotent operator on Vq[Tn] if 7 is supercuspidal.
For any u € Uy (p™) with m > 1 and £ € V,, a straightforward calculation
shows that

m(u)Up€ = Z 7r(<]09 315) ul2,)€ for some u, € Uy (p™ ), 2z, € 14p™Zyp.
z€Zy/pZ)p

It follows that if £ € plm+] Up— ] then £ € V, ylm! [Up — 1] whenever m > c¢*.

This implies that Vo4 = (P 7& 0, and hence ¢* > ¢(m) > c(w). If
¢* = c(w) > 0, then ¢(w) = ¢(r), and it follows that Vo4 = VYev is the
new line in V; and 7 = p B g~ 'w with unramified character p. Since any

~lw is an eigenvector of U, with the eigenvalue pu|-|~2,

new vector in p H p
we thus conclude that 7 = H% BﬂwH_%. If ¢(w) = 0, then ¢* = 1 and

yord = il [Uy — 1]. It follows that 7 is a unramified principal series or the
Steinberg representation St. If 7 = St, then V"4 is the new line. If 7 is

a unramified principal series, then the two dimensional vector space Vﬁ{ 1(p)
has a basis ¢0 € VeV = ELQ(Z") and V€Y. Since U,V,£° = p&®, U, is not
a scalar, and thus dimg Vfﬁrd = dimg Vm[ —-1]=1 0

We shall call Vo' () the ordinary line of m with respect to x whenever it
is non-zero.

Corollary 2.3. If 7 is either the irreducible principal series x B x lw or

1
the special representation x|-|~2St, then the ordinary line W(r)°"4(x) in the



HIDA FAMILIES AND p-ADIC TRIPLE PRODUCT L-FUNCTIONS 19

Whittaker model is generated by the normalized ordinary Whittaker function
Werd characterized by

or 0 L
wet((5 V) =) e Q).
Here liz,, is the characteristic function of Z,.

PROOF.  The proof of Proposition [2.2] actually gives the recipe to construct
the ordinary line. Indeed, let W = W5, -1 be the Whittaker local newform
of m® x~!. Define WT € W(r ® x~!) as follows: WT =W if 7 ® x~! is not

spherical and W1 = W — y~2w| \%(p)p( (p (1]) YW if m® x ! is spherical.

0
An elementary calculation shows that W ® y belongs to W24(y). By using

the explicit formulas of Whittaker newforms ([Sch02, Section 2.4]), we find

that WT ® x( <?(J) (1)>) = XH%(y)Hzp (y) as desired. O

2.6. p-stabilized newforms. Let 7 be a cuspidal automorphic representa-
tion of GLg(A) and let A(m) be the m-isotypic part in the space of automor-
phic forms on GL2(A). For ¢ € A(w), the Whittaker function of ¢ (with
respect to the additive character g : A /Q — C*) is given by

W)= [ ey ) omat-ae e GLaa),

where dz is the Haar measure with vol(A/Q,dz) = 1. We have the Fourier

expansion:

a 0

plo)= ) W¢(<0 1) 9)
acQX

(¢f. [Bum97, Theorem 3.5.5]). Let f(q) = >, a(n, f)¢" € Sk(N,x) be a
normalized Hecke eigenform, we shall denote by 7y = &/ s, the cuspidal
automorphic representation of GLa(A) generated by the adelic lift @(f) of
f. Then 7¢ is irreducible and unitary with the central character YL If fis
newform, then the conductor of ¢ is IV, its adelic lift @(f) is the normalized
new vector in Ag(m¢) and the Mellin transform

2s.9(9) = |

0 s—l iy
AX/Qx ds(f)(<g 1>) ly|” 2 d"y = L(s,7y)

is the automorphic L-function of 7;. Here d*y is the product measure
Hv deU'

Definition 2.4 (p-stabilized newform). Let p be a prime and fix an iso-
morphism ¢, : C ~ Qp. We say that a normalized Hecke eigenform f €
Sip(Np, x) is a (ordinary) p-stabilized newform (with respoect to ¢,) if f is
a new outside p and the eigenvalue of U, i.e. the p-th Fourier coefficient
tp(a(p, f)), is a p-adic unit. The prime-to-p part of the conductor of f is
called the tame conductor of f.
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Remark 2.5. Let f be a p-stabilized newform. By the multiplicity one for
new and ordinary vectors, the Whittaker function of the adelic lift @(f) is
a product of local Whittaker functions in W(7y,). To be precise,

W@(f) (g) = W;r);i, (gv) H Wﬂ'f’p (gv) (g = (gv) € GLZ(A))
v#p

Comparing the Fourier expansions of @(f) and f via (2.4), we find that
(2.13)
0

WW<(§ ?))—a(ﬁ,f)ﬁ‘g if £ # p; w;;y(g 1))—a(z»,f)p- .

NI

By Corollary Wﬁ;‘i € W(rsp)™4(ayp), where ay, is the unramified

character with ay,(p) = a(p, f)p 2 .

2.7. The bilinear form. Let A°(w) be the space of cusp forms in A(w).
Let (, ) denote the GLa(A)-equivariant pairing between A°(w) and A%(w™1!)
defined by

(p,¢') = / ©(9)¢'(9)d"g
AX GLy(Q)\ GLa(A)

for p € A%w),¢’ € A°w™1), where d7g is the Tamagawa measure of
PGL3(A). The following lemma is well-known (cf. [Wal85l, page 217]), and
we omit the proof.

Lemma 2.6. For cusp forms ¢ € AY(N,w) and ¢' € A° (N,w™1), we have

(Xop,¢') == (o, X¢') for X € Lie(GL2(R)),
(o, Upp') =t(Vyp, ') for £ | N,
(Top, @) =w(l) (@, Tee') for £1N.

Let m = ®! m, be an irreducible unitary cuspidal automorphic reprensen-
tation on GLg(A) with central character w. Denote by 7 the contragredient
representation of 7. By the multiplicity one theorem, the pairing (, ) gives
rise to the equality A(7) = A(7) ® w™!. For a place v of Q, define the non-
degenerate GL2(Qy)-equivariant pairing (, ) between W(m,) and W(7,) by

o s (i

for W € W(m,) and W(m,). This integral converges absolutely as m, is
unitarizable.

Proposition 2.7. Let ¢ € A(n) and ¢’ € A(T). Suppose that Wy, = ], W,
and Wy = [1, W, such that Wy, (1) = W/ (1) = 1 for all but finitely many v.
Then we have

. 2L(1,m,Ad) 6(2) ,
) == Lz moag e
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ProOOF. This is [Wal85, Proposition 6|. Note that W,, = Wy, and W, =
Wi, are the normalized local Whittaker newforms for all but finitely many
v, and if 7, is spherical, then
Co(1)L(1, 7y, Ad)

G(2) ’
so the right hand side of the equation in the proposition is indeed a finite
product. ([l

<W7Tv ? W%v> =

We give the formula of the local pairing of ordinary Whittaker functions.

Lemma 2.8. Let p be a prime. Suppose that mp, is a principal series xHv or

a special representation x|- |7%St. Let Wﬁ;d € W(mp)4(x) be the normalized
ordinary Whittaker function in Corollary . If n > max{l,c(mp)}, then
we have

(D 7y Pt wet o) —x-0xe 1) (0,060,

Here v = x"'w, and v(s,—) is the y-factor defined in ([2.9).

0

n > max {1, ¢,(m)}, then W(('g ?) n) =0if y &€ Z,. Then we have

PROOF. Let W = W24 and ¢, = (_(;n P ) We first note that if

ot oty = [ wi(§ ) ew (1) oy

= [l ) s ol el

By the local functional equation for GL(2) (c¢f. [Bum97, Theorem 4.7.5]),
the last integral equals

L(s,m® pr_l)

—1

L(l1-s,7m® x‘l)XwP( )

y 0 0 1 0 1 —1y (1/2—s X
X/Q; W((o 1) (_1 0 <_p2n 0>>X ’ | (y)d y‘SZI

L(s,m® xw, ')
L1 —s,m@x 1)

wp(pMe(l —s,m@x 1)

(0 (—1)X(P) - P2 TR e(1 = s, @ ) Go(1 = 8)[ot

Using the formula

L(s,m® xw, ')
L(1—s,m@x1)

_ L(s,xv! .
e(1—s,vx 1)C (%)—(szgfs,ux)*l) if m, = x B,

_ +1) . _1
— |pl™* &2y if m = x|| 2 St,

e(l-s,m@x ")
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we see that (p(t,)W, W ® wp_1> equals

v(0,x 1)) if m, = x B,

—1Dw -ny., 2|, n ;
X(=Dwp(p™")X7][(p ){—Ip‘lcp@) it 7, = ||~ 3St.

Finally, we note that if 7 = X|'|_%St, then v = x|-| ™" and 7(0,vx 1) (1) =
— |p| ™' ¢,(2). This finishes the proof. O

2.8. Root numbers and Petersson norms. Let f € Si(N, x) be a nor-
malized cuspidal newform of weight k and conductor N. Put f.(z) := f(—2).
Then it is a classical result that

(215) ey o) =ut .

for some w(f) € C* with the modulus |w(f)| = 1 (¢f. [Miy06, Theorem
4.6.15]). This complex number w(f) is called the root number of f. By
[Hid88cl, page 38|, we have

w(f) =[] e(1/2.710).

<0

Recall that the Petersson norm of f is defined by

2 pdxdy
B = [ VI
To(N)\$ Yy

For each integer M, define the matrix 7y = (Tar,,) € GL2(A) by

T Moo = (_01 ?) . Tamye=1if 0 M;
(2.16)

0 1 .
TML = <_[U1’(M) 0) S GLQ(Q@) if ¢ ‘ M.

Let m = 7y be the cuspidal automorphic representation generated by &@(f)

with central character w(= x'). Define the local norm of the normalized
Whittaker newform W, by

e
(2.17) Br, = Co(1)L(1, my, Ad)

<p(TN,U)W7rUa Wm ® wv_1>'

It is straightforward to verify that
By, =2"1"% B, =1if({N.
By Proposition and ([2.15]), we have

[SLa(Z) : To(NV)]
2 w(f)

(2.18) £y (ny = - L(1,m,Ad) - [ [ B,

q|N
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3. THE UNBALANCED p-ADIC TRIPLE PRODUCT L-FUNCTIONS

3.1. Ordinary A-adic modular forms. Let p > 2 be a prime and let
O be the ring of integers of a finite extension of Q,. Let I be a normal
domain finite flat over A = O[1 + pZ,]. A point Q € Spec I(Qp), a ring
homomorphism @ : I — Qp is said to be locally algebraic if Q|14,z, is a
locally algebraic character in the sense that Q(z) = zFeeg(z) with kg an
integer and eg(z) € pp~. We shall call kg the weight of Q and e the finite
part of Q. Let Xy be the set of locally algebraic points Q) € Spec I(Qp) of
weight kg > 1. A point @ € Xt is called arithmetic if the weight kg > 2 and
let f{fL be the set of arithmetic points. Let pg = Ker @ be the prime ideal
of I corresponding to @ and O(Q) be the image of I under Q.

Fix an isomorphism ¢, : C, ~ C once and for all. Denote by w :
(Z/pZ)* — pp—1 the p-adic Teichmiiller character. Let N be a positive
integer prime to p and let x : (Z/NpZ)* — O* be a Dirichlet character
modulo Np. Denote by S(N, x,I) the space of I-adic cusp forms of tame
level N and (even) branch character x, consisting of formal power series
flqg) =>,>1an, f)q" € I[q] with the following property: there exists an
integer ay such that for arithmetic points @) € %fr with kg > ay, the special-
ization f(q) is the g-expansion of a cusp form fq € Sy, (Np®, yw? ke €Q).
The character x is called the branch character of f.

The space S(V, x, I) is equipped with the action of the usual Hecke opera-
tors Ty for £ Np as in [Wil88, page 537| and the operators Uy for £ | pN given
by Uy(3>, a(n, £)q") = >, a(nl, f)q". For a positive integer d prime to p,
define V; : S(N, x,I) — S(Nd, x,I) by Vu(3>, a(n, f)q) =d>, a(n, f)g®.
Recall that Hida’s ordinary projector e is defined by

. |
e := lim U™.
n—ooo P

This ordinary projector e has a well-defined action on the space of clas-
sical modular forms preserving the cuspidal part as well as on the space
S(N,x,I) of I-adic cusp forms (cf. [Wil88, page 537 and Prop. 1.2.1]).
The space eS(N, x,I) is called the space of ordinary I-adic forms defined
over I. A key result in Hida’s theory of ordinary I-adic cusp forms is
that if f € eS(V, x,I), then for every arithmetic points Q € Xy, we have
fo € eSkQ(Npe,wa_erQ). We say f € eS(N,x, 1) is a primitive Hida
family if for every arithmetic points @ € X1, f( is a p-stabilized cuspidal
newform of tame conductor N. Let %fls be the set of classical points (for f)
given by

xgs .= {Q € X§s | f ¢ is the g-expansion of a classical modular form} .

Note that %fls contains the set of arithmetic points }ffr but may be strictly
larger than Z{f as we allow the possibility of weight one points.

3.2. Galois representation attached to Hida families. Let () : Z) —
1 + pZ, be character defined by (z) = zw™!(z) and write z — [z]x for the
inclusion of group-like elements 1+ pZ, — O[1 + pZ,]* = A*. For z € Z,
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denote by (z); € I the image of [(2)]x in I under the structure morphism
A — I. By definition, Q((2);) = Q((2)) for @ € X1. Let ecyc : Gq — Z, be
the p-adic cyclotomic character and let (ecyc); : Gq — I be the character
(€cye)y (0) = (€cyc(0))y- For each Dirichlet character x, we define x1 : Gq —
I* by x1 := 0y <scyc)_2 (€cyc)p» Where o is the Galois character which sends
the geometric Frobenious element Frob, at £ to x(£)~1.

If f €eS(N,x,I) is a primitive Hida family of tame conductor N, we let
ps : Gq — GLa(FracI) be the I-adic Galois representation attached to f

characterized by
Tr(ps(Frobe)) = a(l, f);  det py(Frobe) = xw?(£) (O£~ (£1pN).

Note that det py = Xy L. sc_ylc. We have a complete knowledge of the de-

scription of the restriction of ps to the local decomposition group Gq,. For
¢ = p, according to [Wil88 Theorem 2.2.1],

o] <ap * >
G ~ 1. —-1_—
d Qw 0 O[p 1XI 1€Cylc
where a, : Gq, — I is the unramified character with o, (Frob,) = a(p, f).

Here our representation py¢ is the dual of p# considered in [Wil88|. For ¢ # p,
enlarging I if necessary, we have the following list of p f‘GQe'

(1) (Principal series) pg|aq, is reducible and isomorphic to

-1/2 - ~1/2
aeﬁsiﬁ (€cye)t / D a, 15/“5%;3 (€cye)r /

with a unramified characters oy : Gq, — I and a finite order char-
acters £,&' : Gq, — Q™ with ¢¢ = v lw2.
(2) (Special) pglag, is indecomposable and

Eeye (Eeye)p .
pf,GQe ( 0 5 <€cyc>;1/2

with a finite order character £ : Gq, — Q" such that €2 =y w2
(3) (Supercuspidal) pg|aq, is irreducible and py =~ po ® <ECyC>I_1/2 with

po : Gq, = GL2(Q) irreducible representation of finite image
(cf. [SUO6L page 689]).

Remark 3.1 (Rigidity of automorphic types). We recall the rigidity of au-
tomorphic types for a primitive Hida family f in [FO12, Lemma 2.14]. Let
{ # p be a prime. If for some arithmetic point ) the associated cuspidal
automorphic representation ot is principal series (resp. special, super-
cuspidal) of conductor £, then for any arithmetic point @', ¢ ot is also
principal series (resp. special, supercuspidal) of the same conductor ¢". This
is a consequence of the above description of p f|GQe , the Langlands correspon-
dence and the Ramanujan conjecture for elliptic modular forms (only needed
in the case (Special)).



HIDA FAMILIES AND p-ADIC TRIPLE PRODUCT L-FUNCTIONS 25

In addition, if 7 ol isa discrete series at any arithmetic point @) € .’f;r ,
then the Weil-Deligne representaion associated with the specialization of

Py ® (ECyCﬁ/Q Gq, at @ is independent of Q.

3.3. Hecke algebras and congruence numbers. If N is a positive integer
and x is a Dirichlet character modulo N, we let Tx (N, x) be the O-subalgebra
in Endc eSi (N, x) generated over O by the Hecke operators Ty for £ { Np
and the operators Uy for ¢ | Np. Suppose that N is prime to p. Let
A = (Z/NpZ)* and A be the group of Dirichlet characters modulo Np.
Enlarging O if necessary, we assume that every x € A takes value in OX.
We are going to consider the Hecke algebra T(N,I) acting on the space of
ordinary A-adic cusp forms of tame level I'1 (V) defined by

S(N, 1) := P eS(N, x, 1).
xEA

In addition to the action of Hecke operators, denote by o4 the usual diamond
operator for d € A acting on S(N,I)°™ by O'd(f)xeg = (X(d)f)xeﬁ' Then
the ordinary I-adic cuspidal Hecke algebra T(N,I) is defined to be the I-
subalgebra of Endy S(N, I)*? generated over I by Tj for £ | Np, Uy for £ | Np
and the diamond operators o4 for d € A. Let Q) € ff;r be an arithmetic point.
Every t € T(N,I) commutes with the specialization: (t-f)qg =t-fg. For x €
ANP, let p@,y be the ideal of T(N,I) generated by pg and {og — x(d)} 4ca-
A classical result [Hid88b, Theorem 3.4| in Hida theory asserts that

T(N.1)/pgx = Tro (N1, xw? "2eq) ®0 O(Q).

Let f € eS(N, x,I) be a primitive Hida family of tame level N and char-
acter x and let Ay : T(N,I) — I be the corresponding homomorphism
defined by A\¢(Ty) = a(¢, f) for £ + Np, A\e(Uy) = a(l, f) for £ | Np and
Af(oq) = x(d) for d € A. Let mg be the maximal of T(N,I) containing
Ker Ay and let Ty, be the localization of T(N,I) at my. It is the local ring
of T(N,I) through which A factors. Recall that the congruence ideal C'(f)
of the morphism A : Ty, — I is defined by

C(f) = )\f(AnnTmf (KerAf)) C L.

The Hecke algebra Ty, is a local finite flat A-algeba, and by the primitiveness
of f, there is an algebra direct sum decomposition

(3.1) A Ty, @1 Fracl >~ FracI @ %, t = A(t) = (Ag(t), Az(1)),

where 4 is some finite dimensional (Frac I)-algebra ([Hid88bl Corollaty 3.7]).
By definition we have

C(f) = Af(Twm; N A" (FracI @ {0})).
Now we impose the following

Hypothesis (CR). The residual Galois representation py of ps is absolutely
irreducible and p-distiniguished.
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Under the above hypothesis, T, is Gorenstein by [Wil95l Corollay 2, page
482|, and with this Gorenstein property of Tw,, Hida in [Hid88a] proved
that the congruence ideal C'(f) is generated by a non-zero element 7y €
I, called the congruence number for f. Let 1% be the unique element in
T, N A~ (FracI & {0}) such that Af(1%) = ny. Then 1y := 771:11} is the
idempotent in Ty, ®1 Fracl corresponding to the direct summand FracI of
and 1 does not depend on any choice of a generator of C'(f). Moreover,
for each arithmetic point @), it is also shown by Hida that the specialization
n(Q) € O(Q) is the congruence number for fg and

ly:= n?l’} (mod py.q) € ']I‘%gd(Np’", yw? ke €Q) ®o Frac O(Q)

is the idempotent with Ap(15) = 1.

There is a unique decomposition x = X(p)X(p) of Dirichlet characters,
where x®) and X(p) are Dirichlet characters modulo N and p" respectively.
We call x(, the p-primary component of x. Let X = x~ ! be the com-
plex conjugation of y. Denote by f € eS(N,X(p)y(P), I) the primitive Hida
family corresponding to the twist f|[x®](q) = Z(mN):l x® (n)a(n, f)q"
(¢f. [Dim14, Lemma 6.1]). To be precise, the Fourier coefficients of f are
given by

alt, ) = {x<p> (D)a(t, f) iCEN,
a(l, f)_lx(p)wQ(Z)E_l (6)y if¢|N.
by [Miy06, Theorem 4.6.16]. For every arithmetic point Q € XT, ,]u‘Q is
the p-stabilized newform attached to f| [x®)]. Moreover, the Atkin-Lehner
involution 7, introduced in [Miy06, (4.6.21), page 168]) induces an iso-
morphism 7, : Sk(Np™, xw? *eeg) ~ Sk(Np”,y(p)x(p)wQ*erQ) such that
Ty, = x® (O)n, Ty for £4 N ([Miy06} (4.6.23)]). We thus obtain a A-algebra
isomorphism [Y®)] : Ty, s~ T, such that XP(T,) = T, - xP)(¢) for £{ N
and Ay o [X®)] = \. It follows that

(3.2) 1% = [¥®](1) and n; = 1.

3.4. The adjustment of levels for a triple of modular forms. For any
positive integer M, let supp(M) denote the support of M, i.e. the set of
prime factors of M. If f is a p-stabilized newform of tame conductor N,
let co(f) := c(my,e) be the exponent of the ¢-component of Ny for each prime
{ = p and set

Z} = {{ : prime | 7y, is a principal series} ;
»% = {¢ : prime | w4 is a discrete series} .
To a triple (f, g, h) of p-stabilized newforms of tame conductors (N1, N2, N3),
we are going to associate a set of auxiliary integers (dy,dy,dy,), which we
call the adjustment of levels for (f,g,h). This adjustment of levels is crucial

for the construction of our test A-adic modular forms (Definition and
Definition in order to obtain the optimal value of the local zeta integrals
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in Ichino’s formula at bad places, and it is defined according to the choice
of good local test vectors in the space of product of local representations of
e X Tgp X T (cf. at bad primes ¢ # p. Inevitably, the definition is
very ad-hoc and may seem to be artificial at the first sight. The readers are
advised to skip the precise definition in this subsection at the first reading
and come back until To begin with, let Nyg, = ged(Ny, N2, N3) and
N = lcm(Nl, NQ, Ng) Put

™ = ve(Nygn);  co(fg) = max{ci(f), ce(9)} -
Let YXygn = EO N EO NXY. We introduce several disjoint subsets of supp(NV):

E(I) {ZGEfUEIUEfg;Jce( ) < min{ce(f),ce(9)}},
ZHa) {ZEZOOE |L(S,7Tg7g®7'rh7g)7£1, Cgf IO},
=] o _ ={6exANSY | L(s,mye @ mhe) = 1, L€ B}, ¢o(f) < min{e(g), co(h)}}
s = {£ : prime factor of N | ¢i(g) = ce(h) = ™ < eo(f)}-
Define ESV)L? Eéfz, E(Ha) Z(Hb) g%, ..., in the same manner. We set
dgcl) — H pee(fg)—ce(f) H gce(fh)*%(f)7
tex() eex()
dgcﬂ) _ H cz(gh)] H gce (gh)—ce(f
éez;”a) eez}llb)
d;}lax _ H gcl(f)_cznin‘
texpax

Likewise we define dél), dén), d;™, dg), d;lH) and dj**. Finally, put

(33) dy=dPd", d,=dDdr>dp= . d and dy, = d d?> - ).
By definition, we have

(3.4) ds | N/Ny, dy| N/Ny, dy | N/Ns.

3.5. Definitions of good test A-adic modular forms. Let O = O for
some finite extension F' of Q,,. Fixing a topological generator g of 1+ pZ,,,
we let A = O[1+pZ,] = O[T] with T' =~y — 1. For i =1,2,3, let I; be a
normal domain finite flat over A and let ; : (Z/pN;Z)* — O* be Dirichlet

characters with t;(—1) = 1. Throughout this paper, we fix a triplet of
primitive Hida families

= (f,g,h) € eS(N1,v¥1,11) x eS(Na, Y2, Iz) x eS(N3,13,13)

of tame conductors N = (N1, Na, N3) and branch characters ¢ = (11,12, 13).
We shall impose the following running hypotheses

(ev) V1191h3 = w?® for some a € Z;

(sf) ged(Ny, No, N3) is square-free.
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Lemma 3.2. Let (Q1,Q2,Q3) € xglls % %ﬂs v %ilss and (f,g,h) = Fqg =
(le,gQQ,hQ3) be the specialization of F' at Q. The adjustment of levels

%, dy and dj, for ¢ € {(I), (I), max} are independent of the choice of any
arithmetic point Q.

PrROOF. The lemma is clear from the rigidity of automorphic types, the
description of the restriction of pf|GQ£ given in ﬁ and the Langlands cor-
respondence for GL(2).

Definition 3.3 (Test A-adic forms). Let N = lem(Nj, N2, N3). Put

{0 = {zeznb | co(?) = }for?e{f,g,h}.

For each ¢ € Z(Hb) (resp. Eé%b), Z(Hb)) we fix once and for all a root ,(f) €

I (vesp. Bil(g ) I}, Bi(h) € IX) of the Hecke polynomial Hg ,(X) =
X2 —a(l, /)X + prw? (01 (€)y, (vesp. Hg(X), Hpe(X)). With the
above notation in the previous subsection, we define the pair (g*,h*) in
eS(N, 1y, I2) x eS(N,13,13) of the ordinary A-adic cusp forms by

g@= > D"Bi(g) Vi, /n,9:

(I1b)
ey

)= > (=D)Bi(h) Vg, ju, b,
fczg{gb)

where ny = [[,c; 4, Br(?) = [lyes Be(?) for 7= f,g,h

3.6. The construction of the p-adic L-function in the unblanced
case. We let

R =Li®ol®ols
be a finite extension over the three variable Iwasawa algebra
Ro : = ARoA®oA = O[T1, Ty, T3],
(M =Te11,T,=1T®1, T3=111T).

X

Define the multiplicative map O : Z(p) — R* by

O(n) := (™ (n) ()3 (), /2 ()12

Define the R-adic twisting operator |[©] : R[[g]] — R][q]] by
(D _am)gMlel= > O(n)-a
n>0 n>0, pin

Here 9y () is the restriction of the branch character v of f to (Z/pZ)*.
Define the power series H by

H = g*- h*|[0] € R[q.

Lemma 3.4. The power series H belongs to S(N, wly(p)m(p),h)@hR.
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ProOOF.  The following proof is taken from Hida’s blue book [Hid93|. Put

x% = {QZ (Q1,Q2,Q3) € X, x X, x X | kg, = kq, + kqs, ko, > kq, +2}'

For Q € X9, put

B Cao1.1/2 —1/2 —1/2
ko = 1 W™ €, €, €,

Here e%/ % is the unique square root of e; taking value in 1 + pZ,. We verify
that (h*|[€])g = hqsllke] € Skq, (I, 1!1%7(p)¢;1¢516Q16é;), and hence we

find that for every Q € f%,

(35)  Hg=gb, hi,llk] € Sky, (N, ¥, 1 " w? *21cq,).
We have Ro = O[T, T3, Z] with Z = (1 +T1)"Y(1 + T)(1 + T3) — 1. Let
Ly = FracRg and L = FracR be a finite extension of Ly. Let aq,--- , a4, be

a basis of R over Rg and write H = > 1, HYq; with HY) € Ry[q]. On
the other hand, letting {a;} be the dual basis of {a;},_,  with

j=1,..n T

respect to the trace map Tr : L — Lo, we have HU) = Tr(Hozj). Let
u=1+p. By (3.3), we can write HY) = HU)(T1, Ty, Z) € O[Ty, Ts, Z][q]
so that

(3.6)

HO (MG —1,uM6-1,6-1) = Tr(Hqoi(Q)) € Sk, (N, %,@)E(p)w%kl)

for all but finite many positive integers k1, ko with k1 > ko +2 and ¢; € pp
(i =1,2,3), where Q = (Q1,Q2,Q3) are some arithmetic points of weights
(k1,k2, k1 — ko) and finite parts (eg,, €y, €Qs), €0,(2) is the finite order
character with eg, (u) = ¢;.

To prove the lemma, it suffices to show that

3.7)  HY(T\, Ty, 2) € SBoO[Ty, Z], S :=S(N, vy ,tr ", O[T1]),

which in turn, by |[Hid93, Lemma 1 in page 328|, is equivalent to showing
that HY(Ty, Ty, ¢ — 1) € S®eO[(][T3] for every ¢ € pipe. Now we repeat
the arguments in [Hid93| page 226-227|. Let a be a positive integer such that
g is a classical modular form for all Q € X1 with kg = a. Form =1,2,..
we define the power series inductively

Ho(Ty,Ty) = H9(T, Ty, — 1), Yp =To — (w71 —1) € O[T3],
Hy 1 (T1, To) — Hy 1 (T, ume 1 1)
Y
Then implies that Hy(T1,u® — 1) € S ®p O[¢] and by induction, we

find easily that H,, (T}, u™"* —1) € S®o O[¢] for all m = 0,1, .... On other
hand, by construction we have

Hyo(Ty, Ty) = € O[Ty, Tx][q]

oo m
HU(T\, Ty, — 1) = Y Hp(T,u™ - D[] Vi
m=0 i=1
It is clear that the right hand side is a convergent power series and belongs
to S®eO[C][T2]. O
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Define the auxiliary R-adic form H*" by

Y1,y (nr/dg) (nr/dg)y, df
38)  H™ = -1)! '
. IC%I‘D)( ! Br(f)ns
f,0

: Udf/n[(H)‘

By the above Lemma M we have H*"™ € S(N, wl,(p)a(p), I,)®, R. This
allows us to apply the ordinary projector e to H*"*, and we obtain
eH™™ € eS(N, vy (01" 1B, R

an ordinary A-adic modular form with coefficients in R. With these prepa-
rations, we are ready to define the p-adic L-function following the con-

struction in [Hid85, (4.6)]. Denote by Try/n, : eS(NV, @Z)l,(p)a(m,ll) —
eS(Nl,@ZJL(p)%(p), I,) the usual trace map (cf. [Hid88c, page 14]).

Definition 3.5. The unbalanced p-adic triple product L-function D?Ff is
defined by

Zipf = a(l,nf . 1}. rI‘I‘A]\[/J\[1 (BHauX)) eR.

3.7. Global trilinear period integrals. We denote by %fz the weight
space for the triple (f, g, h) in the f-dominated unbalanced range, consisting
of @ = (Q1,Q2,Q3) € %E X %ﬂs X %ﬂs such that

kg, > kq, +kqs; kg, = kq, + kg, (mod 2).

In this subsection, we relate the value of gpf (Q) at apoint Q = (Q1,Q2,Q3) €

}Zfz to a global trilinear period integral of a test triple of modular forms. To
this end, it is necessary to work in the framework of automorphic forms.
Let (K1,k2,k3) = (kg,,kQ,,kg,) and let  be an integer such that r >
max {1, c,(€q,), cp(€Q,); cp(€g,) }- Recall that the specialization

(fagah) = FQ = (leng27hQ2) € Skl (NlpT7Xf)XSk2(N2prvXg)xskg(N3pT,Xh)

are p-stabilized cuspidal newforms with characters modulo Np”

Xf = 1eg,w 1, xg = taeg,w? 2 and yp, = Yseguw® .

Let pr = &(f), pg = @(g) and p), = D(h) be the associated adelic lifts
as in (2.3)). Then

(pra Py Soh) € -’421 (Nlpra Wf) X A22 (NQPT’wg) X A%; (NSPTa wh)a
and the central characters wy,wy,wy, are the adelizations
wr = (7 )aswg = (xg )as wn = (X, )a-
Write (B¢(f), Be(g), Be(h)) for the specialization (B¢(f)(Q1), Be(9)(Q2), Be(h)(Q3))-
For each finite prime ¢, define the polynomial Q¢, € O[X] by

1 if ¢ ¢ 2P
Qpp(X) = xris) { LRy : ’ )
(1= Be(H)~ 2 xY) it rext))
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We define Q, ,(X) and Qp, ¢(X) likewise. Set

(3.9) @5 =[] reVies, @y =] Qoe(Vi)eg and @} = ] Qne(Ve)eon
V4 l l

By (2.6), we see that

(p)

Decompose wy = wfy(p)w}p ) , where wy () and wy' are finite order Hecke
characters of p-power conductor and prime-to-p conductor respectively. By
definition, wy, ) is the adelization of the p-primary component Xﬁp) of XJTI.

Let f be the primitive Hida family corresponding to the twist f| [%(p)] and
put

gr = 0(f) € A, (Np",w;'wh ()

We introduce the modified p-Euler factor &,(f, Ad) for the adjoint mo-
tive attached to the p-stabilized newform f. Let af, : Q) — C* be the
unramified character as in Remark Let By, == a;;wf,p. Hence the
local component 7y, is either the principal series ap,, H 3y, or the special

representation o p|- |7%St. Define the modified p-Euler factor &,(f, Ad) by
(3. 10)
(f?Ad) _8(13prafp) ( ﬁfpa ) (]ﬂﬁf,pa;;))_l

fy-entas) cpwa e(1/2,msp)

=a(p,
y {51 — a7 2wip(P) (1 — a7 2wrp(P)p™Y) i e(myy) =0,

if C(7Tf7p) > 0.

Define J and t, € GLa(A) for a positive integer n by
(3.11)

-1 0 0 -
Too = ( 0 1) € GLy(R), t,= (_pn po ) € GLy(Q,) — GLy(A).
Lemma 3.6. Let notation be as above. For n > max{c(m¢,),1}, we have

o -1\ _ CQ(2)_1 o2
-1 _2

Wy ")¢p(2)

fp—fp p(p P

% E)(f, Ad) - .

! (1)

Proor. Write 7 for 7y the irreducible automorphic cuspidal representa-

tion on GL2(A) generated by ¢ = @(f) and let w = wy be the central char-

acter of m. Let ¢’ = p(Tsotn)pf € Angl (Np",w) and ¢" = @5 ®w;%p) €

AgQ (Np",w™!). Then ¢’ € A(r) and ¢” € A(T). Since ¢ and @ are auto-
1

morphic forms attached to p-stabilized cuspidal newforms f and f ;and wy ()
is unramified outside p, according to Remark [2.5] the Whittaker functions
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W and W have the factorizations

Wy = p(tn)Wfr};d H W, = Word®w_1 Wﬂ.v H Wﬂ-v

v;ﬁp, vF#p,00
where W,?;d € Wfr’;d(ap) is the ordinary Whittaker functions attached to the
character ay,. On the other hand, let ° = @(f°) be the normalized newform
in A(7) and let p° € A(T) be the complex conjugation of ¢°. Then p(Too)p®
is the normalized newform in A(T).

Let o = ayy, B = By, be the characters defined as above. Combining
Proposition [2.7] Lemma [2.§ and the formula

c(1/2,m) = {5(1/2, Bl) if T, =a @B,

_1 _1
—al-lp?(p) i mp=al|p?St,

we find that the ratio #2270 equals

(¢°,¢°)
(ptn) W, Wl @w, )
Wep oy 0 Tl el/2m)
S = pan e, @)@ = Ba p) (X +p~h) 7t i e(mp) = 0,
1
o], % (polme)) if c(mp) > 0.
From above equation together with the following equation (|II10, page 1403|)
o T o\ __ CQ(Q)_I o
<(70 7‘)0 > - [SLQ(Z) . FO(N pcp(ﬂ-))] Hf ||F0(Nfo)
(%) STy (2) rouvl)] Pl ™ (@ +p7)ife(m) >0,
we can directly deduce the lemma. O

We may regard F := Fg = (f, g, h) as the modular form on $?* of weight
(K1, ko, k3) given by F(z1, 20,23) = f(21)g(22)h(23). Let wp be the central
character of F|g given by

Wp = WfWgWh.
Let k be the Dirichlet character modulo p" defined by

. —a—14k2tkaThy /212 1)
(3.12) k =1y (" €01 €Q2 €Qs -

By definition, k? = X? ®) ijlx 7 1 Xgl. Define the character wllw/ 2 by

1/2 _ ettt g 1y 173 172
(3.13) wp =wppka =w T e, Peg, e,

Then w]l;/ % is a finite order Hecke character unramified outside p, and

(i)

= WfWgWp = WF

as the notation suggests. Let 2 = Q® Q@ Q be the split cubic étale algebra
over Q. Let

k1 — ko — ks

-
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Define the automorphic cusp form ¢} on GL2(AEg) by

S5 - = (p(Too) 9 @ wip/?) K s B V6,

(w1, 02,73) = G5 (01T00) - Ph(w2) - VI"OE G (25) - wp'/* (det ).
Here 9115 is the twisting operator as in ([2.2]). Put
t, = (tn, 1, 1) € GLQ(Ep).

We shall relate the the valuation of our p-adic L-function .Z,(Q) at @ to the
global trilinear period I(p(t,)¢}) defined by

I(p(tn)6}) == / (it 2. )

AX GL2(Q)\ GL2(A)

(3.14)

Put

k1—2 ko—2 k3—2
2

Proposition 3.7. Forn > r > max {c(nfp), c(ngp), c(mhyp), 1}, we have
25Q) = €Q(2)[SLa(Z) : To(N)] Cp(1) 1

2 A (p(tn)ph) — —
5 121 vy En(F, Ad) il 1L,0MG(2) df?

(3.15) di?:=d

Proor. First of all, since le is a p-stabilized ordinary newform, by the
multiplicity one for new and ordinary vectors together with (3.2)), we have

gpf(Q) : }Ql =nf- 1}Q1 TrN/Nl(eHEIX).
Taking the adelic lifts of both sides, we obtain that
(3.16)
(p(Toctn)ios @y () 2102 (Q) = np-(p(Toctn) @ r@wy ), Tenyn, (15 eHE™)).

We set
H=gp, .5,’%3 O |1k
where 5,’% is the Maass-Shimura differential operator. Then H is a nearly
3
X

holomorphic cusp form of weight kg, . Since ©(n)(Q) = k(n)n™ for n € Z,
from [Hid93l equation (2), page 330|, we deduce that

(3.17) eHq = e(gg,d™ (hg,|[k])) = eHol(gg, ik, (ho,l[k])) = eHol(H),

where d = qd% is Serre’s p-adic differential operator and Hol is the holomor-

phic projection as in [Hid93, (8a), page 314]. Using (2.5), (2.6) and ([2.8]),
we see that
1_%2 1_%3 * mpk, * -1
o =90H)=dy *d, * ¢y V0,0, @k,

1

Then oy € "421 (N prwy w%(p)) has a decomposition

o = Hol(pn) + Vi) + VEgh + -+ VI,

where Hol(¢p) and {(P;} ) are holomorphic automorphic forms. It
J=1,...,n
follows that Hol(ypg) = @(Hol(H)).
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Let 1} € Tord(Nlpr,Xf) be the specialization of 1}2. As a consequence
of strong multiplicity one theorem for modular forms, the idempotent 1; =
77;11} € ToY(N1p", xf) ®o Frac O(Q1) is generated by the Hecke operators
Ty for £ 1 Np, so we see that 17 is the left adjoint of 1}Q1 for the pairing

(— ®w;(1p), —) by Lemma and hence the right hand side of (3.16]) equals

ny - (Tenyw, (1f p(Tootn)pr @ wﬁp)) , S(eHE™))
= 0 [Ko(N1) : Ko(N)] - (p(Tostn) oy @ wyf,), DeHE™).

Note that for any prime £ # p, wy ) (@) = X,(p) () is the specialization of

Y1,y () (€)1, at Q1. From the definition (3.8)), (3.17) and Lemma we
find that the pairing in the right hand side of (3.18) equals

_k 'nk?1
4 F S O G /) o Ttaly 7y Uy el
cx®

gh

(3.18)

k1

-5 _
= 4 (Tt @7 eHol(on).
On the other hand, it is straightforward to verify by Lemma [2.6] that
(p(tn)Upe, ¢') = (0, Up¢'),
(0(To), Vid') = —(p(Tc) V-0, ¢')
(c¢f. [Hid85, (5.4)]), and together with (3.13), it follows that

1_k1 kq

— =L o 1—=2L _
di ? (p(Tootn)¢f @ wy ), eHol(pn)) = dy 2 (p(Tootn) 0} @ W (), 1)
= di* X p(Tootn) 0} © w0 VMol = di™ L(p(60)8%).
Combining the above equation with (3.16) and (3.18)), we find that
(P(Tootn) s, B ©wr ) ZF(Q) = ng[Do(N1) : To(N)dp™? - I(p(tn)0F,)-

Now the lemma follows from the formula of the pairing in the left hand side
given in Lemma [3.6] O

3.8. Ichino’s period integral formula for triple products.

3.8.1. The setting. In this subsection, we apply Ichino’s formula to express
I(p(tn)9}) as a product of the central value of the triple product L-function
attached to F' and normalized local trilinear integrals. We retain the notation
in the previous subsection. Let

—1/2
T =TfQuwp ", m=myand w3 =Ty,

with central characters w; = w: !

-1 .
g W s w2 = wy and w3 = wy, respectively.
Let

HQ =T X g X T3

be an irreducible unitary cuspidal automorphic representation of GLy(Af)
and let A(Ily) = A(m) ® A(m2) ® A(mg) be the unique automorphic real-
ization of HQ For brevity of notation, we simply write II for IIy. For each



HIDA FAMILIES AND p-ADIC TRIPLE PRODUCT L-FUNCTIONS 35

place v, let Vi, = Vr, , @ Vi, , @ Vpy , denote a realization of II,, where Vr, |
is a realization of m;, for ¢ = 1,2,3. Then we have the factorizations

H~®Hv, AT ®an

We let ¢p = p1 W o K3 € A(IT), where

—1/2
<p1:<pf®wp/, w2 = pg and p3 = pp.

Then we have a factorization ¢p = @), ¢, via the above isomorphism. Since

1/2

©f,pg and ¢y, are p-stabilized newforms and wy = is unramified outside p, we
find that ¢y = 1,0 ® P2, @ @3 € VIV if v # pand ¢p = 01, @2, @ @3 €
ord
VHP .
® Yiy € Vil is a new vector if v # p,
® iy, € Vor (Xip) is an ordinary vector attached to the character

Tip

Xip: Q) — C*, where

~1/2
(3.19) X1,p = O‘f,pr,p/ ; X2p = Ogp and X3, =

(a7, is the character attached to a p-stabilized newform 7 defined in

Remark .

For each finite prime ¢, define the polynomial Q; ((X) € O[X] by
(3.20)
f,0 0

1
Q4 (X)) = Xveldy)
120 (1— w2 (@)Be(f) 03 XY it ee i,

fegzzﬂb

Set Oy ¢(X) = Qyo(X) and Qs4(X) = Qp¢(X). Let dy = [[, =¥ € @~
We put

1/2,75 —1/2
=l 2.1 = wi*@y) - 05 @ w2,
y4
03 =0y O3 = Ph.

We give the factorization of the automorphic form ¢7 defined in (3.14). By
definition,

O = C1- p(To)pl B3 BV (C1 = wi ' (—Dwp (d)-
In view of (3.9), we find that that ¢} = Ci - Q,, ¢}, where

1,00 (Jo0) 01,00 @ ©2,00 @ V" 03.00 if v = o0,
(321)  @p=Q¢1p D2y ® 9%(,03,19 if v=p,

Q1 o(Vi)p1,0 @ Qo r(Vi)pos ® Q3e(Vi)pse ifv=1~01p.

Here 9]1; is the local twisting operator attached to k as in (2.12)) and V is the
level-raising operator as in (2.11)). Note that ¢} = ¢, is a new vector in Vp,
for £+ pN.
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Next we consider the contragredient representation I = T @M ®@mg. We
put
i :g0i®w;1 and @7 = cpf@w{l, 1=1,2,3.
Define ¢ and 5} € A(ﬁ) by
oF = 31 R 32 X 3,
S5 = p(Too)PT B 5 K V5 55
Recall that N; is the tame conductor of 7;. Take an isomorphism .A(INY ) ~
®, Vg, with Vg = Vz @ Vs, , ® Vz, . We have a factorization ¢p =
®v ¢va where ¢v = &l,v & 952,1) & SZS,'L;,
d)i,oo € V#::/oa ¢i,p € ngfi (Xi,pwéilﬁ
~ - 0 1 .
¢i,v S Wi,v((_Ni 0))]}%6? if v 7é p oQ.
Moreover, ¢ = X, 5;, where

7Tl,oo(joo)€51,oo ® &2,00 & V_;TQE?,,OO if v = 0Q,
(322) by = Prp® P2p @ OEDs, if v = p,

Q1(Ve)Bre ® Qo p(Vi)Boy ® Q0(Vi)Bse  if v =1L1p.
Here é@g(X) = Qij(w;l(wg)X) fori=1,2,3.
3.8.2. Ichino’s formula. For N = (N, N3, N3), we put

TN = (TN157N277-N3) S GLQ(AE)

Here Ty, is the matrix defined as in . For each place v of Q, we choose a
GL2(E ® Qy)-equivariant map by, : Vg, ®Vﬁv — C such that by (¢, ¢y) =1
for all but finitely many v. We introduce certain local zeta integrals that
appear in our application of Ichino’s formula. For each place v, we define
the local zeta integral

- L(1,1I,, Ad by (1L, (g :f:
(528) 1050 90) = LT 1) foowa bt g

Cv(2>2L(1/27Hv) bv(Hv(Tﬂ,v)ﬁbmggv)

Here dg, is the Haar measure as in §2.4.1. At the place p, we will consider
the local integral
(3.24)

rd e .
1 (o0, tn) :

L(1, IT,, Ad) / by (11 (gptn) 9}, ﬁp(t")az*ﬂ)dg
PGL2(Qp) ’

~ G(2)2L(1/2, 1L,) by (1L, (tn)p, byp)

Remark 3.8. The integrals I, (¢% ® ¢%) and Igrd(qﬁz*, ® 5;, t,) do not depend
on any choice of the realizations VHquﬁva the pairing b, and the new or
ordinary vector ¢, in virtue of the irreducibility of II, and the multiplicity
one for new vectors and ordinary vectors Proposition [2.2] This allows us to
evaluate these local integrals by choosing favourable realizations of Vi, .
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Definition 3.9. Define the set
e = {0eXFNTgNE) [ e(1/2, 1) = -1} .

From the rigidity of automorphic types in Remark [3.1] we can deduce that
there is a subset X~ of primes dividing N such that

-y — 1y o TV —
Y= ElegQQth = {6 : prime factos of N | E(WD@(VQ)) = —1}

for any arithmetic point @ € :£7f2
Proposition 3.10. Suppose that X~ = 0. Then

I(p(tn)op)* (=1)M¢(2) 1
- " 8L(1,11,Ad) L5 1)

(P(T N tn) i, Di)

.

=1

X 170, © 0 ta) [ ] 10107 © 91wy (dy).
vEp

PrROOF. Note that

H(p(tn)07)? = wioo (=1 I(p(tn)$7) - 1(p(tn) dF0)-
Applying [IchO8, Theorem 1.1, Remark 1.3], we obtain the proposition im-
mediately in view of the decomposition of ¢} and ¢} into pure tensors.
We remark that wi (—1) = (=1)* and the constant C' in Remark 1.3

loc.cit. equals (q(2)~! since the product measure [[,dg, = (q(2) - d7g
(cf. [II10), page 1403]). O

Lemma 3.11. We have the following equalities:
(1) If gt N is~a finite prime, then I,(¢; @ 52) =1;
(2) Io($% ® ¢3,) = 2k2Ths=hatL,

PrOOF.  Part (1) is [Ich08, Lemma 2.2]. Note that ¢} = ¢, is a new vector
in Vi, for a finite prime ¢ t N. The formula of the archimedean zeta integral
in part (2) is proved in [CC19]. For the reader’s convenience, we sketch
the proof. For i = 1,2,3, let W}, = Wr, o be the Whittaker newform of
the discrete series m; o = Dy(k;) in (2.10). Define the matrix coefficient
¢ : GL2(R) — C by

(p(9Ts0) Wiy, p(Toc)Wiy)  (p(9) Wiy, Wiy)  (87)*™ (p(g) V" Wiy, V" W)

Poo(g) = (0(To) Wiy, Wiey)  (p(Toc) Wiy, Wiy (P(To0) Wiz Wiy )

(vecall that m = M1=%2=k3) Note that ® is right SO(2)(R)-invariant, and a
lengthy computation shows that

y x\, 4k1F(kz +m)? 7 i (MY [(m D(ks+1i+37)
vl ) =m0 S 20 ()G e eors
(—y)’“"m“

(1= ) — VTR (1= y) + Voo 2

X
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By definition,
L(1, I, Ad)
Coo(2)2L(1/2, )

R R V(7

By a direct computation, we obtain

B 4R (kg 4+ m)? — i (M (M L(k3+i+7)
100) = gy 2227 () ()t ortots

o 92-2kr+2m—ij . (ki —m+1—1)I(ks —m + j)

Lo (¢5 ® 05) = - (87)THM I (Do),

where

(3:25) T(k1 — 2m + i + )T (k1)
At I‘ kg—l—m - ( ) (k1 —m +j)
—_— —. ° S’)
(ks jz T(ks+j) 7
where
= (ks +j+i) T(ky—m—1+1i)
Tk .
5 2*’"2 <z> T(ks +1)  T(ki—2m; +1)

=

Applying the combinatorial identity [Orl87, Lemma 3| to S;, we find that

(ks + )T —m—1) T(a—ks—m) TG+1)
F(kl—m—l—j) F(kl—k3—2m) F(j—m—}—l)'

Substituting the above expression to the last line of (3.25)), we find that
g I'(ky —m — 1)[(k3 +m)'(ko + m)I'(m + 1).

S = (-1

I(®o) =

(k)T (k2)T'(k3)
Hence, part (2) follows from the above expression of I(®,) and
L(1, I, Ad) _3Fc(k‘1)Fc( 2)l'c(ks)
COO(Q)QL(l/Q, HOO) 2. Fc(kl — 1)Fc(l€3 + m)Fc(kJQ + m)FC(m + 1)
U

To distinguish the contributions from each term in the formula of flf (Q),
we introduce the normalized local zeta integrals. For each place v, define the
local norm of Whittaker newforms for II, by

(326> BHU = Bﬂ'l vBﬂ'Q vBﬂ'Sv
with By,  the local norm of 7; , defined as in (| . To each positive integer

n, we assomate the local norm B[ n]

11+ of ordinary Whittaker functions for II,

given by

3
[n] . CP( ) ord ord —1
(3.27) Bl = COPLL I, Ad) 1;[1 pltn) WRrS, WS @ w; ).
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We define the normalized local zeta integrals

B["}d 9

3.98 junb Iord *®~*7tn 1pr .Cp(l) :

(3.2) P Betn) 1 e B

(329) S, = L6 ©3) - Ba, M-w;,;<df>|dérq for g | N.
q >4

Definition 3.12 (The canonical periods of Hida families). Define the canon-
ical period €2y o of the specialization f, at an arithmetic point ¢ by

E(fo Ad)

fo
where f¢, is the normalized newform associated with fg of conductor Ng
and ny,, is the specialization of ny at @ and Ep(f o> Ad) is the modified Euler

factor in (3.10]).

We summarize our computation in the following

s, = -2V £ v

Corollary 3.13. Assume that X~ = (). For every Q = (Q1,Q2,Q3) € X5,
we have the interpolation formula

2 L(1/2, II
(ZE@) = vr(-D(=1ka . (éf"? 730 T Fig.
Q1 qlN

PrROOF. By Waldspurger’s Petersson inner product formula (Proposition [2.7))
and the identities

By, =2 (thtk) =3 B —1if gt N
with k; = kq,, we find that

3

- 8L(1,11,Ad _ _3n
H<p(7'Nitn)§0i, (pz> = (23) -2 (k1+k2+ks) 3nglrd H BHq-
paley ¢a(2) PN

Note that wy,(—1) = (=1)*4)y () (—1). Combining Proposition Propo-
sition [3.10] Lemma [3.11] and the equality

[SL2(Z) H
a1V ! Cq

we get the corollary. (|

4. THE BALANCED p-ADIC TRIPLE PRODUCT L-FUNCTIONS

4.1. Notation and conventions. Let D be the definite quaternion algebra
over Q with discriminant N~. Let v : D* — Q* be the reduced norm. For
any commutative Q-algebra R, put

D*(R) = (D®qR)".

If v is a place of Q, let D, = D ®q Q. For z € D*(A), denote by z, € D}
the local component of z at v. We fix an isomorphism ¥ = quN— v,
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DX(Q(Nf)) o~ MQ(Q(Ni)) once and for all. Let Op be the maximal order
of D such that ¥,(Op ® Z,) = Ma(Z,) for all primes ¢ { coN~. Let N be
a positive integer prime to N~ and let

N=NtN".
Denote by Ry the Eichler order of level N in D with respect to ¥. Put

* %

() = {o = (anla € B 1 0400 = (§ 7) (mod N2, for g .

We shall frequently use the following notation in this section: let (CCL Z) €

~

GL2(QW ™)) act on 2 € DX by

a b\ _1,{a b
x <c d> =z U (<c d>)
Let d"z be the Tamagawa measure on A*\D*(A) with the volume
vol(A*D*\D*(A),d"z) = 2.

There exists a positive rational number Vol(ﬁjf]) such that for any f €
LYD*\D*(A)/DZXRY), we have
@y [ fede=vlB) Y fa) ()
AXDA\DX(A) [z]eD*\D* /R
where [x] means the double coset DXJCITZJXV and 'y 4 := (Dxﬂxﬁfvx_l)QX/QX.
By Eichler’s mass formula, we have
48
vol(RY) H GO JTa+egH™!
qIN - N+

— 48 1+q71
T [SLa(Z) : To(N)] H [

(4.2)

q/N~

For a non-negative integer x and a commutative ring A, let L(A) =
A[X, Y |geg—r be the space of two variable polynomials of degree x over A. Let
pr + Ma(A) — Endy Lig(A) be the morphism p,(9)P(X,Y) = P((X,Y)g).
Let (, )x : Li(A)x Ly (A) — A[Z] be the pairing defined by
(1) (™" ifi+= s,

(2

(XY, XIYRTT) = U
0 if i 4+ 7 # K.

Let g — ¢’ be the main involution of Ms(A) given by

a b\ (d —b
c d)  \—c a "
It is well-known that

(4.3) (Px(9)P1, P2) = (P1, pu(g') Pa) .
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4.2. p-adic modular forms on definite quaternion algebras. In the
rest of this section, we shall freely identity Dirichelet characters y with their
adelizations xya when no confusion may arise. Let O C Oc, be a finite flat
extension of Z,, containing all ¢(N)-th roots of unity. For an O-algebra A and
a A-valued (even) Hecke character x : QX\Q>< — A* | we let S£+2(N, X, A)

be the space of p-adic modular forms on D* of weight £ + 2, level N and
branch character x, consisting of vector-valued functions f : D* — L (A)
such that

flazuz) = p,@p(ugl)f(x)z;'ﬂxfl(z) for all « € DX, we Uy (N1),z € Q*.

Here wy, is the p-component of u and pj, ,(up) = pr(¥p(up)). For each integer
d prime to pN~, define the level raising operator Vj : S£+2(N,X,A) —

S/£D+2(Nd7X7A) by
-1
vafe) = £« () 1))

We recall the Hecke operators T, and the operators U, acting on f €
S£+2(N,X,A). For each prime ¢ | N7, let wp, € Rywith v(wp,) = q.
The Hecke operator T; for ¢ f Np is given by

1 0 wy b
T,f(x) = + !
Jo=faly 2+ X se(T))
bEZq/qZq
and the operator U, for ¢ | M N™p is given by

)= 3 1 (T0 1)) foral Mo Ugtle) = o) for | N7,

bEZy/qZ,

ENCED S G I G )

beZy/pZy

Here w, = (wqy) € QW 7)* is the idele weq =¢q and wye =1 for £{ N™q.
If A is p-adically complete, then the ordinary projector e = lim, Ug!
converges to an idempotent in Endp S£+2(N, X, A).

Inner products. Denote by €y : Q+\(§X — Z; the p-adic cyclotomic char-
acter defined by ecyc(a) = |al, ap. Assuming 6 - k! € A*, we have a perfect
pairing
('7 )N S£+2(N, X A) X S£+2(N, X717 A) — A
given by
(f1, fo)n = Z (Jr(), fa(x))x - €cye(v(z))" - (#FN,HG)71~

[x]eD>\D* /R,
Let 78 = (Tg,q) € D* be the element with ’7'%7(1 = 1if ¢ + N and

TNg = \Ilq1<<_(;\[ (1))) for ¢ | N*. Define the Atkin-Lehner involution
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[T]L\)f] : S/?—I—Q(Nv X5 A) — S/?—I—Q(Nv X_17 A) by

(TR (@) = prp(TRp) FaTR)X(v(@)).
We can define a new pairing (, ) : S£+2(N,X,A) X 8£+2(N,X, A) — A by

(fi, f2)n = (f1,[TR] f2) N

It is well known that this new pairing is Hecke equivariant and perfect
(cf. [Hid06l Lemma 3.5]).

4.3. Automorphic forms on definite quaternion algebras. Fixing ¢, :
C, ~ C once and for all, we choose an imbedding ¥, : Dy <~ M3(C) such
that Voo () = 1p(¥p(a)) for & € D*. Define the unitarized representation
P+ DX — Aut L(C) by p(2)P = |v(9)[? ps(¥oo(9))P for P € Ly(C).

For a finite order Hecke character w modulo N*, let AP ,(N,w) be the
space of L (C)-valued automorphic forms on D*(A) of weight x + 2, level
N and character w. In other words, AL ,(N,w) consists of functions ¢ :
D*(A) — L,(C) such that

plazuscuez) = p(ugg )p(z)w(z)
(€ D, uoo € DX, ug € Uy (N), 2z € A™).

Here x¢ denotes the finite part of z. To each p-adic modular form f €
SP (N, x,0), we associate the adelic lift (f) € AP, ,(N,x™!) defined by

(44)  B(N@) = pe(Voo(wx)iplprplay) () - W(@)[§2, @ € D}

Let AP (w) be the space of (scalar-valued) automorphic forms on D*(A)
with central character w. For ¢, ¢’ € AP (w), define

(p,¢") :/AXDX\DX(A) (@) (z)w H(v(x))d .

Here d"z is the Tamagawa measure on A*\D*(A). For f € SP ,(N,w™!, C,)
and u € L,(C,), let &(f)y € AP(w) be the automorphic form given by the

matrix coefficient @(f)u(z) := (P(f)(x),u),. By (4.1) and Schur’s orthogo-

nality relations, we have

vol(R))

(4.5) <p(72)@(f)U7 ¢(f)v> = (N+)n/2(1 4 Ii)

’ <f7 f>N ' <u7v>n‘

4.4. Hida theory for quaternionic modular forms. In this subsection,
we recall Hida theory for modular forms on definite quaternion algebras
following [Hid88b|. Suppose that p { N. For each positive integer «, let X,
be the finite set
Xo = D*\D* /UL (Np¥)

and let O[X,] = @, cx,, Oz be the finitely generated O-module spanned by
divisors of X,. Recall that A = O[1 + pZ,] = O[T], where T' = (1 + p) , —1.
For z € 14 pZ,, let (2), act on O[X,] by (2), = = x <S 2) Let A =
(Z/pN+Z)*. For d € A, the diamond operator o4 acts on O[X,] as follows:
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decomposing d = (dy,d2) € (Z/pZ)* x (Z/NTZ)* and choosing an idele
d € Z* such that the p-component élvp = w(dy) € Z; is the Teichmiiller
lifting of d; and the prime-to-p component dP) € ZP)* ig a lifting of da,
we define o4z = xd. Thus O[X,] is a finitely generated A[A]-module.
Moreover, O[X,] is equipped with the usual Hecke operators T, for ¢ { Np

given by
_ 1 0 wy b
qu—x<0 wq>+ Z x<0 1>,
beZy/qZ,
the operator Uy for g | Np defined by

U,z = Z x(%q ll)) ifg| N'p; Ugz=awp, ifq| N,
beZq/qZq

The ordinary projector e = lim | Ug! converges to an idempotent in Enda (O[X,]).
We introduce the space of A-adic modular forms on definite quaternion
algebras. Let X, := D*\D*/U;(Np*>), where

b
Ui (Np>) = {gEUl(N)|gp: (g 1),&6Z;,b€Zp}.

We have a natural quotient map X, — Xg — X, for 3 > a. Let F, be the
principal ideal of A generated by (1 + T)P" — 1.

Definition 4.1. Denote by S”(N,A) the space of functions f: X, — A
such that
o f(xz) =f(x) (2)? (2)}" for z € 1 4 pZy;
e for any « sufficiently large, the function f (mod P,): Xoo — A/P,
factors through X,.

We call SP(N, A) the space of A-adic modular forms on D* of level N.

By definition, we have

(4.6) SP(N, A) = lim Homy (O[Xo], A/ Pa) @, A,

67

where 13 : A — A is the O-algebra homomorphism given by t2(T) = (1 +
T)72(1 + p)?2 — 1. Hence SP(N,A) is a compact A-module endowed with
the natural Hecke action given by tf(x) = f(tx) for t = T, U, and the
action of diamond operators o4. In addition, the ordinary projector e =
lim Ug! converges in Endy S”(N,A). For a finite order Hecke character

¥ : QX\Q* = 0% modulo N*p, put
SP(N, x, A)
:={f € SP(N,A) | o4f = x '(d)f for d € A}
={£ € SP(N,A) | £(w2) = £(2) - X7 (2) (eeye(2)” (Eevel2))3 ! for = € Q.

Let I be a normal domain finite flat over A. We define SP(N,I) = SP (N, A)®,
I and SP(N,x,I) = SP(N, x,A) @, L
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Theorem 4.2 (Control Theorem). Let Ny := ", x(d)og € O[A] and let
P, be the ideal of A[A] generated by {x(d) - 0q — 1} 4ca. Suppose that p > 3.
Then
(1) SP(N,x,1) is a free I-module, and the norm map Ny : eSP(N,1)/P, ~
eSP (N, x,1) is an isomorphism.
(2) For every arithmetic point QQ € X7, we have a Hecke equivariant
isomorphism

eSP (N, x, I) @11/pq = eSf, (Np®, xw? "2eq, 0(Q)),
f (mod p@) — fQ,

where oo = max {1, ¢p(eq)} and fg is the unique p-adic modular form
such that

Q(f(2)) = (fo(z), X*@2), s for all 2 € D*.

Proor. This is a reformulation of Hida’s control theorems for definite
quaternion algebra. We sketch proofs in [Hid88b| for the reader’s conve-
nience. We may assume I = A and O = O(Q). Let A, be the p-Sylow
subgroup of A. We first show that eSP (N, A) is a free A[A,]-module. For
any abelian group A, let H°(X,, A) be the space of A-valued functions
on X,. Let 7o'YN) := lim ligﬂ eH%(X4,p?O/0O) be the discrete A-
module #°*(0; U1 (N7T)) defined in [Hid88b, Theorem 8.6]. Let Vod(N) :=
lim e- O[X,] be the Pontryagin dual of #°4(N). In virtue of (.6),

eSP (N, A) = Homp (VO'Y(N), A) @4, A,

so it suffices to show that V°'4(N) is a free A[A,]-module. For any positive
integer o and character & : (Z/NTp*)* — Oj of p-power order with value
in some finite extension K of Frac O, we define the Og-module

HO(X,, &, A) = {f € HO(X,, A) | flaz) = £(2)f (@), @ € Xu,z € ZX} :

where A = K/Ok or Ok. Since any finite order element in D* has order only
divisible by 2 or 3 and p > 3, one verifies that the group D*NzU; (Np®)z~—! =
{1} for any € D* and that

HO(X,, & K/Ok) = H) (X4, &, 0k) ® K/Ok.

In particular, HY(X,, &, K/Of) is p-divisible. Hence, the A[A,]-freeness of
Vord(N) follows from [Hid88b, Corollary 10.1] (and the proof therein). From
the A[A,]-freeness of eSP(N, A), we deduce that the map f — N, f induces
an isomorphism

N, : eSP(N,A)/P, ~ eSP(N, A)Nx=! = eSP(N, x, A).
This proves part (1). We proceed to prove part (2). By [Hid88b, Theorem
9.4], we see that

eSD(Na XaA)/g‘)Q = eSD(Nv A)/(PX7 @Q) = 651% (ana Xw2_kQ6Qv O)
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The above isomorphism f +— fg is given by the dual map to the one ¢ in
[Hid88bl (8.10)], whose explicit description is given in [Hid88bl line 9-11,
page 375]. This finishes the proof of part (2). O

A perfect paring on the space of ordinary A-adic forms. For each positive
integer «, put

Xo(Np®) = D\D* /Ry ..

To each finite order character y : QX\QX — O, we associate a universal
I-adic deformation defined by

X1 QNQ = T xa(2) = x(2) (Eeve(2)) 72 (eeye(2))y -

For f,f’ € eSP(N, x, 1), define

Byo(f.f) = > U, f(arF,)f (2)x1(v(2))-(#F nper) " (mod Py) € I/ P,
[z]€ Xo(Np™)

One verifies that By o41(f, ') = By o(f,f) (mod F,).
Definition 4.3. Let

By : eSP(N, x,I) x eSP(N, x, 1) = I
be the Hecke-equivariant I-bilinear pairing defined by

BN(f,f,) = @BN’a(f, f’) S @I/Pa =1

For every @ € %fr with kg = 2, we have
By (f,£)(Q) = (U, *fo, fQ) npe

for any a > max {1, ¢,(eg)}. This in particular implies that the pairing By
is perfect.

Lemma 4.4. For each arithmetic point Q in Xy and integer o > max {1, ¢,(eq)},
we have

By (f, )(Q) = (~1)* - (U, *fq., ) npo.

PROOF. To lighten the notation, we let kK = kg — 2 and let f = fg, [’ =
f € eS,%(NpO‘, xw "eq, O(Q)). We first claim that the value <U;5f, I Nps
is independent of any integer 5 > «. Choose a prime ¢ { Np such that {+1 #
0 (mod p) and £ is inert in Q(v/~1) and Q(v=3). Then D* Nz Ry, .a " =
{£1} for all z € D*. Write X = x1(mod Q) = xw "eqel, for brevity.

cyc
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For ¢ as above, (14 ¢) - <U;Bfa f/>Np

Y AU f @), F @)k - xa(v(@))

[x]€ X0 (NELpB)

ST DR 0L (G (P WA G | S R )

[z]€Xo(NEp®),
beZy, /PP~ 2

s equals

= 5 (S e UarR (D e )T @herale)
[z]€X0(NEp®),
bEZy /PP Zyp

[x]EDX\ﬁX/EX,gpa beZy /pP=Zy
1 —pPob\ . 1 —pf
(P (T (0 o ))Uﬁf(xrﬁpa (0 ! )J’(m»-m@(z))

= Y {FRelU (@) f @)xq () = (L4 0) - (UL f, ) e

[x]€Xo(NEp™)

This verifies the claim. For z € D*, we let f(z) = (f(z), X*), be the spe-
cialization of f(z) at Q. For any positive integer m, there exists a sufficiently
larger 8 > m + vp(k!) such that

(1+0) - By (£,)(Q) (mod p™)
= > Uy, f@)xev() (mod p).
[z]€Xo(Np?)
On the other hand, we have

(U, f, f npe = (U, P £, f) nps (mod p™)

=141 Z Z

[z]€X0(NpB) 2€Z, /pPZyp
— B
0 o8l (o o 0T (T Do) - o p7)

=(1+07" Y (U O TG ), SO ) (1) xa(v(@)

[x]€ X0 (NEpB)
—(—1)" - B (£, £)(Q) (mod p™).

In the third equality, we have used the fact that (U} f(z), X*) = Ugf[o] (x)
for any n € Z. This proves the lemma. O

4.5. Hecke algebras and primitive A-adic forms. Let T?(N,I) be the
sub-algebra of Endy(eSP (N, 1)) generated by T}, U, and the diamond oper-
ators (d) over I and let TP (N, x,I) be the holomorphic image of T?(N,T)
in Enda(eS” (N, x,I)). Thanks to the Jacquet-Langlands correspondence,
there is a surjective I-algebra homomorphism JL: T(N,I) — TP(N,I) such
that JL(Ty) = T, for g Np, JL(U,) = U, for q | N*p, JL(U,) = (1)U,
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for ¢ | N~ and JL(04) = o04; moreover, for an ordinary A-adic newform
f € eS(N, x,I) of tame conductor N with supp N~ C E(}, the correspond-
ing homomorphism Ay : T(N,I) — I factors through JL. We denote by
)\? : TP(N,I) — TP(N, x,I) — I the morphism such that Ay = )\? o JL.
Put

eSP(N,I)[AF] := {f € eSP(N,I) | t- £ = AP (¢)f for t € TP (N, I)}.

The multiplicity one theorem for GL(2) implies that dimpyac o €S” (N, I) [A?]@A
Frac A = 1, but we do not have a notion of normalized eigenforms for quater-
nionic modular forms due to the lack of the g-expansion. Nonetheless, we
have the following

Theorem 4.5. Suppose that f satisfies the Hypothesis (CR, supp(N ™)) in
. Then the I-module eSP (N, 1) [A?] is free of rank one. In this case, a
generator fP of eSP(N,I) [)\?] is called the primitive Jacquet-Langlands lift
of f. By definition, fP is unique up to a scalar in I*.

PROOF. Let m be the maximal ideal of TP (N, I) containing Ker )\?. Un-

der the Hypothesis (CR), we note that eSP(N,I), is a free TP(N,I)y-
module of rank one in virtue of [CHIS, Proposition 6.8] and Hida’s con-
trol theorem (c¢f. [PWII, Proposition 6.4 and 6.5]). By Theorem (1),
we find that eSP (N, x,I)y is also a free TP(N, x,I)m-module of rank one
which in turn implies that TP (N, y,I)y is Gorenstein as eS”(N,yx,I)n
is equipped with a Hecke-equivariant perfect pairing By. It follows that
eSP(N,Du[A?] = eSP(N, x, im[A7] = TP (N, x,D)u[A?] is a free of rank
one I-module. g

4.6. Regularized diagonal cycles and theta elements. Recall that £ =
QaQ®Q is the totally split étale cubic algebra over Q. Let D = DD D.
For each positive integer n, let

UE,l(an) = Ul(an> X Ul(an) X Ul(an>
be an open-compact subgroup of ﬁg Define the finite set

X, : = DA\D}/Up1(Np™)Q*
= (X, X X, ¥ Xn)/QX.

The set X, is a zero dimensional analogue of the triple product of modular
curves. Consider the finitely generated Z,-module Z,[X,] equipped with
the operator Ug, = U, ® U, ® U, and the ordinary projector er :=
e®e®e. For each (z1,x2,23) € lA)E, let [(z1,x2,23)] denote the double

coset Dg(xl,xg,xg)UEJ(an)QX_ Set Tpyn 1= <_(;n (1)> € GL2(Qp).
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Definition 4.6 (Regularized diagonal cycles). Let A, € Z,[X,] be the
twisted diagonal cycle given by

. p" b p" b+z 10
A= Y > [@(0 1),95(0 ) ),mpn<0 Z))]
[x]€Xo(Np™) bEZy,/p"Zp,
2€(Zp/P"Zp)*
and define the regularized diagonal cycle Al by
Al :=Ug" (epAy).
The following lemma allows us to define the A-adic diagonal cycle

AL, = lim Af € lim Z,[X,],

where the inverse limit is taken with respect to the natural homomorphism
N1 0 Zp[Xnt1] = Zp[Xa).

Lemma 4.7 (Distribution property). For every n > 1,
No+1a(Af 1) = Al
ProOOF. It is equivalent to showing that
Nn—l—l,n(An—H) = UE,pAn-
Let Sy, := (Zp/p"Zp) % (Z,/p"Zy)*. A direct computation shows that
Nn+1,n(An+l)
o p" b pt b+ z 1 0
= Z (UP®UP®Id)[(m<O 1),1’<0 T R )]

[z]€Xo(Np"H1),

= > > )

[z]€Xo(Np™) (b,2)ESn c€Zp /pZy
p" b p" b+ z 1 0 10
(U, ® U, ®1d)[(x <0 1) , T ( 0 1 ) , T <p”c 1> Tpnt1 <O z> )]
=(U,® U, ® Up,)A,.
This proves the assertion. ([

Following the notation in we let R = Il®012®013 be a finite ex-
tension of Ry = O[T1,T»,T3]. For a triple of ordinary A-adic quaternionic
forms

(fa g, h) € GSD(N’ 1/)1711) X GSD(Nv ¢2512) X GSD(N, w3713)7
welet F=fXgXh: Dg\ﬁg — R be the triple product given by
F(z1,22,23) = f(21) ® g(z2) ® h(x3).

Let x% : Q*\Q* — R* be the reciprocal of a square root of the character
11, ® a1, ® Y31, defined by

Xi(2) = W(2) (€eye(2)) 7> (eeye (21 (Ecye (21 (Ecye(2))1)” € RX
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and set
F* (1,22, 23) := F(x1, 22, 23) - xp(v(x3)).
Then F* naturally induces a Z,[T1, T, T3]-linear map
F*: lim Z,[X,] = R.
n—oo

The theta element O attached to the triple product F is then defined by
the evaluation of F* at the A-adic diagonal cycle. In other words,

Op ;= F*(Al ) e R.

4.7. The construction of p-adic L-functions in the balanced case. We
let F = (f,g,h) be the triple of primitive Hida families of tame conductor
(N1, N2, N3) in §3.5] Recall that £~ is the finite subset of prime factors of
N = lem(Ny, Na, N3) in Definition Let N~ = [[jex- . In the remainder
of this section, we assume that

o #(X7)is odd,

e f. g and h satisfy the Hypothesis (CR, ¥7);

e N~ and N/N~ are relatively prime.
Let D be the definite quaternion algebra over Q with the discriminant N~
and let

(fP,g",hP) € eSP (N1, b1, 11) x €SP (Na, 12, I3) x eSP (N3, 3, 13)

be the primitive Jacquet-Langlands lift of (f,g,h) constructed in Theo-
rem 5]

Definition 4.8. Let N;" = N;/N~ fori = 1,2,3and N* = lem(N;", Nj7, N3").
Then N = NTN~. Define

(FP*, gP* hP%) € eSP (N, 41, 11) x eSP (N, 19, Ig) x €SP (N, 13, 13)

by
= OB T Vi, £P
res{y)
gD* = Z (_1)|]‘BI(Q)_1'Vd9/nggDv
ey
P = N (=)Br(h) T Vg, i, B
rcsy)

Define the triple product FP* DE\ZA?E — R by
FD* - fD* Ig gD* & hD*.

Then FP* is an eigenfunction of the operator Ug, with the eigenvalue
a,(F) :=a(p, f)a(p,g)a(p, h). We define the associated theta element © b«
to be the p-adic L-functions attached to the triple (f, g, h) in the balanced
range.

4.8. Global trilinear period integrals.
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4.8.1. The setting. In this subsection, we relate the evaluations of the p-
adic L-function © pp. at arithmetic points in the balanced range to certain
global trilinear period integral on Dy. The set ﬁ{%‘ﬂ of arithmetic points
in the balanced range, consisting of arithmetic points @ = (Q1,Q2,Q3) €
}:;rl X %;; X %f; such that

kg, + kg, + kg, = 0(mod 2); kg, + kg, + kg, > 2kq, for all i =1,2,3.

Let Q = (Ql,QQ,QQ,) € :f%al. Put

ki = in and R = k‘z —2fori= 1,2,3.
We keep the notation in Thus F' = (f, g,h) denotes the specialization
Fq = (le,gQQ, hg,) of F at @ and w;ﬂ is the square root of the central

character wp = wrwgwy, defined in (3.13). Let II = Ily be the automorphic
representation of GLa(Ag) defined by

HQ: Ty ®w;1/2 X Mg X T,

Let (fP,gP AP) = (f81,932,hD3) be the specializations in the sense of
Theorem (2). Then (fP, g”, hP) belongs to the space
S a(Nip™,wi, 0(Q)) xS 1o (Nap™, i, O(Q)) xS 2 (Nap™, w1, 0(Q)),

where

. -1 K1 -1

Let psp = o(fP), g0 = &(gP) and ¢,p = @(hP) be the associated adelic
lifts as in (4.4). We have

1

-1, ko —1 -1 k3 _—
, Wg =Yy w 26Q2 and wy, = Y5 w 3€Q3.

(SDfDaSOgDAOhD) € AnDl+2(N1pnan) X AEQ+2(N2Pnan) X Aan+2(N3pnaWh)-

Let Qi 0(X), Q24(X) and Q3 ¢(X) be the polynomials defined in (3.20]) and
put
(4.7)

=TT oubieyo ™. o8 = T Qa2 =TT e
¢ ¢ ¢

Note that

o gR1/2 1/2,75 ~1/2
ol = dp () - (557 @ ',

* K K3 /2
oF* = di? (gl B = d - a(hEy).

Let Ly(A) := Ly, (A) ® Ly, (A) ® Ly, (A) for any commutative ring A and
Pr = Pry @ Pry @ pry. Define p; and pyp likewise. For any Q-algebra R, let
DJ(R) := D*(R) x D*(R) x D*(R) and let v, : D5(R) = R* be the map
vp(z1, 20, x3) = [T2_, v(z;)". Define the vector-valued automorphic form

(4.8)

¢"*: Di(A) = Ly(C),
G (01,02, 23) = of " (11) © 93 (22) ® pF*(w3) (x5 € D (A)).
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Define P,, € L.(Z) by

P, =(X1Ys = XoV1)"1 (X3Y1 — X1¥3)"2(X3Y — X2Y3)",
" K1+ Ko + K3
Ky = ———————— — Kj
2
Then Py is a basis of the line L,(C) fixed by DX under the action of pj.
Define the automorphic form

P :DE(A) = C,

(49) (i=1,23).

(4.10) ’
¢}l«2*($1; 2, ‘TS) == <¢D*(‘r17 2, 1173), Pﬁ>ﬁ)

where (, ) = (, i1 @ (, ko @ (, )ry- One verifies that
(4.11) PP (T1Uoo, Tolloo, T3lioo) = GF* (1, T2, 43) for U € DX,.

4.8.2. The global trilinear period integrals. Let ng = max {c(eq, ), c(€Q,), c(€q,), 1}
and let n > ng be a positive integer. Let t, € D3 (Qp) be the matrix given

b
) ) (G o

We shall relate the interpolation to the global trilinear period integral
: L p 0 p"\ 7
T R B C UL I (A |8
DXAX\DX
Here d"z is the Tamagawa measure on A*\Dj.

Proposition 4.9. For every n > ng, we have

1/2 ,m
1 y wg, (P") p"] 1
@ Dx - —=__ I tn Dx . .
roe(Q) vol(R)) (p(En)97") ap(F)"p(2) wil?(ds)as®

where a,(F) = a(p, f)a(p, g)a(p, h) and d%/Q = d;1/2d52/2dz3/2 defined in
(13.19)).

PROOF.  We begin with some notation. Let Q(FP*) : Dg\]_/ig — Oc,
denote the value of FP* at the point Q € Spec R(Qp). Namely,

QFP*) (w1, x2,73) = Q1(fD*(m))Qz(gD*(wz))Q3(hD*(w3))-

Let (fP*, gP* hP*) = (le , gQ ) denote the specialization of (f7*, gP*, hP*)
as in Theorem E . Put

FD* = Px - gD &hD*7 D (21, w0, w3) = FP(21) @ gP* (2) @ WP (3).

By definition, we have

(4.12) QFP*) (w1, w2, 33) = (FP* (21, 22, 73), X[ X5> X5%) 0.

Define the adelic lift FP*: DS(A) — L, (C) of FP* to be the function
FPx(z) = p&p(ajp)ﬁD*(x) (x € DR (A)).
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Then one verifies that
1/2
() = dif? - (FP*(2), P - [V ().

Let my, be the p-adic valuation of (k1 + k2 + k3)! and let m > my be a
positive integer. For a number A € C,, denote by A (mod p™) the residue
class of A in C, modulo p™Oc,. By definition, for any sufficiently large
integer s >n+m+mg > 1,

(4.13)
O o+ (Q) (mod p™)
_ — D pS b ps b+ 2z
SR DD DI o 1C (A PR AR
[z]€Xo(Np*) bE(Zp/p*Zp),
2€(Zp /p°Zp) ™
x kp(2)2"% - x5 (v(x)) (mod p™),

-1

where kj,(2) := wp /2wh(z) for z € Z; and xg, is the specialization of x7 at

Q
=12 g, K1t ket k3 kit kot ks
XQ _U')F : €CyC (rﬁ T 2 - 2 - 3)
Putting
W. = {(b1,b2) € (Zp/P*Zp)* | b1 — b2 € (Z,/D°Zp)" },

we see from (4.13) and (4.12)) that

(4.14)

O o+ (Q) (mod p™) = ay(F)~° Z (by — bg)”“§ﬂ<h(b1 — bg)x’é(u(m))
z€Xo(Np?),
(bl,bg)EW;

= a(F) Y > Yo kb —bo)xg (@)

2€Xo(Np?®) cep™Zy [pSZy (b1,b2)EW]

D+ p° by p° ba 0 1 _ K VRl YR2 Y A3
F e <cp5 1+b10>)7x <6p5 1—|—b26> o <—P8 0))7(b1 R R

To simplify the above expression, we note that by (4.3)),

<@ (% ) e (7)) (nod )

(pr(ay VFP* (g1, 292, 293), Pr)w = (FP* (291, w92, 293), pr(9) ©95@95) P )
with

(P by (P by (0 1
g1 = Cps 1+b10 y 92 = Cps 1+b26 y 93 = 7ps c)’

we find the following congruence relation modulo p™

(pe(zy ) FP* (g1, 292, 293), P
D% 1+bic —b; 1+ byec —bo c —1
(F7"(xg1, 292, 293), pn(< 0 o el 0 )%l o )P

(FP*(2g1, g2, 2g3), (b1 — b2)"3 X[ X52X57) .
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Substituting the above to (4.14)), we see that © pp.(Q) (mod p™) equals

ap(F)™" > > D kb = b)xp(v(@)

z€Xo(Np™) cepnZy /D5 Zy, (b1,b2)EW)

1\ sy, [ PP by p* ba 0 1 m
X <pﬁ(xp )F (l‘ (Cps 1+b10) 7x<cps 1+b20) 7x<_ps c ),P£>£(m0dp )

—a,(F) Y Kb — ba)xp@)v(a,)

2€X0(Npn) (b1,b2)EW!
Dx,. (P° b1 p° bo p" —p"c m
X Z (F (x(o 1),36(0 1),prn< 0 1 >),P,€>,€(modp )
c€p"Zyp/pZp
-n —-1/2 Tr
=ay(F)™" Y I (b1 — bo)wp |- % (v(a)

x€Xo(Np™) (b1,b2)EW),

x (FP*(x (0 b11> T (po bf) , 2Tpn ), Py (mod p™).

The last congruence relation holds for any sufficiently large m, so we obtain
the expression

Opp(@) =ap(F)™ Y S ke K (v(@)
z€Xo(Np™) b1€(Zp /p"Zp) >,
(4.15) b2€Zy [P Zy

x (FP*(x <% bﬁ@),x(po bf),mpn),m%.

By the definition (4.8)),

- —-1/2

ng*(xl,:L‘g,:L"g) = d%m . FD*(:El,mg,:Eg)wF (v(z1)) }I/%(l’l,l'g,l'g)’lm

A

for (w1, 29, 13) € ﬁg, and using (4.11]), we obtain

12 by b b

> et gee) @ (" TR) e () .
z€Xo(Np™)

1/2

w n n|—Trks n n
— F7P(/Z? )|p | ¢}Q*($ p b1 + bo .z p by L aT n)d‘rx.
VOI(RX )dﬁ/Q 0 1 0 1 p
Np™ F AXDX\D;{
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Since kj, = w}l/ 2wh, we find that the right hand side of the equation (4.15)
equals

wFp )/|\pn|_rr€l{ / Z ]kh(bl)

X a7y
Oép(F) VOI(Ran)(iF/QAXDX\DI>§ b1€(Zp/anp)Xa

b2€Zyp /P"Zp
X $P*(z (po by ‘1‘ 62) .z (p() blg) Ty )dT T
2n 1— -1 wl n n
_P (1-p) Fp( )|p/l / (ﬁ*(x (p 1) , T (p (1)> s 27pn ).
ap(F)" vol (R, )d AXDX\DJ 0 0

Since vol(]%f,) = Vol(ﬁﬁpn)(l +p~1)p", the proposition can be deduced from
the last equation directly by making change of variable. O

4.9. Ichino’s formula. We now apply Ichino’s formula to relate the global
trilinear period I(p(t,)¢2*) to a product of central L-values of triple L-
functions, the local zeta integrals I;(¢; ® ¢7) defined in (3.23) at primes
q # p and the following local zeta integral at p

(4.16)

I;Srd((bp@(gp? En) =

L(1, I, Ad) / bp(ﬂp(gpin)ﬁﬁp ® ﬁp(En)gp)d '
b) JraLy(Q,) ( "

Go(2L(1/2, 11 13, (tn) 6, 05)
Here we recall that ¢, is any non-zero vector in the ordinary line Vord (X1,p)®
VT?ECL (x2p) @ Vgg‘i (x3,p) with characters x;, defined in (3.19) and t, =

—-n
(_(;n pO >) € D) — Dg(Qp) for any integer n > ng. For each posi-

tive integer M, we shall use the notation M e QX to denote the idele with
My = 09¢M) at each finite prime £.
Proposition 4.10. We have
I(p(tn)pp*)?
(FD, FD)
*1/2 N+ 1 2n
(V") - wiy, (") (F)

—#ETHL 01(O%)2 . .
=2l OB ) L2, ) - e RN

><Iord ¢p®¢py H Cq 1 H I ¢q®¢*)

ez— alN+

where
(FPFP) =(U, " 2, P nypn (U, "7, gP) Nopn (U, "W 1) gy

PrROOF. We begin with the explanation of the representation theoretic

factorization for the automorphic form (ﬁ?*. Let (71]? , 7'[';) , 77,? ) be the image

of (mf,mg, ) under the Jacquet-Langlands correspondence and let

D D —1/2 D D
T =Ty ®wF/, Ty =T

D_ _D
g and w5 =y’
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Let 1P = 7P X 7L ® 72 be the Jacquet-Langlands transfer of IT and let
A(IT D ) be the unique automorphic realization of IT D With the isomorphism
U : DI ~ GLy(QW 7)), we have a factorization

(4.17) APy ~ Q) Virr Q) Vi,

’UGED UQED
Here (112, V) = (pj, Li(C)) and for finite prime ¢ | N=, (I, Vpp) =
(ug,0ov,Cey E[) is the one dimensional representation given by a unramified
character pg, = (p1,0, pioe, p3e) = E;S — C* with a basis €up,. Consider
62 = P P R ) € A(ITP) ® L,(C). Let X&:= X' X52 X5 € Ly(C)
and define ¢¥.. € A(II7) by

$Ra(z) = (7 (), X5)s  (x € DF(A)).
Under the isomorphism (4.17)), we have the factorization qﬁ)’%ﬁ = ®,07, where
¢ = XPIX52XE, ¢ = ey, for (| N7,
OF = 010 ® P2y @ psy for L€ Sp

as in §3.8.11 Recall that ¢;¢ € V7V for £ # p is a new vector and ¢;, €
Vord (y; ) is an ordinary vector. In view of the definition of ¢2* in (4.10)),

Ti,p
we obtain the factorization qﬁg* = ®@,0*, where

(4.18)
P, e L,(C) if v = o0,

40" Cug, ifo=»~reX,
©1p @ P2 @ 03 5(= ¢p) if v =p,
Q1e(Ve)p1,0 @ Qoe(Ve)poe @ Q30(Ve)pse)(= ¢p) ifv=0& {pfUX™.

Now consider the contragredient representation I1°. Let eP = P @ w;!
and pP* = pP*@w; ! fori = 1,2,3. Let YE = Y"1 Y*2Y*"s ¢ [,(C). Define

¢L,. and ¢+ € A(IIP) by
OPs(r) = (P MGE WP (2), Y 0" (2) = (o RPF* KT (), P
for € Dj;(A). Fixing an isomorphism

A(ﬁD) ~ ® Vﬁzp ® Vﬁv’

’UGED UQED
we then have a similar description for the factorizations <;~33D/i = ®v$5) and
pP* = @,02* likewise.
For v ¢ {oo}UX™, let by : Vg, x Vi — C be a non-degenerate GLa(Ey)-
equivariant pairing such that bU(NUD ,®P) = 1 for all but finitely many v. For
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v € {oo} UXT, let b : Vip x Vip — C be a D (Qy)-equivariant pairing
and define

((Z)D ® ¢D) L(L HwAd) / b (HD(xv) ¢D*)
Dy /Qo

Cw(2)2L(1/2, I bl (67, 6F)

Here dz, is the Haar measure with vol(O}, /Z;,dx,) = 1. In the notation
of [Ich08|, page 282|, we have

I(p(€a)67*)* =1(p(En)$5*) - T(p(En) 7).
Therefore, according to [Ich08, Theorem 1.1, Remark 1.3], we obtain
HpEoR)?
<P(T§+ tn)ﬁbgm Qf)en)
_vol(Op) Ca(2)*L(1/2,11)

8  L(1,I,Ad)
x ooy t) [ Leled) [I L),
ve{oo}UE~ qZ{p}uE-
From and .7 we find that < ( )(Z)er ¢Y~> equals
(4.19) -

: I(R )

—1/2 1 D D omn VO Np2"

483 . vt F)2n 3
_w;1/2(N1+)<FD,FD> s . wF,p(p )Oép( ) H 1 H Cq 1
[Tizy (N p?)%i/2[SLa(Z) : To(N;)] 35 (r +1) qED— a(2)°

We now proceed to compute the local zeta integrals I,(¢5 ® 5{? ) for v €
{00} UX™. Recall that the archimedean L-factors are given by

L(s, My, Ad) = TR(s 4+ 1)°Tc(s + k1 + 1)Tc(s + k2 + D)c(s + k3 + 1);
K1+ Ko+ K3+ 3

1 1 1
L(s, ) =Tc(s + Te(s+ k] + 5)l“c(s + K5+ 5)Pc(s + K3+ 5),

2
so we have
D D L(1, Il, Ad) (Pa(o0) Py Pro)is
(d’ ® b ) Coo( )QL(I/Q,H )/DX(R)/RX H?:1<X'{i7ym>ﬁi Too
D1 + 2T (w2 + 2T (s +2) (PLP.

 4m2D(AEetes 4 D(kt 4+ 1D (k5 4+ 1T (k5 + 1)
= (4rH)) Y1 + k1) (1 + k2)(1 + K3).

The last equality follows from Lemma below. Now let ¢ be a prime in
Y7, According to [Pra90], m; , = p;St for ¢ = 1,2,3 are unramified special
representations with pqpuaps(q) = 1. Since

L(s, IT;, Ad) = C,(s +1)3  L(s, II,) = (y(s +1/2)%C,(s +3/2),
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we obtain

L(1,1,,Ad)

Iq(‘bg ® &5) :Cq(2)2L(1/2, Hq) 1+ Ml,qﬂlqﬂ&q(‘l)) = 2@(1)‘2

Substituting (4.19)) and the above computation of Iq(¢5 ® an ) into Ichino’s

formula, we obtain
I(p(tn)p2*)?
(FP, FD)w ' (N
N~ (q(2)?-48% L(1/2,1) whn (D™)ap(F)"

=vol(O})? -

<IT %% G0t [ L e®),

qex— q¢{p,00}Un~

and the proposition follows. O

Lemma 4.11. We have
[(ftreths 4 OD(k) + 1) (ks + 1)T( + 1)

(Pr, Pp)r = (k1 4+ 1) (ke + D (k3 + 1)

PROOF. Letv; = XM @YX,V and vy = Y[ @ X2 @ X2 V). Let
du be the Haar measure on SU(2)(R) with the volume vol(SU(2)(R), du) =
1. More precisely, du is given by

2w 2w
/ O (u)du = / / / )sin 260 df dp do,
SU@(R) Ar?
u=

= 2)sa=cone, g =sinacty

for ® € L'(SU(2)(R)). Write (, ) = (, ) for simplicity. Since L,(C)SU@®R) =

C - P,, we see that

@200 [ (pu(en)du (PuPy) = (0, P - (P o)
SU(2)(R)

By definition,

Z Z Z <Zi>< )(2)(_1>n1+~§+ﬁg_nl_n2_n3

n1=0mn2=0n3=0

48 8-4n®  L(LIL,Ad) [[L,[SLa(Z) : To(Nip™)|(N; p

n)ni/2

K&—na+n, Ka+nas—n, Ki+ni—n KI—ni+n KI—ni+n Ks+ni—n
XXlQ 2 3Y13 2 3®X23 1 3Y21 1 3®X31 1 QY 2 1 2'

3

Then

(v1, Py) = (=1)"7F" (”i’) - (P, v) = (—1)Hrins (Hi’> -1

Kg K1
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Let r = % = K] + K5 + k5. A direct computation shows that
[ tatwun ez
SU(2)(R)

1 K} " "
) £ L
( )<,<;’{ z_% J/)\J ( )/SU(Z)(R)’aa’ 9B du

oy s\ T ey (D)
=2(=1)"@2r+2)77{ (=1 =75
'%1 =0 (])
—1 kY X
(k3 T(k1+ 1Tk +1) (KN (T — ]
=(-1)"(r+1 1<> -7
(=1 ) K3 I'(r+1) ]zz:o( ) J K1
-1
r DIk} +1 — k3
_ (71)7‘(7, + 1)—1 <K3> (K/l + ) (kl + ) X (’I” k2*)
K3 I(r+1) K1 — K}
Substituting the above to (4.20), we obtain
(P, P,y L(r+2) TR+ DI +1) T(ks + DR +1)
BUEE Tk + DK+ 1) (k3 +1) (ke +1) ’
and the lemma follows. O

Definition 4.12 (The Gross periods of Hida families). Suppose that F is a
primitive I-adic Hida family which satisfies (CR, ¥ 7). Let 7 be a primitive
Jacquet-Langlands lift of F with the tame conductor Ny = N _N]J_f. Put

ngo =By, (FP,FP) e 1,

where By, is the Hecke-equivariant perfect pairing defined in Definition @
For each arithmetic point Q € X7, writing nFR for the specialization of nr

at @, define the Gross’ period Qfg of Fg by

gp(]:Q, Ad)

: 527 (‘FQ)7
nrp

k o
Qpp = (=2v-1) Q+1”~7:Q||12“0(N;82) :
where &,(Fg,Ad) is the modified p-Euler factor in (3.10)) and

_ 2-kg  _
¥ (FQ) =[] e(/2,170.0) INE|, = €Zpy.
E\N;

is the prime-to-X~ part of the root number of Fg. We call 7B the Gross
period for Fg because it first appeared in the Gross’ special value formula for
modular forms over imaginary quadratic fields. We will see from Remark[7.§]
that the canonical period is an integral multiple of the Gross period in the
sense that there exists a non-zero u € I such that 2 Fo = u(Q)-Qr, for each

arithmetic point Q.



HIDA FAMILIES AND p-ADIC TRIPLE PRODUCT L-FUNCTIONS 59

Corollary 4.13. For each Q = (Q1,Q2,Q3) € .’f%‘l in the balanced range,
we have the interpolation formula

1/2, )

— o#(ET)H4 L( Q _gbal

(FD*(Q)) =2 ) ko. thko, +ko.— Uplljﬂq
(V—T1)Fartha;thos 1Qf819952QhD . aN+ ¢

where & Eglp 18 the normalized p-adic zeta integrals given by

1/2 on —n(k1+ko+ks)
y wg, (=p™") Ip|
4.91 jbal — Iord t B[n] i Fp p
( ) HQJ, p (¢p7 ) Hord ap(F)2nCp(2)2
with B%Llrd defined in (3.27), and JI*YQQ are the local zeta integrals at q
P Q,

defined in (3.29)).

Proor. To simplify our notation, we let fi = f, fo = ¢g and f3 = h.
For a finite prime ¢, we put By, = H?:l Br fiar By definition, we have

By, = w};/j(N;r)BHq if ¢ # pand Bp, = 1if ¢{pN. At the place p, from

Lemma and the definition of &,(f;, Ad) in (3.10]), we see that

[n]

3 3 .
13 o Tr (P SLa(Z) : To(pe
o = ol () [ Lex b [SLa(Z) : To(p™)] |

F,p i1 e(1/2, 7rfi7p) (1+ pil)

Ex(fi, Ad).

Let f{ be the associated newform of f; and ¢; = c(my, ,). Write || f7||* for
the Petersson norm || £ H%O( Npo)* From the above equation and the Petersson

norm formula (2.18]), we find that

wp (N wpp(p~™)ap(F)*
L(1, 11, Ad) TT2_,[SLa(Z) : To(Nip 2">]<N-+ 20 )ni/2

— V2N )2 [SL2(Z) : To(p)lp—*"
wp (N )wrp(p™) oy (F H HFqH2k- IR +p‘1)(N+ 2n)ri/2”

q|Np
= (N )wiy (~Day(F)" - Bt ] B,
qlN
3
6(1/2,71']61.7 ) 1
XHw(f‘o)(NJr)ii/Q. S amyoks [l £0l[2
= v agpl-lp? (p2)28 | f212Ep(fi, Ad)
1/2 n
=wy2(~1 Bg]gd I1 Bz

qlN

1 Wil 2(q)

3
. ll;[ ex” (fi)QkiniO’ng(fia Ad) 1;[ 8(1/277rf1,q) 1/277rf27q)€(1/277rf3,Q)

1 #EET) 1/2 [n] ”fz ,fz ) Nip

q|N i= 1
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In the last equality, we have used Lemma and the fact that for ¢ € 37,

—-1/2
e(1/2,11;) = wF,q/ (@)e(1/2, 74, 4)e(1/2, 75, 4)e(1/2, 75, q) = —1.
Substituting the above equation and the definition of .# Eq in ([3.29) to Propo-
sition we deduce from Proposition [£.9] that

VO](@B)Q (_2)#2_ 2'N- L(1/27 H) jbal
Vol(ﬁ%)z (V—1)kithketks+3  QepQ o Qo p

WPy e N G2
< 11 #m, G2 T Ay

Therefore, we obtain the corollary by noting that

vol(O
VOI(RX H [N, ¢(2) ’ C

|N+ q )

(©p0-(Q))° =

and that for ¢ € 37,
3

(2 Tq VWi, W) C (2) Ga(2)°
H Emoa L2 mag 6y =00

This ﬁmshes the proof. U

5. THE CALCULATION OF LOCAL ZETA INTEGRALS (I)

5.1. Notation and conventions. Let ¢ be a finite prime. Let G = GL2(Qyq)
and Z = Q; be the center of G. Denote by B the group of the upper tri-
angular matrices of G and by N the unipotent radical of B. Let 7 be an

irreducible unitary generic admissible representation of G. Define a real
number \(7) by

() {|)\| if 7= x1|-| B xa|-| ™ with x1, x2 unitary and X € R,
m) =

—% if 7 is a discrete series.

Recall that W(m) = W(m,q,) is the Whittaker model of m with respect

to ¥q,. It is well known that for any W € W(7) and € > 0, there exists a
o, € S(Qg) with

6.1 Wiy 1) =l e,

For characters y,v : qu — C*, let B(x,v) denote the induced represen-
tation given by
@}

B(x,v) = { smooth functions f: G — C | f( <8 Z) g) = x(a)v(d) el

Let K = GLy(Z,). We let (,) : B(x,v) x B(x !, v7!) — C be the G-

invariant perfect pairing given by

=/f®fWM
K
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where dk is the Haar measure with vol(K,dk) = 1. If yo™! # |-|7!, then
we let B(x,v)o be the unique irreducible sub-representation of B(x,v) and
let B(v,x)? be the unique irreducible quotient of B(v, ). It is well known
that B(x,v)o = B(x,v) and B(v,x)? = B(v,x) unless xv~! = |-|. The
above pairing (, ) induces a G-invariant perfect paring (, ) : B(x,v)o X
B(x Lo 1 - C.

Intertwining operator. Define the normalized intertwining operator M*(v, x, s) :

B(vl-[*,x[-17%) = B(x|-|"*,v|-") by

s =@ [ () (5 1) ow wea.

P

Here 7(s, —) is the v-factor as in (2.9)), and the integral in the right hand side
is convergent absolutely for Re s sufficiently large and has analytic continu-
ation to all s € C (¢f. [Bum97, Proposition 4.5.7]). Let 6 : G — Ry be the
3 2) k) = ‘adil‘ for k € K. If yo=! # ]-|_1, then
M*(v, X, 8)|s=0 factors through B(v, x)°, and hence we have a well-defined
map M*(v, x) : B(v,x)° = B(x,v)o given by

(52) M*(U7X)f = M*(U,X,S)(f55)|3:0_

An integration formula. The following integration formula will be used fre-
quently in our computation. For F € L'(ZN\G),

fov "0 = f o (5 )05
o0 o o, 716 D) (et

(cf. IMV10, 3.1.6, page 206]).

function given by ¢ ((

(5.3)

5.2. Local trilinear integrals and Rankin-Selberg integrals. Let 7y, m
and 7 be irreducible unitary generic admissible representation of G with
central characters wy,ws and w3. Suppose that wiwsws = 1 and that 73 is a
constituent (an irreducible subquotient) of B(x3,vs). Assume further that
the following condition holds for (7, me; m3):
(Hb) A1) + A(me) + | A(m3)| < 1/2 and |A(7w3)| < 1/2.
Put
-1 0
J = 0 1 € GLQ(Qq).

For (W71, Wa, f3) € W(m1) x W(ma) x B(xs,vs3), define the local Rankin-
Selberg integrals by

WO, W, f3) = /Z o TAOW(T0) 5(0)s:

GV, W, fo) = /Z o IO (0) (o).
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The above integrals converge absolutely under the assumption (Hb)). For
W1 € W(F1), Wa € W(72) and f3 € B(x3',v5'), define the local trilinear
integral by

S (WioWas fs, W1 @Tao f3) = /Z POW W) (o) W, T ) . .

The following result is a generalization of [MV10, Lemma 3.4.2]. We provide
a different and more elementary proof and replace the assumption on the
temperedness with a much weaker hypothesis (Hb)).

Proposition 5.1. With the assumption (Hb)) for (71, m;m3), we have
(W1 @ Wy @ f3, W@ Wa® f3) = Cq(1) - W (W1, Wa, f3) - U (W, Wa, f).

PROOF. Denote by ¥ : ZN — C* the character ws M 1q,. Let () :
L*(ZN\G,¥)® L*(ZN\G,¥~!) — C be the G-equivariant bilinear pairing
given by

(F.F') = /Z o FOP s

Let Ay = A(m1), A2 = A(m2) and A3 = |A(m3)|. By (Hb) and symmetry, we
may assume A\; + A3 < 1/2. Put

Fi(g) =W1(9) f3(g), Walg) = Wa(g) € L*(ZN\G, );
Fy(g) =W1(T9)f3(9), Walg) = Wa(Tg) € LA(ZN\G, ¥ 7).
Then one verifies that

(p(9)F1, Bo) = (p(g) W1, Wi){p(g) f3, f3),

and hence, it is equivalent to showing that

(5.4)
IW1 @ Wa @ f3, W1 @ Wa @ f3) = / (p(9)F1, B2 (p(g) W3, Wa)dg
ZN\G
=Co(1)(F1, W3) (F2, Wa)).
Put

1=
First we claim that if y1,y2 € QJ, then
(5.5)

v lyr yy'w 1 2
( 20 21 >€ZKn — q—ng‘yg yl‘gqn and \x |Sqn|y1y2’-

To see the claim, we note that if |z| <1 or |z| < |y, then

T y 0
(6 1) =x (s D)

and if || > 1 and |z| > |y|, then

-2
Yy T z 7y 0
(O 1)6K( ; 1>K.
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0 1
|| < max {|y1], |y2[} and ¢7" < |y5 'y1| < g™ or [a| > max {|yi], |y2]} and
qg "< ’x_leyz‘ < 1, and this proves the claim.
Now we proceed to prove the equation . Let Ik, be the characteristic
function of ZK,, and set

T, — / (o(9) 1 o)) (p(g) W, Wiy, (9)dg.
2\G

Uy Y1 Yy
By the Cartan decomposition, we find ( 2 J1 92 > € ZK, if and only if

By a formal computation, we find that the integral Z,, equals

/ / Fy(hg) Fa(h) - {plg)Ws, Wil (g)dhdg
Z\G JZN\G

- / / Fi(hg) Fa(h) - {p(g)Ws, Wik, (g)dgdh
ZN\G J2\G

:/ZN\G)Q/ ¥q, () Fi(g)Fa(h) - (b~ ((1) T) GWa, W) - T, (b~ <(1) T) o)dzdgdh

T o o 2

—1 -1 dx dx
« <,0( (y20y1 y21 >kl)Wg,p(kQ)W4>]IK2n(<y20yl y21 x))dx |y1y’1 ’y2y|2dk1dk2-

To justify the above computation, it suffices to show that the integral

—1 —1
Jo Jo L vasm( Dhm( D)y ) ww
« HKzn(<y20y1 ygl ))d:vd Y1 deQ

il Jyel

is absolutely convergent, where F| = p(k1)F1, Fy = p(ka)Fa, W5 = p(k1)W3
and W1 = p(ke)Wy. From(5.1)) and (5.5), we deduce that for any € > 0 there
exist constants Ce and M such that

/// il (yl )F2<<y2 )H <y20y1 o ))W:@W@

v 'yl vy d*y; d*yo
x I dx
KQ"(< 0 1 >) [yl lyal

M da—e | 1 (rede—e , d¥yp d¥ye
<Ce <M Jya|<M, gl T g [ da = T
|yl‘ |y2| \x|2<|y y |q2n |y1’ |y2‘

g "<|ys | <q” =

< Cg"B3/Feme) / / \ylyQI%*AI’AS’G d*y1d*ys < oc.
y1|<M Jy2|[<M

For (g,h) € G x G, we put

1 «x

oo )= [ v@i(y 7)o oW, 07t (5 7)o
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Then we have

%((Zﬁ ?) k1,<?102 (1)) k)
= [ v () mowna () mmne. (Ve e

_ / et y)x)wg((”gl (1’> kl)W4(<VgQ ?) )z, () Az

v 0 v 0 r—n
:/Qx Ws(( gl 1) kl)W4(< gz 1) k2)lyygnrz, (V) || ¥,
q

where r = L%J Therefore, there exists a positive integer mg such that

if vp(y1y2) < 2n — myg, then

ﬂn((% (1)> k1, (yOQ (1)> k) = Cq(l)Wa((‘%l (1)> kl)W4(<‘%2 (1)> k2).

On the other hand, if v,(y1y1) > 2n — mg, then we have

(V) (5 1w

90— 1_y,_
X/QX |V|1 A 26H1+qn—rzq(’/)dxl/<Ce'qm°/2'|y1y2|2 e,
q

1
n—r 5—A2—¢€

We thus obtain

L o (s (s

y1 O y2 0 d*y1d*yo
i i Yot

=Cq(1)/K/K / Fy ®W3((%1 (1)) k1)

g2 <|yiyy <,

ly1y2|>]q|>" ™0
d*y;d*
« Bawi((2 V) k) VY24 ak, + B,
0 1 [y192]
where
[V
|Bn| <C¢ / yrya|2 M TR TR Py A%y

g2 <|yiyy <,
ly1y2|<|q|*" ™0

<Cé, |q|2n(%f)\17/\27)\3726) (4TL + 1)
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It follows that

/ (p(9)F1, F2){p(g)W3,W,)dg = lim T,
ZN\G Nn—00

~G() [ FloWalgdg [ FmWii)n
ZN\G ZN\G

This finishes the proof of (5.4)). O

Denote by L(s, 71 @) the local L-factor and by e(s, 71 @ m2) 1= (s, m ®
T2, P q,) the e-factors attached to m x my defined in [GJ78]. Define the
~-factor
L(l — S,%l X %2)

L(s,m ® m)

The following corollary is the core of our calculations of local zeta integrals

(5.6) Y(s,m1 @ o) = e(s, T ® W2)

I(¢r ® QNSZ) at the non-archimedean places.
Corollary 5.2. Suppose that (1, w2; 3) satisfies and that x3vg* # |-|.
Ifwy, =W, ®w1_1, Wy = Wo ®w2_1 and f3 = M*(x3,v3)f3 ®w3_1, then
(W1 @ Wa® fa, W1 @ Wa ® fa) = (1) xa(—1)
X y(1/2,m @ T & x3) - W(W1, Wa, f3)2-

PrRoOOF. This is an immediate consequence of the local functional equation
of GL(2) x GL(2) in|Jac72]. With the notation of [Jac72, page 12|, we may
assume that

F3(9) = xal-[*F 2 (det g) - 20zvy |1*FY, p(g)®) -

1
L(2s+1, X3v3_1) ls=0

is the Godement section attached to a Bruhat-Schwartz function ® on Qg.
Since x3uz ' # ||, one verifies that

el 1y —9s ~
M*(xs,v3) f3(g) = vs|-| "2 (det g)-2(vsx3 '] >, p(9) @)-

1
L@t Lo )"

where @ is the Fourier transform of ® defined in [Jac72, Theorem 14.2 (3)].
Under the hypothesis (Hb|), we have

W(s, Wi, Wo, ®
U(Wy, Wa, f3) = (s, W1, W ,1) |s=0,
L(2s+1,x3v5 ")
~ . (s, Wy, Wa, ®
\II(W1>W27M (X37U3)f3) = ( : 2 ) ’8207

L(2s+1, nggl)

where (s, Wi, Wa, ®) and ®(s, Wy, Wy, @) are defined in [Jac72, (14.5) and
(14.6)].
Therefore, from [Jac72, Theorem 14.8] we can deduce that

U(Wy, Wa, f3) =wi(—1)vs(—1) 0 (Wi, Wa, M*(x3,v3) f3)
=wiwav3(—1)y(1/2,m1 ® 2 ®@ x3) W (W1, W, f3). O

5.3. The calculation of the p-adic zeta integrals.
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5.3.1. Preliminaries. We follow the notation in Let (f,9,h) = (fg,, 90, hs)
be the specialization of the triple of Hida families at a classical point Q =
(Q1,Q2,Q3) € X% .= %ﬂs X %ﬂs X %ﬂs Let m = 7Tf,p®w;;/2, Ty = Ty and
m3 = Tp,p of the central characters wy = w;},w,;;, wo = Wgp and w3 = wp p
respectively. Let Ilg, := m X m x m3. For i = 1,2, 3, since m; , contains
a non-zero ordinary vector, by Proposition 2.2 m; must be a constituent of
the induced representation B(v;, x;) with Vo'4(x;) # {0}. In view of the
discussion in Remark we have y; = af7pw;;/2, X2 = agp and X3 = app
with s, unramified characters defined there, and the ordinary assump-
tion implies that x;u; ' # |-|'. Recall that if we let & € Verd(y;) and
Ei € V;?:d(vi_ 1) be nonzero ordinary vectors for i = 1, 2, 3, then

bp=E @ E D E and ¢ = £ © 9 @ &3.

w = (_01 [1)) Coty, = <_?9n pg”) € SLa(Qp).-

We introduce the normalized ordinary section in the induced representa-
tions and compute its local pairing.

Put

Lemma 5.3. Let w be a constituent of the induced representation B(v, x) of
GL2(Qp) with the central character w. Suppose that xut £ H—l' Let ford ¢
B(v,x) be the unique section such that (i) fo4 is supported in BwN(Zy) (ii)
Fod(g) = 1 for all g € wN(Z,). Then

ot e Bo, ) ()

We call fo¢ the normalized ordinary section. Moreover, put
fNord — M*(U,X)ford Q Wl c B(’U_I,X_l)ord(’l]_l).

For n > max {1, c(mp)}, we have

w(p™™ G (2)x] 12 (0?)
&)

(p(ta) ford, fordy = (0, 0x7h).

In particular, if WO is the normalized ordinary Whittaker function in Corol-
lary[2.3, then

5.7) (ptn) W, W @ w™h) _ x(=1)G(2)
| (pltn) ford, ford) G

PROOF. It is straightforward to verify that for4 € Bd(v, x)°"d(y) is an

U -eigenfunction with eigenvalue x|- ]_% By the integration formula [MV10,
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(3.2) page 207], <p(tn)f°rd,f°rd> equals

(e )

el el D 4

)
Mford(w)f'vord( <p0n p0n> )

G(1)
o Gp(2 1 _
= o™ 22| )0, 0x7Y).
(1)
The ratio of local pairings of ordinary Whittaker functions and ordinary
sections is computed by the above and Lemma [2.8 O

5.3.2. The unbalanced case. Suppose that @ is in the unbalanced range .’{fz
We apply Corollary to calculate the normalized p-adic zeta integral .7, }}gbp

in (328).
Proposition 5.4 (p-adic zeta integral in the unbalanced case). Put
Er(Hgp) = 7(1/2,m @3 ® x1) ™

Then )
unb __
fHQqP - gf(Hgvp) : L(1/2, HQJ)) ‘

Proor.  We write 11, = Ilg, for brevity. It is equivalent to proving that

v = G@)?
B[n] (p(1)?

ord
Hp

(5.8)  L(1/2,1L) - ;™ (¢} @ p, ta) = €7 (IT)

for n > max {c(m1), ¢(ma), c(m3), 1}, where I9™(¢} @ (EZ,tn) is the local zeta
integral defined in . We first treat the case where either (i) m is
principal series or (ii) mg or ms is discrete series. Then it is known that
(mq, m3; 1) satisfies since each m; is a local component of a cuspidal
automorphic representation of GL2(A). Consider the realizations

Vi, = B(v1, x1) " BW(m2) W (3); Vi, = B(uyt x1HoRW (7)) RW(T3)

of II, and the contragredient representation ﬁp. For i =1,2,3, let I/Vfrd =
W,‘r’ird € WO d(7;)(x;) be the normalized ordinary Whittaker functions such

0 1 .
that W2rd( (g 1)) = Xil*|2(y)]z, (y) in COTOH&rylet ferd e B(wi, xi)™ (xq)
be the normalized ordinary section in Lemma and £ = M* (v, xi) fo 4@
w e Blu;t x; 18 (v h). First consider the case where 7y is the principal

series x1 Bvy. Let (f0*)° be the homomorphic image of fP™ in B(v1, x1)°.

In view of (3.21)), we may take
¢p ::(fi)rd)ﬂ ® W20rd ® W;rd, (Zp — J?i)rd ® Wé)rd Q Wgord’

(5.9) R .
(b; ::( i)rd)(] ® W2ord ® eﬂgwgrd7 (b; — frd ® W2ord ® 0]];:){12[/'§)rd7
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where k is the Dirichlet character defined in and Qk is the twisting

operator in - According to the deﬁnltlon and Corollary -, we
find that

(5.10)
ord [ 1 * Tk
Ip (¢p ® ¢p7 tn)
L(17 Hp,Ad) jp( ( )Wzord ® HkWé)rd ® ford7 ( )W20rd ® elkword ® ffrd)

TGERPLU/ZIL) T (o) W, W) p(ta) W, W) () f1, o)
I (p(t) WP, wprd) G(2)° 1
BE;Ld (p(ta) 3, ford) (1P L(1/2, 1)
where
I — Cp(l)vl(_1)7(1/27ﬂ2®7T3®U1) . \I/(W ord ekWord’ ( ) i)rd)2_

p(2)?
Note that the adelization ka = w;lw}/ 2; hence
1/2
k|zX —ﬁpl [ |ZX = |ZX’
a 0 1

0 1)) =
proceed to calculate the local Rankin-Selberg integral

\I/(Wé)rd kaord7 ( ) {)rd)

=20 o, 1) (D (9 (2 S

or 0 -n 1 —an, de
A )l 7

1
_ & (2)X1v11] (- / perd( <g (1)>)9kWord(< OZ/ ?>)U1|.|—§(y)dxy

and a simple calculation shows that 65 Wgr( (a)HZ; (a). We

Gp (2)X1U1 1! (= werd( (¥ O)ygx G2)xavr - (=p")
- [y 3= SR,
We thus obtain
(5.11)
o _ Sui(=1) xavr - |(0*)6(2)*y(1/2,m ® 13 @ v1)
P (p(2)? (p(1)?
X1y @) or(=1)  e(1/2,m2 © w3 @ v1)L(1/2,m2 @ ™3 @ X1)
a Cp( ) L(1/2,m ® m3 @ v1)

Substituting (5.7]) and - ) to ) and noting that

8(1/2,71’2 ® m3 ®U1)€(1/2,7r2 ®@m3® x1) = 1,

we immediately obtain (/5.8)).

1
Now we treat the remaining case, i.e. w1 = x1|-|~ 2St is special, and 7o
and 73 are principal series. Thus (71, 7s3;m2) satisfies (Hb)). Consider the
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realizations
Vi, = W(m) ®W(r3) BB(v2, x2); Vg = W(T)RIW(T5) KBy ', x3 ).
By Corollary we have
Gp(Dv2(=1)y(1/2,m1 ® T3 ® v2)
Go(2)° - B
(p(tn) W™, W5™)  Gp(2)°
(pltn) 57, F5 ) G(D)*

We calculate the local Rankin-Selberg integral in the right hand side

L(1/2, 1) - IS (65 © ¢, ) =

(5.12)
X W (pltn) W™, OgWE™, 570

(P( )Wlord leword’ ord)

LG DG e -6

d*y
Y|

C (2)X v 1’ ‘( )U v (_1) or 0 X
e [ ann(§ ) ey

G@xavr ("X (1) or 0 x
= FR D m o) [ ows(§ ey

p(2)x1v 1 -1
_ ( ) 1Y | |( )Xl( )7(1/2’7‘_3 ® UIXQ)-
(1)
Substituting the above equation and (5.7]) into (5.12]) and using the formulae
of the local L-factor and e-factor of m ® m3 ® ve in |GJ78| Proposition 1.4

(1.4.2)], we find that L(1/2, II,) - I,(¢} © ¢%) equals

X V|- ] (y)lz, (r)dx

v )6 (2)? e(1/2,m @ m3 @ ug)L(1/2,m @ 73 @ X2)
HOrde( )? L(1/2,m ® m3 ® va)

2 L(1/2, 75 ® x102)?
L(1/2, 73 ® v1x2)?
_ 62 xavr (0P waws(=1) e(1/2,m2 @ w3 @ v1) L(1/2,m @ ™3 @ X1)

x £(1/2,m3 ® v1X2)

(p(1)? B?lrd L(1/2,my @ T3 ® v1)
p
This proves (5.8) in the remaining case. O

Remark 5.5. Replacing ¢y ® gz~51*? with ¢, ® gz~5p in (3.24]), we define the im-
proved p-adic zeta integral

[n]

- B ora Cp(1)?

T ::Iord t,) - 113 . Sp .
Hg,p P (Qsp ® ¢p7 ) X1U1 ’ |(_ 2n) Cp(2)2
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1
If 7y is principal series, then vyy2xs # |-|” 2, and

1 L(1/2,m ® T3 ® X1) 9
I = . d -L(1/2,v ;
Tap = ¢(1/2,m @73 @ x1) L(1/2, 7 @ 73 @ v1) (1/2, vrxaxs)

if 1 is special and vy x2x3 = |-|7%, then
P I | (-1
g .p e(1/2,ma @3 ®@v1) L(1/2,v1x2v3)L(1/2,v102x3)
These equations will be used later for the interpolation formula of improved

p-adic L-functions. It can be obtained by the same computation in the above
proposition. We omit the details.

5.3.3. The balanced case. Now suppose that @ is in the balanced range .’{lffl.
We shall compute the normalized p-adic zeta integral & };Z‘l in (4.21). Put

Up = (é p; > S SLQ(Qp); En = (up, 1,t,) € GLQ(EP)

for n > max {c(m1), c(m2), c(m3), 1}. Observe that if L : m; ® my ® 13 — C is
any GLy(Qp)-invariant trilinear form, then
L(my (un)&1, &2, 73(tn)€3) =L(m1 (un)é1, m2(tn)E2, E3)
=L (&1, m2(un )2, m3(tn)E3)-

Thus we may assume that
(Hb')
either m3 = x3 H w3 is principal series or each of w1, m9 and 73 is special.
Proposition 5.6 (p-adic zeta integral in the balanced case). Under the
assumption (Hb'|), we put
Epal(Tlgp) = ~(1/2,m ® ma ® x3) ' 7(1/2, x1x203) .
Then we have

1

bal

Piia, = Eonilllar) - T 7
- » L

Proor. We write II, = Ily, as before. By definition, this is equivalent
to proving N

ord T o2n, —1/2,  ony | nikit+ke+ks . Cp(2)2 . 1
1"(Pp @ bpy tn) =ap(F) " wp " (=p™) [p"] Evai(1Tp) " L(1/2,1I,)
H]g)rd p
_ _ - Epat(IT) - :
x1x2x3(=p™") [p[™" - Evar(11p) Bl L(1/2,1I,)’

ord
HP

where I;,’rd(¢>p ® <$p, t,) is the local zeta integral in (4.16). The assumption
(Hb') implies that (71, me; 73) satisfies (Hb|), so we consider the realizations

VHp = W(ﬂ'ﬁ&W(ﬂ'g)&B(vgﬂ X3)O; Vﬁp = W(%l)‘gW(%Q)‘XB(U?’_l,Xgl)O.

Let Word = W,?fd and Wfrd = W ® w; ! be the normalized ordinary
Whittaker functions for i = 1,2. Let f$* be the normalized ordinary section
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in B(vs, x3)”%(x3) in Lemma [5.3) and let f&'4 := M*(vs, x3) /9" @ w3t
Letting (f$*4)° be the holomorphlc image of f$™ in B(vs, x3)" as before, we
may take

(b Word Word ( grd)O; ap _ Wlord Word ® ford.

From the definition (4.16)), Corollary and ([5.7]), we deduce that
(5.13)
19y ® bp, tn)
o)W @ W @ p(tn) £$4, p(un) WP ® W @ p(tn) f$7)
(p(2)2L(1/2,1T,) - BE’;LC[
. ol )W, W) ¢,(2)
(p(tn) fg4, F3) G(1)
(2)
(1)

3

w

L ow(D6M)? G 1
B%m &(2) G(1)3 L(1/2,11,)’
where
I; _Cp(l)U?)(—l)’Yéj(/;),zm ® Ty ® Ug) ¥ (pu )Word Wfrd,p(tn)fg?rd)2.

The local Rankin-Selberg integral W(p(u, )W, Wt p(t,) £954) equals
ord 1 p ord ord 0 p—n d
ZN\G p
ord 1 p—n ord -y 0
( (. Hmp_n))vvg (%)
I P
ord/ [P y 0 1 —p 2n$) dX
w dz
; <( ' ) <o U

_S@) [P xsvs () )I-J2( /p/zp yord <y yp~ (1J1r:np”)_1>)
)

(1
or -y 0
x Wi d(( 0 1

vsl| 7% (y)dad”y

n v L(pn _ 1
SR : )(p D [ o™i, axavsl 1)y
o) p" ’X3U3 (P")x2vs(=1) L(1/2, x1x2vs)
&) /2 xxaw) L1/226 G )

x /Q iz )X X s @)y

P

Ip|2
1—|p|’

BBl ) 172071 145
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so we find that
L(1/2,m ® T2 ® X3)
L(1/2,7r1 & o ®’U3)
3n 2
% (6@ 1P % xaxaxse™) - 1(1/2, 7 g i)
=03(=1)Gp(2)* - x1x2x3(P™") " - X1 x203(=1)Evar(11).
Substituting the above equation to (5.13]), we obtain the desired formula. [
Remark 5.7. Keep the notation in . For e € {f,bal}, we put UQ =
WD, (Fily VZ?) ®q,,, C be the Weil-Deligne representation of Wq, associ-
7 D)

ated with Fil} VZ? by Fontaine [Fon94l (4.2.3)]. It is not difficult to show
that B

I; =v3(—1)e(1/2,m1 ® T2 @ vV3)

L(0,Ug)
(Ug)L(1,Ug)’

5.(17@;7) =

and hence
I figw = Ep(Fil] VTQ).

1
For example, if @ = bal and m; = x;|-|” 25t are special for i = 1,2,3, then
dim ngo = 3, where N is the monodromy operator, and one verifies that

L(s—g, UQ) = L(s, x1x2X3)L(s, x1X2v3)?, L(s—i—%, Ué) = L(s,v1v9x3)? and
e(Ug) = lim o L(3—5, X7 '3 X5 ")/ L(s+3, x1xavs) = —xaxaxal- |2 (p).

6. THE CALCULATION OF LOCAL ZETA INTEGRALS (II)

6.1. Setting. We continue to let F' = (f, g, h) be the specialization of F =
(f,g,h) at a classical point Q = (Q1,Q2,Q3). In this section, we assume the
following minimal hypothesis for the unitary automorphic representations
(g, mg, ™) attached to (f,g,h)

Hypothesis 6.1. For each prime ¢ | N, there exists a rearrangement { f1, fa, f3}
of {f,g,h} such that
(1) Cq(ﬂ-ﬁ) < min {Cq(ﬂ-fQ)acq(ﬂ-f:s)}a
(2) the local components 7, , and 7, , are minimal,
(3) eit}.ler Tf,,q 1S a principal series or 7y, o and 7y, 4 are both discrete
series.

Recall that an irreducible admissible representation 7 of GL2(Qq) is mini-

mal if the conductor ¢() is minimal among the twists 7® x for all characters
x:Q; — C*.

Remark 6.2. Note that if the above hypothesis holds for (f,g,h), then it
also holds for specializations of (f, g, h) at any classical point by Remark
Moreover, we observe that one can always find Dirichlet characters x1, x2
and x3 modulo some M with M? | N such that yi1x2xs = 1 and (mf ®

X1,Tg ® X2,7Th @ x3) satisfies Hypothesis .
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As before, we let m = 7y, ® w;;/Q, Ty = Tgq and w3 = mp 4; let 1, =
Il 4 = 7™ X w2 X w3. Let ¢ be a prime factor of V. Suppose that

e(1/2,1,) = +1 (q¢ ).

The purpose of this section is to evaluate the local zeta integral defined in
(13.23)

* o Tk L(17Hq7Ad) bq(Hq(gq) ;,55)
I = =
(94 © 00) (q(2)2L(1/2, 1) /PGLQ(Qq) by (I, (TN.4) g, Bg)

under Hypothesis . For i = 1,2,3, let ¢; = ¢(m;) be the exponent of the

conductors. Note that w},ﬂ/ q2 is unramified, so under Hypothesis and the

condition (sf), we may assume by symmetry that

dgq

c1 <min{eg,c3,1}; 3 is minimal,

and that {my, 7o, 3} satisfies one of the following conditions:

e Case (Ia): m3 = x3 H vs is a principal series with ys unramified
character of Q.

e Case (Ib): 71, me and 73 are discrete series.

e Case (ITa): 7y is a principal series; o and 73 are discrete series with
L(s,m @ m3) # 1.

e Case (IIb): 7 is a principal series; mo and 73 are discrete series with
L(S,ﬂ'g & 7T3) =1.

For i =1,2,3, let { € ViV and EZ € %i(Tci)V#:’W be new vectors. Set
¢ = max{ca,c3} > 0.

We recall the following choices of local test vectors ¢y € Vp, and 5; € Vﬁq

in (3.21) and (3.22) according to the polynomials Q; ,(X) for i = 1,2,3 in
(B20). Put

w = (_01 é) n= (qal 2) and 7, = (_?]n (1)> for n € Z.
e Case (Ia) and (Ib):

O =& @ ma(n” )& @ wa(n® s,

by =wa (g™ ws(q® ™) - & @ T )6 @ T3(n ) 8a.
e Case (Ila): Let r = [%]. Then

gr=m O ®E®E, o =wi(q ") T ®E @ E.

e Case (IIb): If ¢; = 0, then let vy : Q; — C* be the unramified char-
k1—1
acter with vi(q) = B4(f) \q|lT, where (,(f) is the specialization of
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Bq(f) at @1 in Definition and we have
o =(m (™) — v 2 (@m (6 @ & @ &,
Gt =wi(q™) - F)E — w2 @F (7 HE) 0 6 © &,

If ¢; > 0, then

* 71'1(?70*761)61 ® & ® &3, 52 _ wl(qafc*) ) 7A_[_,l(nc*,cl)gl ® gQ ® é
In what follows, we let W; = Wy, € W(m;)"*" be the normalized Whittaker

newforms and let WZ =W, Quw; L for i = 1,2, 3. For a non-negative integer
n, put

Z Z
ny __ q q
Uo(q ) = GLQ(Zq) N (qnzq Zq> .
6.2. The ramified case (Ia). In the case (Ia), m3 = x3 B vs is a principle
series with ¢(x3) = 0.
Proposition 6.3. In case (Ia), we have

2, L G
Bu, G(1)

PROOF. In this case, ¢3 = ¢(ws3) = c(wiws) < co, s0 ¢ = co. We use the
realizations

Vi, = W(m) BW(m) R B(x3,vs); Vi = W(T1) RW(m2) B B(xst vz h).
Let f3 € B(xs,v3)"" be the new section normalized so that f3(1) = 1 and
fa=M*(x3,v3)f3 @wy . Let

I,(¢5 @ ¢5) ==(1/2,m @ m2 @ x3) - X3 ||(¢7 Jws(=1)e(1/2, 73)

c3—C2

* qCB_CQ 0 Tx C3—C2 q 0 ra * * —1
f3 :p( 0 1 f37 f3 :CU3(q )p( 0 1 f3:M (X37U3)f3®w3 .
We thus have

Gr=WieWea fi; &=WeWelf;
By Corollary [5.2]

(6.1)
L(¢% ® 37) I eoW,® Wi We® f3) , (P(Tcg)Wz«:,W@ (2
Cq(Q)QL(l/Qa Hq) ) BHq <p(7’c3)f3, f3> (q(l)g
LG (p(re) W, W) Gy(2)°
B, (p(re) f, f) (D)
where

= G xs(=1)(1/2,m @ ™2 @ x3)
I (q(2)2L(1/2, Iy)

There are three subcases:

: \IJ(le W27 f3)2

(a) vs is ramified,
(b) w3 is unramified and L(s,ms) = L(s, x2) for some unramified charac-
ter xo,
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(c) wvs is unramified and L(s,ms) = 1.

Subcase (a): In this case, f3 € B(x3,v3) is given by

Ay ) =t @

z 1

0 1
W2(<y 0>) _ X2\,|%(y)ﬂzq(y) if L(s,me) = L(s,x2) for some unramified

by [Sch02, Prop.2.1.2]. We have W2(<y 0>) =Ty (y) if L(s,m) = 1 and

0 1
character x2. In any case, the integral W (Wi, Wa, f3) equals

<<>><3|\ Sy (e D ()

< xsl Q(y)fs(( oy D)ty

GO E) Lo DY)l

=

Note that 71 and 7o can not be both unramified special representations as
¢(m) < 1 and vg is ramified. A standard calculation together with the recipe
of local L-factors for GL(2) x GL(2) in [GJ78, Proposition 1.4] shows that

0 —y 0 _1
Lom(y D ek a = a/m e me ).
q
We obtain

G(2)xsl-|2 (¢
A6

U(Wh, Wa, f3) = lg|? L(1/2,m ® T2 ® X3),

and hence

I; = x3°011(@%) - X31-1(¢%) - e(1/2,m1 @m0 @ x3).-

Substituting the above equation and the formula Lemma below to ,
we obtain the expression of I;(¢} ® QNSZ) as claimed in this subcase.

Subcase (b) and (c): Next we consider the case vz is unramified, so
71 and 73 are spherical (¢; = ¢z = 0). Note that in Subcase (b) where
L(s,m) = L(s,x2) for x2 an unramified character, we must have my =

X2|:|”2St is an unramified special representation. Define the function .7 :
ZN\G/Ky(¢*®) — C by

#o =wiawe(, ) ante (") )
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We have
U(Wy, Wa, f3) Cq(l)/;/Qqﬁ( 0 1/\z 1 Jdz lyl
((2) N cz—lJ
o) (Jg + 62—1—; )
where

Using the identity

)G )= ()6 )

and the formula

y 0\ . [—l®lxel 2 )iz, ) in subcase (b),
Wa( w) = - .
0 1 e(1/2,m) - walq CQ)Hq,CQZqX (y) in subcase (c),

we find that
_ 0y d*y
J :/ ff((y >w)
* Jos 0 1 ||
BT y 0 y 0 _1 %
=g [-[2(¢%) o Wily 1 PWa({y ) wxsl"2(m)d%y
q

=—lq|- U_lH%(qC?) JL(1/2,m ® x2x3)  in subcase (b),
’ 0 in subcase (c).

On the other hand, it is easy to see that
0\,d*y 1, 1
se=la [ 2l T =6 L am o e o)
Qr Y
It remains to calculate J,, in subcase (c). We have

m

s= X =il al e m(% ek Eema( )l Dhara)

meZ
(m) 1\ _ "y 0\ /(1 0),,x
A¢ (1)—/quw2<( o 1) (g D

By Lemma [6.5] below, we find that J,, = 0 unless n = ¢y — 1 and

where

_ 1 _
Jer—1= X3 112 (a%) - x3v35 |- ().
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Combining the above calculations, in either subcase (b) or subcase (c), we
obtain

IR0 P =
‘IJ(WlaW27f3) _C (1) (JO +ch+ ZJn)
q n=1
G2 (0) L(1/2m @ m @ xs)
(1) L(lxzvgt)

This shows that

I C()y(1/2,m1 @ mo @ x3) W (We, Wa, f5)? x5 °1-1(g°2)e(1/2,m1 @ m2 ® x3)

1 Cq(2)?L(1/2, 1y) Co(1)L(1, X305 )2
The above equation with Lemma below and (6.1)) yield that

~ 1 2
Ly(¢q @ &) = X3 21-(g)e(1/2,m @ T2 ® x3) - B, gzgliy

This completes the proof. O

Lemma 6.4. Let w be a constituent of B(x,v) of central character w. Sup-
pose that x is unramified. Let ¢ = c(m) be the exponent of the conductor. Let
Wy be the new vector in W(m)*V with Wr(1) =1 and Wy =Wy@w L. Let
f € B(v,x) and f= M*(x,v)f @w™h.

(1) Suppose that w is a principal series and f € B(x,v)"" is the new
section with f(1) = 1. Then
(p(e) W, W) 2 Ga(1)?

_ 2. —c 7720.) _ . ,U—l )
DT = x"|-[(¢7)e(1/2,m)"w(=1) - L(1,xv™") )

(2) Suppose that T is an unramified special representation with yv—! =

||t de. w = ’U“|7%St. Let f be the section in B(x,v)# D with
f(w)=1. Then

()W, W) Cg(1)?

o, ) G2

PrOOF. We first consider the case 7 is a principal series. Suppose that
¢ = 0. Then we have

vl —1y
(1 () o™ =00 DTN = X,

L(1, 7, Ad)¢,(1)
G2

<W7r’ WTr> =

and hence

) G(1)?
&)

M:Ll vt
g e
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Suppose that ¢ > 0. Then v is ramified and f is supported in BZ/IO( )
(¢f. [Sch02, Proposition 2.1.2]), and hence (p(7.)f, f) = (f, p(m 1) f) equals

[ $0 Pk = vol@ha") - wla) - 2 () ()
—volo(e) -a) 200 ()

=lal° @ +lgh"e(1/2,x0™") - x(g9).
In addition, {(p(7.)Wx, Wﬁ =¢(1/2,m)¢,(1), so we obtain that
(Pl W W) _ (12
<p(Tc)f> f> C’I(2)

Now we consider the case 7 is an unramified special representation. Then
¢ = 1 and we may assume f(w) = 1, i.e. f is supported in Buwldy(q). An
elementary computation shows that

M*(x,0)f(1) = G2 (L = a7 M*(x,0)f(w) = (2).
Then (p(11)f, f) equals

Xl [(g=)e(1/2,m)%w(-1).

~ L 2
[ ) Fak = volho(a) - Fr)M () (1) = (<ol 5 @) a(2)”
wldo (q) Cq(l)
Combined with the formulas
(P W, W) = £(1/2,m)¢0(2) = (—0|-| 2(q)) - ¢4(2),
the lemma in this case follows. O

Lemma 6.5. Let 7 is an irreducible admissible generic representation of
GL2(Qq) and let W € W(m)™Y be the normalized Whittaker newform with
Wr(1) = 1. Let x : Qf — C* with x(¢g) = 1. Suppose that L(s,7) =
L(s,m®x)=1. Put

A () = /q Ww((qzy (1)) <q1n g))x(y)dxy-

If x # 1, then Al (x) = 0 unless m = ¢(m) —c(m®x) and n = c(m) —c(x);
in this case

c(m)—clT 1 27
AP0 = 1,00 o s (-G

If x = 1 is the trivial character, then A;m)(l) = 0 unless m = 0 and
n > c(m) — 1; in this case,

Ai’{?>_1(1) = — g ¢,(1) and A (1) =1 if n > ¢(x).

PrOOF. Let AU™ = A (x) and ¢ = ¢(m). Let pp(a) :== W ( <8 (1)> <q1" (1)))

for a € Q). Then ¢, belongs to the Krillov model K(7) of 7 with re-
spect to ¥q,. Since L(s,7) = 1, ¢ := Izx is a new vector in K(m) and
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K(7) (cf. [Sch02, §2.4]). Then 7( <_Oqc é))g@(a)w_l(a) = «a - p(a) for some

a € C*. By the functional equation, we have

_1 _ _ _ 1_
L entax@lar @t = (s mon | st @) o e
q q

where
L(s,m® x)
LA-s7ox He(s,m@x)

Y(s,m@x) =

By the relation

wwienta) =r((y ) wiste) =va, (- L) (O o)t
=a-Yq,(—ag") - p(¢°a)w(a),

we find that a = £(1/2,7) and

a1
Z/ en(@™y)x W)y - x(g™) g2
meZ Z;

(5,7 @) (12, m) - g /Q dq, (-

L2 (@) p(a)d a.

qc—n
Let t = |g|°. From the above equation, we deduce that

_1 - c|=3 . 4c
S AR X (@) g" 7" = (s m @) e(1/2mx (1) g 7 -t
meZ

0 ifc—n#c(x)>0orc—n>2,¢c(x) =0,
" (g~ Ne(1,x)¢, (1) if e —n=c(x) >0,

1 ifc—n<0,c(x) =0,

—lal ¢4(1) if c=n=1,c(x) =0.

Since L(s,7) = L(s,m ® x) = 1, we have
v(s,m @ x) " =e(0, 7 @ x) T,

Comparing the coefficients of ™, if x # 1, we find that A,({”) # 0 only when
c—n=-c(x), and m =c—c¢(r ® x). In this case

AP = (=g 00) g5 (1/2,m) - ==Xy,

" (0,7 ® x)

If x=1, and A,(lm) = 0 unless m = 0, and

1, ifc—n<0
AD =8 gl ¢, (1), ife—n=1
0 ife—n>2.

This completes the proof. O
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6.3. The case (Ib). In this case 7 = X1|-|_%St is an unramified special
representation, and o and 73 are discrete series with the local root number
e(1/2,11;) = 1. We first remark that if L(s,m ® m3) # 1, then by the
minimality of 73 combined with [GJ78, Proposition (1.2)], this implies that
73 = T2 ® o for some unramified character o of Q; and g is also minimal.
Hence, in view of [Pra90, Proposition 8.5 my and 73 must be unramified
special in case (Ib) if L(s,m ® m3) # 1.

Proposition 6.6. In case (Ib),
(1) if L(s, ma ® m3) = 1, then we have

L G2
BHq CQ(1)2’

L(¢5@8;) = X3l 1(¢°)e(1/2, ma@ms@u1 )e(1/2, ™) (1/2, m3)?

(2) if L(s,ma @ m3) # 1, then ¢y = co =c3 =1 and

~ ~ 2 2)?
L6 0%) = 1(6,93) = 50 - 2.

1
PROOF. Now we suppose that m; = x1|-|” 2St is unramified special. Let
v = x1|-\_1. We use the realizations

Vﬂq == B(Ul, X1)0®W(7T2)®W(7T3); Vﬁq = B(Ul_l,xl_l)o&W(%Q)g)/V(%g).

Here B(vi,x1)? is the unique irreducible quotient space of B(vy,x1) and
B(v;t, Xfl)o is the unique irreducible sub-representation of B(Ufl, Xfl) asin
Let f1 € B(vy, Xl)u()(q) be the unique function supported in BwN(Z,)
with f1(1) = 1. Then the holomorphic image f{ of f1 in Vi, = B(v1,x1)°
is a new vector. Let fl = M*(v1,x1)f ® wfl. We may assume that co > c3

C3—C2 —~
(so ¢* = cg). Let Wi = p( (q 0 (1)>)W3 and Wi = Wi ® wg'. Then

pr=fLOWa @W3: ¢g=fLr @ Wo® W3

By Corollary and Lemma (2), we obtain

(6.2) - B -
I (¢* ® 5*) :/Q(WQ ® Wg ® f1,W2 & W?f ® fl) . <p(Tc1)W17 W1> . CCI(2)3
e (o(2)2L(1/2, L) - Bn, (plre) fr, i) Ga(1)?
(12,1 @ w3 @ v1) U (Wo, W3, f1)? 1
a L(1/2, 11;) B,

In what follows, if L(s,m3 ® m3) # 1, then we write mg = X2|"_%St and
1
3 = x3|-|” 2St with x2, x3 unramified. Using the integration formula ([5.3),
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we find that W(Wy, W3, f1) equals

0 o Jo (1) (o (s ) (707 )

< o 40z, () !
_G@al12(g?) VO (Y 0) r el () (a)da LY
—R L wal(§ ) rema((§ ) reyenl i, (a)aa
_G(2) _ s if L(s,m®m3) =1,
_Cq(l) xal-12%) - e(1/2,m)e(1/2,m5) {L(—l/Q,Xl)(QXg) if L(s,m ®m3) # 1.

If L(s,m ® m3) = 1, then one verifies easily that v(1/2,m ® m3 ® v1) =
e(1/2,m ® m3 ® v1) and L(s, Il;) = 1, so we obtain the claimed expression
of I;(¢; ® ¢7) in this case by substituting the above equation into ((6.2).
Suppose that L(s,m ® m3) # 1. Then ¢; = c2 = c3 =1 and &(1/2,m;) =
1
—Xil-|"2(q) for i = 1,2,3. Hence, W§ = W3 and

G(2)?
Go(1)?

On the other hand, by [Prad0, Proposition 8.6], (1/2, II;) = 1 implies that

W (Wo, W3, f1)? = U(Wa, W, f1)? = |q|* - L(=1/2, x1x2x3)*.

3
X1x2x3(q) = —lq|> -
By [GJ78, Proposition 1.4], e(1/2,m ® w3 @ v1) = |¢| " and

L(1/2,m®@m®x1) _ L(1/2,x1x2X3)
L(1/2,m®@m3@u1)  L(—3/2, x1x2x3)

= 2L(1/27 X1X2X3)7
and a simple computation of the Langlands parameter for I, shows

L(s, ITy) = L(s, x1x2x3)L(s — 1, x1x2x3)*.
We thus obtain

L(1/2,11;)
(—1/2, x1x2x3)?

Y(1/2,m @ T3 @ v1) = 2]q| 7 - I

The desired formula of I,(¢; ® 5;) = I,(¢4 @ ) in this case can be deduced
immediately by combining (6.2) with the above formulae of W(Ws, W3, f1)
and the y-factor. O

Remark 6.7. In the case where L(s, mo®73) # 1, i.e. m; are special unram-
ified, the integral I;(¢; @ 5;) was computed in [II10, page 1405-1406], from
which we have I,(¢; ® 5;) = 2|q| (1+]q|). Our computation agrees with the
result therein (note that By, = (4(2)%¢(1)7?).
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6.4. The ramified case (IIa). In this case, mo, w3 are discrete series and
L(s,m®m3) # 1. As we have remarked in the previous subsection, 73 ~ T ®
o for some unramified character o of Q; and m; must be spherical. Let Q.
be the quadratic character associated with the unramified quadratic field
extension Qg of Q,. We say a discrete series 7 is of type 1 if 7 ~ 7 ® Q.
and is of type 2 if 1 £ T ® TQ,2-

The following lemma for minimal supercuspidal representations should be
well-known to experts. We include a proof here for the reader’s convenience.

Lemma 6.8. Let m be a minimal supercuspidal representation with central
character w.

(1) Let x be a charatcer of Q. Then we have the following conductor
formula

() ife(m) = 2¢(),

2c(x) if e(m) < 2c(x).
Here recall that ¢(?) denotes the exponent of the conductor of 7.

(2) If 7 is of type 1, then c(m) is even and L(s,m @ T) = (4(2s). If 7 is
of type 2, then c(m) is odd and L(s, ™ @ T) = (4(s).

C(W®x)={

PROOF. Let ¢ = ¢(m) > 2. To prove the first assertion, we begin with an
immediate consequence of [JL70, Proposition 2.11 (i)]. Let xo = X‘Z; and

wo = w| zy If xowo # 1, then there exists a character o such that

(6.3) c(r®o)=c+e(r®x) — 2c(xw)

and if xo # 1, wy ! then either of the following condition holds:
(1) U]qu #1,x0 and

c(0) = c—clxw), clox™) =c(r@x) — clxw),
(ii) a]qu =1,¢c(x) =c(r®x) — c(xw) and c¢(xw) —c > —1;

(iii) o]zx = X0, c(x) = ¢(7) — c(xw) and c(xw) — (7 @ x) = —1.

To see it, we set p = g wy 'y v = wy *, m = c(xw), p=m — c(r @ ) and

n = m — ¢(m) in the equality proved in [JL70, Proposition 2.11 (i)], from
which we see immediately that the equality shows the existence of desired o
by noting that C,,(p~'w™1) # 0 if and only if n = ¢(7 ® p). Note that
implies that
c(m® x) > 2¢(xw) for all x

by the minimality of 7. In particular, c¢(w) < ¢/2. Suppose that c(x) > ¢/2.
Then c¢(xw) = c(x) and o satisfies either (i) or (ii). In case (ii), we have
c(mr ®x) = 2¢(x). In case (i), ¢(0) = ¢ — c(x) < ¢/2, and hence we also
have ¢(m ® x) = ¢(x) + c(ox™!) = 2¢(x). Now we suppose that ¢(x) < ¢/2.
If xo = wy ', then ¢(m ® x) = ¢(F) = ¢, so we may assume Yo # Wy -
It suffices to show ¢(m ® x) < ¢. Note that c¢(xyw) < ¢/2. In case (iii),
c(r®x) < e(xw) +1 < ¢, and in the case (ii), ¢(r ® x) = c(x) + c¢(xw) < c.
We consider case (i). We have ¢(0) = ¢ — ¢(xw) > ¢/2. If ¢(0) > ¢/2, then

o(m @ x) = e(xw) + c(07x) = c(xw) + o) = c.
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If ¢(o) = ¢/2, then we also have ¢(7m ® x) < ¢/2+ ¢/2 = c. This finishes the
proof of the first assertion.

We proceed to show the second assertion. This is [Hid90, Proposition
6.1]. We give a more elementary proof. The local L-factor of L(s,m ® 7)
is given in |GJT78, Corollary (1.3)]. To see the parity of the conductor, we
note that 7 ~ m ® 7q_, if and only if e(s, 7 ® x) = £(s,m ® x7q,) for all
character x : Q; — C* as 7 is supercuspidal. Since TQ,» is unramified, this
is equivalent to saying (—1)¢("®X) =1 for all x. It follows from part (1) that
7 is of type 1 if and only if ¢(7) is even. O

Proposition 6.9. Let r = [@—‘ We have

o 1 G(2)°
L(85 @ ¢5) =x7 2 |(¢") - e(1/2,m @ T3 @ x1) - — - =
e K ! BHq CQ(1)2
L J+lah)?  if mo s of type 1,
1 if o is of type 2.
PROOF. After an unramified twist, we may assume that m; = y1 Hvy with
1 1
x1 = |-/°"2 and vy = |-|27° for some s € C and 73 = Ty. Let m = 3 be a
minimal discrete series. We use the realizations as in (6.5)). Let fi; be the

normalized new vector in B(HS_%, H%_S) and let ff = p((qa ?))fl As

in the previous cases, by Corollary [5.2] we obtain
(6.4)

I,(¢; ® })

_G(1) I(Wo @ Ws @ f1, Wo @ Ws @ f1) (Wi, Way)  G(2)°

(2)°L(1/2, 1) B, (fi, fi)  Ga(1)?
:CQ(I)’Y(I/Q?W? QM3 Xl) : \P(W27W37ff)2 . (WW17WW1> . 1 ) CQ(2)3
C(2)2L(1/2, 1) (f1, ~1> B, (1)

Define the function W : ZN\G — C by

Wio) = Wl (V) o

We compute ¥(Wsy, W3, f7) in the following two subcases.

Subcase (a): m = XiH_%St are unramified special for ¢ = 2,3. Then o
is of type 2 and r = 1. We have

U(Wa2, Ws, f7) = vol(Ko(q))(J1 + J2),

_ 0 _
=t [ owi(l D)t
Q;
s y 0 1 «x s—1 1x

z€Z/qZ

where
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By a direct calculation, we find that

=1a|™ L(s, x2x3),

=laf*-q-laf* - xa '3 '-17%(a) - Lis, xaxz) = lal xaxa(g™") L(s, xax3)-
Note that wows = x3x3|-| "2 = 1. Hence

U(Wa, W, ) =—— |l - (1 + xes [1(9)) - L(s, xoxa)

14¢

_G(2) g 1= L xax3)L(s — 1, xax3)
(1) (q(2s)

:Cq(Q) |q]1 s L(1/2, 7T2®7T3®X1)
Gq(1) L(1, x107Y)

Subcase (b): my and 73 are supercuspidal. In this case, ¥(Wa, W3, fT)
equals

(1;/ / ( )(i 0>>! . 1f1<<i (1)>)<QOT ?)dxdxy

Ca(2) | —rs
ol > s

nez

where

e[ L ?)(i Dl s s sy
T (Y e

meZ
m|S— 1 0 m m -
1= ) XA )3 AZM0AZL )
meZ XGZ,?
where

(m) . (q"u O 1 0
Am‘,n(X) T /Z>< Wl(( 0 1> <qn 1 )du
q

In the case x # 1, by Lemma we have

AT COAT, (CTHX(=1) = [al“" ¢ (1)
if n =c—¢(x) and
0 ifn>r,

2n —c ifn <,

mzc—c(w@x):{

by Lemma (2), and Ag?%(x)Agr?%(X_l) = 0 otherwise. If x =1, then

if ¢ —n = 1. Therefore, if n < r, then

Jn =(1— |al) |g]" |g| @~ g P g ()% # {x | e(x) = ¢ — n}
=(1 — |q) || —)sFe,
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If r<n<c—1, then
Jn =1 —1ql)[ql" -
If n=c—1, then

Jee1 =1 —1a) g " (Jal (g — 1= 1) + [q*) (1) = (1 — |a]) gl

If n > ¢, then J>. = |¢|°. Combining the above equations, we find that
U (Wa, Ws, fT) equals

CQ(Q) —7rs J :Cq(2) —7rs Jﬁ . J J+
Cq(l) |Q| 7; n Cq ‘Q| (,«_1"‘2 n+ c

(1) n=1
C(2) ~ _
S ol I ol ol + i)
q
((2) g \q|§+11 + |q|) if ¢ is even (mq is of type 1),
(1) lg| 2 (1+|q|°) if cis odd (mg is of type 2).
On the other hand, when me and 73 are supercuspidal, it is easy to see that
L(1/2,mo@m3®x1) |1 if my is of type 1,
L(1,x107t) 1+ |q° if o is of type 2.

We thus conclude that in either subcase (a) or subcase (b),

* 2) | r(1-s) L(1/2,m3 @ T3 ® 1+ if 79 is of type 1,
U(Wo, W3, fT) = al )\CJ| (1-s) L(/2,m & 73 @ 1) { lq| 2 VP

- G(D) L(1, x1v1 )

Substituting the above equation and Lemma into (6.4), we find that
I,(¢y ® ¢) equals

C(2)V(1/2,m @ m3 @ x1) - W(Wa, Wa, f1)% Go(1)?L(1, xavp 1)?

1 if w9 is of type 2.

Cq(l)QL(l/Q, Hq)BUq Cq(Q)
_ 1 ¢(2)?% [(+]|g)? ifmis of type 1,
=e(1/2,m2 ® T3 ® 2 d") - 5
( / T &) T3 Xl)Xl ’ ’(q ) BHq Cq(1)2 1 if 9 1S of type 2
by noting that L(s, Il;) = L(s, m ® m3 ® x1)L(s, m2 ® m3 @ v1). This finishes
the proof. ([

6.5. The ramified case (IIb). Finally, we consider the case where 7y and
73 are discrete series, 73 is minimal and L(s, mo®73) = 1. It is also assumed
that 71 = x1 B vy is a principal series with ¢(x1) = 0 and ¢(v;) < 1.

Proposition 6.10. Let ¢* = max{ca,c3}. We have

I($;2d;) = wl(—l)xle-l(qc*)ﬁ(l/lW1)2'5(1/2’7T2®”3®X1)'Bln'C (1)*
q q

PROOF. In this case, we use the realizations
(6.5)
Vi, = B(x1,v1) RW(m2) KW(m3); Vi = B(x1hvrh) RW(T) B W(73).
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Let f1 € B(x1,v1)"" be the new vector with f1(1) = 1. Define the section
[ € B(x1,v1)l@") by
1—c*

f=o(Ty Opn—ertti@n(Ty O)ire =) =0

1—c*

and f1 = p( <q 0 (1)) )f1if ¢1 = 1. Then f{ is the section supported in the

.o 1. 1 = «
Bly(q°) with f£(1) = xa|-|2(¢* =) L(L, xav; ')~ Let fi = M*(x1,v1) f1®
wy 1 Then we have
F 0\ % Sy 1y =" 0\, = -
Fr=o((Ty DRt -t B@n (T, D Pheme )
=M*(x1,v1)ff @wytif e; = 0.
A direct computation shows that W(Wa, W3, ff) equals

0 o o (8 ) G () G

1 dX
al s} ) !

ol P G2) v 0 OV
L) (D) /QqWZ(<0 1>)W3((0 1>)X1|\ (y)d*y

c1 +c*
2

Ga(2)x1 (¢ =) la|
Co(DL(L, xavy )
The last equality follows from the fact that either L(s,m2) = 1 or L(s,m3) = 1
in case (IIb). By Corollary the above equation and Lemma (1), we
find that 1,(¢; ® ¢;) equals

JWe @ Wa® fi, Wo @ Wa ® fi) (p(rer) W, Way)  Gg(2)°
(,(2)°L(1/2, 11,) B, (p(re)) fr, 1) Ga(D)?
27(1/2,7r2®7r3®X1)‘I’(W2,W3,f1*)2 2

L(1/2,1Iy)Bn, Xil- (g e(1/2,m) w1 (1) L(1, x1v71)?

—2/ ¢* c*
X))l 5%1/]2’”2@)”3@)(1).gzg;z-5(1/2,7T1)2w1(—1).

The lemma follows. O

6.6. The p-adic interpolation of normalized local zeta integrals .7 EQ .

In this subsection, we compute the normalized local zeta integrals .#. EQ .=
54 ﬁq in (3.29) and show these integrals can be p-adically interpolated by an
Iwasawa function in Q € X}. We begin with recalling some facts. If F € I[q]

is a primitive Hida family of tame conductor N and @) € %;r is a classical
point, as in the introduction we denote by Vz, the associated p-adic Galois
representation, and for each prime ¢, let WD¢(Vz,) be the representation
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of the Weil-Deligne group W(/Qz attached to Vr,. Let £ # p be a prime.
On the automorphic side, denote by Recq, the local Langlands reciprocity
map from the set of isomorphism classes of irreducible representations of
GL,,(Qy) to the set of isomorphism classes of n-dimensional representations
of Weil-Deligne group W¢,, over Q,, ([HT0Ia]). Then

(6.6) L .
Q. cQ
ReCQq(W]:Q7g®|-‘£ 2 ) = WDg(VfQ); 63(1/2,7‘(}@) = |]\7|£2 E(WDg(VfQ)).

We recall the following standard fact for the p-adic interpolation of local
constants in Hida families.

Lemma 6.11. There exists ¢(F) € I* such that
eo(F)(Q) = e(WDy(Vr,))

for every classical point Q) € %;r Moreover, if G € I[q] is another primitive
Hida family, then there exists e(F @ G) € (I®p1)* such that

e(F ®G)(Q1,Q2) = e(WDe(Vr,, ®Vg,,))
for every classical points (Q1,Q2) € 3€;r X %f

ProoF. This is a simple consequence of the description of p ]-"GQZ together
with the rigidity of automorphic types of Hida families in §3.2] We can
actually make explicit the construction of ,(F) as follows. Let @ € %;r be

any arithmetic point. If 7z, ¢ is a principal series, then p ]:7g®<€cyc>i/ 2 ’GQZ ~
ariéiede & azhele is reducible with &,& : Gq, — Q finite order
characters and arp : Gq, — I unramified, and it is not difficult to see that

1
ee(F) = £(0,6)2(0,&') - ar o (Froby ") (ecye)f (Frobyp ™) - €717,

where ny = ¢(&1) and np = ¢(&2). If mr g is special, then pr lgq, ® <scyc>;/2

is a non-split extension of by £ecy. for a finite order character £ : Gq, —

Q”, and letting n’ = ¢(¢), we have

1/2

e(F) = £(0,€)* (ecye)y " Ecye(Froby) - {1— (€eye)y’” ifn' =0,

if n’ > 0.
If 7x, ¢ is supercuspidal, then pfvdGQe = po®(Ecyc)y 12 for some irreducible

representation pg : Gq, — GLo (Q) of finite image and of conductor ¢ and
we have

l "
ee(F) = e(WD(po)) - (€cye)f (Froby).
The case pr ® pg can be treated in the same manner by the formulae of
e-factors in [GJ78|. We omit the details. O
We recall that the finite set ey in ([1.5]) is the set of primes q € Z}Ha) L

2§Ila) L Egla) such that either of 7y 4, 7y 4, T 4 is supercuspidal of type 1.
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Proposition 6.12. With Hypothesis for each q | N with q & X7, there
exists a unique element fg 4 € R, which we call the fudge factor at q such
that

(I4+¢1)?  ifq € Bexe,
1 otherwise.

jﬁg,q = fF,q(Q) ' {

for all Q € %;E

PROOF.  We shall express .#; in terms of epsilon factors of Galois repre-
sentation under the setting in As before, let (f,g,h) = (£0,,90,> PQs)
be a triplet of p-stabilized newforms of weights (k1, k2, k3). Let xr: Gq —
R* be the unique character such that xz> = (det py ® det pg @ det ph)sc_ylc.
Then x g is unramified at ¢. If xr is the specialization of xF at @, then

1, e
Recq,(wp "Il * ) = XxFqlwq,-

As before, ca = ¢q(mg), c3 = cq(mp) and ¢* = max {cz, cg}. Write || for |-|,.
Recall that

~ 1)2
Tt =Tl 05 By - 3D

NP G202

Here df. = d'}ﬁld’;2 d;? is a product of the adjustment of levels defined in

Let Froby be the geometric Frobenius element in the Weil group Wy, .
Case (Ia) and (Ib): Suppose we are in the situation of either or

Then we have vy(ds) =0, vy(dy) = ¢* — ¢ and vg(dp) = ¢* — ¢3. Thus

Wi (dy) || = || e TRl (g = )y — 2).
In Case (Ia) with ¢35 = 0, by Proposition we obtain

I, = waws(q72)e(1/2,m2)? q| 2D .

Whg(dp)|dE |-

Hence, we find that fr, = det pgdet ph(Frobf;) lg] 5., - e(g)?. Consider

Case (Ia) with c3 > 0 (c* = ¢2). Let aj(h) : Wq, — I be the unramified
1—kg
2 (9)-

character sending Frob, to a(g, h) and let a4(h) = a(q, h) := x3|-|
By local Langlands correspondence for GL(2),

22—k — ko

e(WDy(Vy @ Vy)) = &( B

ST @ Tg).
This implies that

e(1/2,m ® T ® x3) = e(WDg(Vy ® V) ® i (h)xF)-
By Proposition [6.3] and (6.6), we thus obtain
S, = (WD (ViV,)@a(h)xarg)-aq(h) 2

Here Art : QF — Wg; is the Artin map. Therefore, by Lemma we find
that

TP = e(f©9)-a}(h)xrg (Froby )-aj (h)ecyc(Frob, ™) det pp(Arty(~1))-e(h)?,

q* -det Vi, (Arty(—1))-e(V3)2.
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where ¢ is the exponent of the conductor of 7, x my4. In case (Ib) with
L(s,m ® m3) = 1, we see from Proposition [6.6] that

I, =e(WDy(V, @ Vi) @ 0 (F)Xrg) - aq()* xr(a”)
x £(WDg(V;))2e(WDqy(V;))? - g2 Fes =27,

It follows that
Frq = (g ® h) - ay(f)*xr(Froby) - aj (F)xm (Froby ) g+ =2,

where ¢” is the exponent of the conductor of mg ¢ X7y, . If L(s, 7y, q®7h4) # 1,
then fﬁq =2 ‘q_l‘.

We proceed to treat Case(Ila) and (IIb). So 7y, is principal series while
Tg,q and 7y, o are discrete series.

Case (IIa): In the setting of we have vy(dy) = r =[] and vy(dy) =
vg(dp) = 0; then

Wrg(dy) [dE|, = wrg(a™) g™
By Proposition and , we find that
_ 1+ g))? if my is of type 1,

St = (WD, (Vy@Vi)@ah xr)-a'h (Frob; 27) 4

i1, = E(WDq(Vy@Vh)@apgx)-apq(Frob ){1 if 7 is of type 2.

Case (IIb): In the setting of §6.5, we have v,(ds) = ¢* — ¢1 and vy(dy) =
vg(dp) = 0. Then

wig(dp) |dE] = wrg(g ™) g™V

If 1 > 0, we set oy(f) := a(q, f). If c1 = 0, then set ay(f) := a(q, f) —

Bq(f), where B(q, f) is a root of the Hecke polynomial of f at ¢ fixed in
Definition Define a} g : Wq, — I7 to be the unramiﬁed character

with o}  (Frobg) = aq(f). By definition, Recq, ( 1) o}, the
spemahzatlon of % . at Q1. From Proposition we obtain the followmg
expression of .# *q'

I, = e(WDy(Vy@Vi)@af o Xr)-af o (Froby *)-e(WDq (Vy))? [g**-det Vi (Arty(—

In either case, it is easy to see by Lemma that
Tr.q = eq(£©9)-f g xr (Frobf )-ap  (Frob; > )-g4(f)? det py(Arty(—1)) g,

where ¢ is the exponent of the conductor of 7y x 7y 4. This completes the
proof in all cases. O

7. THE INTERPOLATION FORMULAE

7.1. Proof of the main results. We complete the proofs of the main

results in this section. We retain the notatlon in the introduction. For

Q = (Q1,Q2,Q3), recall that w1/2 w?” 5 629/2632652 and that

—-1/2

HQ—W_fQ X Tgq, ><7th3®w Fo

1)).
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In terms of L-functions attached to Galois representations in the introduc-
tion, we have

1
_ i
L(s + 5. 1Iq) = Ty; () L(V}.9)

where Py (s) = L(s + 5+ 1Ig.00) s the I-factor of V], in (L4). The set £~
in Definition [3.9]is given by

5 = {e | N | e(WDy(V])) = —1 for some Q € x;é} .

Theorem 7.1. Suppose that p is an odd prime and that and hold.
After we enlarge the coefficient ring O to some finite unramified extension
over O, the following statements hold.

(1) If ¥~ =0 and f satisfies the Hypothesis (CR), then there exists an

element Elfm € R such that for every Q = (Q1,Q2,Q3) € %{2 in the
unbalanced range dominated by f, we have

(LE(Q)* =Ty (0) - L(VT@O) E(FilfVe)- [T 1+
FET TV (Ve T e A ’

where Qle is the canonical period attached to the p-stabilized form
fo, as in Definition .

(2) If p > 3, #X~ is odd, f,g and h all satisfy Hypothesis (CR,X7),
and N~ and N/N~ are relatively prime, then there exists a unique
element E%al € R such that for any arithmetic point Q € Xpa in the
balanced range, we have

2 L(V},,0)
LFN(Q)) =Tyi (0)- —— -
x E(Filf, Vo) - J[ @+,
L€ exc

where Q.o ,Q b
le’ 90,

and Qh83 are the Gross periods in Deﬁnitz’on
PrOOF. By the observation in Remark there exists Drichlete charac-
ters x = (X1, X2, x3) modulo M with M? | N such that

® xix2xs = 1;
e the triple F’ of primitive Hida families attached to the Dirichlet

twists (f|[x1], gl[x2], hl[x3]) given by
F' = (f®x1,9®x2,h ® x3)

satisfies Hypothesis at all classical points.

Enlarging O if necessary, we may choose a square root /fg € R* of the
fudge factor fp := [[, n/n- fFr,q defined in Proposition On the other
hand, by Proposition and Proposition [7.7] in the next subsection, there
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exist u1 € I and ug € R* such that for all arithmetic points Qe %;%, we
have the equalities

Q(f@Xl)Ql =u1 (Ql) : Qle;

Q D th3®x3 :U%(Q) . Qfglg D ths.

Qfgl ®x1°“95,®x2 95,

Now we define

Lh = 2\ Jor (DD Ve

#X " +4 -1 —1
Ekl);‘al = @F/D* .27 2+ \/N \/fF/ cU.

Then we can verify directly that [,;, (resp. El%?l) enjoys the desired inter-
polation formulae by Corollary (resp. Corollary 4.13) combined with
Proposition the p-adic computation Proposition (resp. Proposi-

tion and Remark . O

Remark 7.2. The reason for the appearance of the extra fudge factor
[Tes,, (1 + ¢=1)? is not clear to the author, but a similar factor Hy ap-
peared in p-adic L-functions for adjoint representations [Hid88al, Corollary
7.12].

7.2. The comparison between the canonical periods of Hida families
with twists. Let f € eS(N,,I) be a primitive Hida family of the tame
conductor N and of the brach character ¢). We assume that f satisfies (CR).
Let g # p be a prime. We further suppose that f is minimal at g, i.e. for some
arithmetic point Q) € %fr, the unitary cuspidal automorphic representation
m = mg, of GL2(A) associated with the specialization f is minimal at
q. Note that this definition does not depend on the choice of arithmetic
points by the rigidity of automorphic types for Hida families. Let x be a
Dirichlet character modulo a power of ¢ and let fjj be the primitive Hida
family corresponding to the twist f|[x] and let N* be the tame conductor of
f%. The aim of this subsection is to use the method of level-raising to show
the two periods (g o and Q qu defined in Definition @ are equal up to a

unit in I. We will also prove the same result for the
primitive Jacquet-Langlands lifts 2 and the twist Fip.

ross periods of the

Remark 7.3. We recall some generalities on congruence ideals following the
discussion in [Hid88al, page 363-366|. Let R be a domain. Let T be a finite
reduced R-algebra with a R-algebra homomorphism A : 7" — R. For any
T-module M, we denote

MM :={zeM|rx=0foral reKerA}.
Then
C(A) := XMT[A\]) = AM(Annp(Ker V).

Let H be a free T-module of rank d. Suppose that T is Gorenstein, i.e.
T ~ Hompg(T, R) as T-modules and that we have a perfect pairing (, ) :
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H x H — R such that (tz,y) = (z,ty) for t € T. Then T[)\| is free R-
module of rank one and hence H[)\] is free R-module of rank d with a basis
{e1,...,eq}. We have

C(N)? = (det(e;, ;).

Let 14 be the g-primary component of ¢. If x =1 or zp(_q;, then N¥ = N
and the Atkin-Lehner involution 7, at ¢ ([Miy06, page 168]) induces the
isomorphism eS(J\f,I)mfﬁ >~ eS(N,I)m,, so we find that C(f*) = C(f).

Lemma 7.4. Suppose that x # 1,1/)(75. Then C(f*) = C(f) - E,(f), where

(¢—D(alg, f)* —¢il9)(1 +q)?)  ifqt N,

1

B(f) = 1—q~ if ™y is a ramified principal series,
1 N - g2 if ™y is unramified special,
1 if ™y s supercuspidal

(recall that vy is the I-adic character ) (€cye) (Ecye)1)-

PROOF.  We shall follow the notation in . Let Tf := T(N*, 1) and let
m? be the maximal ideal of T# containing the operator Uy, {T, — a(q, f)}quq

and {U; — a(q, f)}q|Np7 ata Since x # 1,¢(7q;, we have a(q, f*) = 0, and the

twisting morphism |[x~!] induces an isomorphism

X' eS(VF, D, o eS(NF, 1) s [U = 0]

as Th-modules. Let 79 = 2if ¢{ N, ro = 1if ¢ | N and T4 is not supercuspidal
and 79 = 0 if 7, is supercuspidal. For brevity, we put

S(Nq") :==eS(N¢", 1) ®1 Fracl for r € Z>.
According to the possible list of tame conductors of newforms in eS(Ng", I,z
[DT94, page 436], all newforms in eS(N¢", I),,: have tame conductor dividing
Ng". It follows hat U, = 0 on S(N¢") and that
S(Ng"™) =S(N¢") ® V,S(Ng") if 7 > ro.
Here recall that V,(> ang¢™) = ¢>_ a,q?. Combined with the relation
U,Vy = q, the above facts implies that
eS(N*, D, 1 Fracl ~ S(N¥)[U, = 0] = S(N¢"™)[U, = 0] = S(N¢").
and hence
(7.1) T(N D, = Th, = T(NG, 1) .

We are going to apply the discussion in Remark to compare the con-
gruence ideals. For each positive integer M not divisible by p, put
Hp(M) = @1 Hét(Xl(Mp”)/Q, Zp) Xz, 0.
n—oo
Let {, },; : Hy(M) xH, (M) — A denote the Hecke-equivariant perfect pair-
ing defined in [Oht95, Definition (4.1.17)]. Let Hy(M)m := (Hp(M) @4 I)m.
By [Wil95, Corollary 1 and 2, page 482|, H, (M )y, is a free T(M, I)p-module
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of rank two and T(M,I), is Gorenstein under the Hypothesis (CR). Let
H = H,(N)y and H* = H,(Ng™) Suppose that we have an injective
I-linear map i, : H — H' such that

(i) iq(H[Ag]) € HApa];

(ii) the I-submodule 4,(H) is a direct summand of HF.
Let iy be the adjoint map of i. Recall that ¢*: H' — H is the unique map
such that {ig(2), y} ygr0 = {x,iZ(y)}N. We have

(7.2) C(f5)? = C(f)* det(igiglp,))-

We proceed to construct the map i, and compute the composition iqiy. Let
A = Ap. For an integer d relatively prime to Np, Sy denotes the Hecke

operator [['y <E]l 2) T'n]. Then we have Sy = o4 (d); (d)~* € T, where oy

mb-

is the diamond operator.
Case ¢f N (ro = 2): Define i, : H — H* by

iq(z) = qx — VT,o — Sq‘/;fl’.

Then one verifies directly that U,i, = 0, which implies (i). The property (ii)
is a consequence of Thara’s lemma [Rib84, Theorem 4.1|. A direct computa-
tion shows that

. _ 0 _ 2.0
ig = q[CNTNg] = Sy ' Ty[Tn <g 1> Tgl + S, [T (% 1) gl

and hence i;iqup\] is a scalar given by

igiglapy = A(S9) ™ a1 — @) (M(Ty)* — (1 +9)A(Sy))-

Note that A(S;) = ¢1(q).
Case q | N (ro = 1): Define i, : H — H* by

ig(z) =z — ¢ 'V, U,

A direct computation shows that the adjoint map 4; is given by
. 0 _
ig =[N <g 1) Pl = ¢~ Ug[CNT ]
and that
itig = —g " ([Ty (1 V) TwalVo = ¢ U, [CNT]V, | U
qla = —4 N\g 1) NaVa=4q Vel Nt NalVg ) Vg

1

Let s = vg(N) and 745 := <Oqs 0

) € GL2(Qq). It is easy to see that

7go - ONDNglVy - 7t =S4 - U,
The restriction of [I'yI'ng|Vy to H[A] is given by

if my, is a ramified principal series,

A(Sy) ™ (72 Uy — AU, !
(54) (Tq a’a ’Hp‘f]) (Us) 1 if 7y, is unramified special.
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We thus find that
i:;iq|H[>\} = *q_l)‘(Uq)(q*q_l)‘(Uq))‘(Sq_l)(Tq_quTq’H[A])) = —AMUg)Ey(1,Ad py).
The assertion follows from (7.2) and the above computation of ijig|gpy. O

Proposition 7.5. There exists a unit u € I such that for any arithmetic
point QQ, we have

PROOF. Let f22 and fg; be the newforms corresponding to f, and fﬂQ of
conductors Np™ and N*¥p" respectively. If y = 1,[)(3, then N = N and fﬂQo is
the image of f¢), acted by the Atkin-Lehner involution at g, from which we
can deduce the assertion easily if x = 1 or 7,/}(_5. Suppose that x # 1, 1/1(_(5.

From (2.18)), we see that
fo)12
1FQlltovepm _ [SLa(Z) : To(V¥)] - (1/2,74) Bryox,
1ol oy BLaZ): Do) 2(1/2,7, & xg)Br,
A direct computation shows that if g 1 IV, then the right hand side equals

#
% L(1,m, Ad)™ = ¢7% - (41 (@) Eo(£))(Q),

and if ¢ | N, then it is equal to

1—q ' ifq| N and 7, is a ramified principal series,

Nt
N 1—q¢ 2 if T4 is special,
1 if w4 is supercuspidal.

In any case, it is clear that there exists a unit u’ € I* such that

[F e

T~ (Q) - By(£)(Q)

”fQHFO (Np™)
for all arithmetic points (). Therefore, the assertion follows from Defini-
tion Lemma and the fact that &,(fq, Ad) = Sp(fﬁQ, Ad). O

The definite case. Now we consider the Gross periods of definite quaternionic
Hida families. Assume that f satisfies Hypothesis (CR,%7). Let fP €
eSP(N,,1) be the primitive Jacquet-Langlands lift of f. Let ¢¢ be the
conductor of x. Let Py be the element in the group ring O[GL2(Q,)] defined

as follows: Py =1if x =1, P, = <—(;V (1)> it x = 1/}(71%’ and

Pe=ax ) Y X(b)'@ bq1_0>

be(Zq/q°Zq) >
if x # 1, ¢(_$> where g(x 1) is the Gauss sum of x~!. Put
PN () = Py () (@)x(v(@)) € eSP(Ng*,4x* 1)

for z € D* and v(z) the reduced norm of x.
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Lemma 7.6. The quaternionic form fP|[x] is a primitive Jacquet-Langlands
lift of f*. In other words, fP|[x] € eSP(N¥, x2,1) [Agep] is a generator over
1.

PROOF. First we claim that fD|[ ] € eSP(N¥ X2, 1) [Agpen]. This is clear

if y=1or w( If x #1 1/1 , then A, +(Uy) = 0, and it is not difficult to

show that Ug( fD I[x]) =0 by a direct computation. This shows the claim.
To see that fP|[x] is primitive, it suffices to show that fP|[x] is non-

vanishing modulo the maximal ideal my of I. Let f:=fPoyov (mod my) €
SP(Ntpt ,wx2,F ) for some positive integer ¢. Define two operators on

SD(N“p VX2, Fp) by
c 1 aqg° 1 b 0
Li= Y q,lag ><( 1>; L= > X <b>ﬂ<<o 1>>-
a€Zq/q°Zq b€(Zq/q°%Zg)*

Then
Lata (71 (o m)) =37 S ) (1 o C))f

-1 B
=°f = Y p((é bql >)f

beZq/qZ,
-1
c— q 0 r

Suppose that £2|[x] (mod my) = 0. Then we deduce from the above equation
that either

(q- <q61 ?) a(f,¢)x(a))f =0if ¢ | N,

or

a-atro (1, V) -vi (% D)i-oitat.

In any case, this implies that f = 0 by Ihara’s lemma for definite quater-
nion algebras [CHIS, Lemma 5.5] and hence f7 (mod my) = 0, which is a
contradiction. (]

Proposition 7.7. Let f* be a primitive Jacquet-Langlands lift of f*. There
exists u € I such that for every arithmetic point Q € X7, we have

Qpp = u?(Q) - Qf,g;.
PrOOF. Let f' := fP|[x]. Then P = v . f for some v € I by
Lemma Let f = U"fg be the Ly, 2(Cp)-valued p-adic modular form
obtained by Theorem (4.2|(2). Taking a nonzero vector u € Ly, 2(Cp), we let
0 =D(f)u = (D(f), W)ry—2 be the matrix coefficient of the vector-valued au-
tomorphic forms associated with f and u as in (4.4)) and let ¢, := P, p®xov.
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Choosing v with (u,v)z, 2 = 1, define ¢’ = &(f)y and ¢ likewise. By
Lemma and (4.5)), we have

ng(Q) (U, " fo, Fo) nepn

= ~ S-S
Q) (U £8, FO)np b
where
e () D ot )
A wl(By) Pl e )

It is easy to see that

g _ [SLa(2): To (N9 (NF) "%
1= ko—2

[SLo(Z) : To(N)|N 3

On the other hand,
XN ) (p(rR, )Py (), P(¢)

So =
(TR pn) s ')
(5, T P PV )
<p(Tanvq)W7Tq’W7rq ®wq >
Ifx = Lor ¢, S1 = Sp = 1. Suppose that x # 1,9 Then P, W (<8 ?>) -

I (a)xg '(a), so we have PyWr, @ X¢q = Wr, gy, and hence

Sy = v(N) - _
2= x(N) <p<m,q>wwq,wwq®wq> B,

From the above computations of S and S, we see that

1@ x(W)e(1/2,m @ xg) (V)5 [SLa(2) : To(N%)] e(1/2,7)) By,
10 (Q) e(1/2, )N kQ;Q [SL2(Z) : To(N)] £(1/2, 74 ® Xq)Br,

28 ISR v
- : by ([@.18)),
o) Wl

and the lemma follows. O

Remark 7.8. If f satisfies (CR,X7), then 1o indeed generates the congru-

ence ideal associated with the homomorphism Ap : TP(N,,I) — 1. This
strengthens [CHIS, Prop. 6.1] by replacing (CR™) there with a weaker hy-
pothesis (CR, ¥£7) here. Note that TP (N, 1, 1) is isomorphic to the N ~-new
quotient of T(N,,I). In particular, this implies that the congruence ideal
(ngp) contains (ng) and (nsp) = (ny) if the residual Galois representation
pf (mod my) is ramified at all £ € 3. This implies Hida’s canonical period
of f is an integral multiple of the Gross period of f.



HIDA FAMILIES AND p-ADIC TRIPLE PRODUCT L-FUNCTIONS 97

8. APPLICATIONS TO ANTICYCLOTOMIC p-ADIC L-FUNCTIONS

8.1. Primitive Hida families of CM forms. In this section, we show that
when g and h are primitive Hida families of CM forms, then the unbalanced
p-adic triple product L-function specializes to a product of theta elements 4
la Bertolini and Darmon in [BD96]. As a consequence, the anticyclotomic
exceptional zero conjecture can be deduced from the theorem of Greenberg
and Stevens. Let K be an imaginary quadratic field over Q of the absolute
discriminant Dy . Suppose that pOg = pp, where p is the prime induced
by the fixed embedding Q — C ~ Qp. Let Ko be the Zz—extension of
K and let 'y = Gal(K«/K) be the Galois group. Let Ky~ be the p-
ramified Zp-extension in K and I'yeo = Gal(Kp~/K) be the Galois group.
Let ¢ be an ideal of Ok coprime to p. For each ideal a prime to pc, define
0q € Gal(K (cp>)/K) be the image of a under the geometrically normalized
Artin map sending q to the geometric Frobenius Frob,. For each place w of
K, we let Art,, : KX — G% denote the restriction of the Artin map to K.
Then Arty induces an embedding A — O[['y] given by [2] = Arty(2)| e -
Let Iy := Artp(1 4 pZp)|x,ec C peo. Let p := [[peo : Iy']. Note that b =0
if the class number hx of K is prime to p. Fixing a topological generator
¥p of I'peo such that 'ygb = Artp(1+p)|K o0, let 1 : Gal(Koo/K) — Zy, be the
logarithm defined by the equation

l

U’Kpoo _ ,yp(a)_

For each variable S, let ¥g : I'o, — O[S]* be the universal character defined
by

Us(0) = (148, ol ="

Enlarge the coefficient ring O so that O contains an algebraic integer v € 7"
such that v*" = 1 + p. For any finite order character ¥ : Gxg — O of tame
conductor ¢, we define

0,(5)(9) = > (o) U1, g 1 (0a)d" € O[S][4].
(a,pe)=1

Let 7 : Gq — G%’ be the transfer map and put ¢y = 1 o ¥. Then
0,(S) is a primitive Hida families in eS(C, v 7x/qw ™", O[S]), where C' =
#(Ok/c)Dk and Tk q is the quadratic character associated with K/Q.

8.2. Anticyclotomic p-adic L-functions for modular forms. Let N be
a positive integer relatively prime to p. Let f € So.(Np, 1) be a p-stabilized
newform of weight 2r > 2, tame conductor N and trivial nebentypus and
let x be a ring class character of K with the conductor cOg. We recall
the anticyclotomic p-adic L-functions associated with (f,x) in the definite
setting. Decompose N = NtN~, where Nt (resp. N~ ) is a product of
primes split (resp. non-split) in K. Suppose that

e (Np,cDg) =1,

e N7 is a square-free product of an odd number of primes,

e the residual Galois representation py,, satisfies (CR, supp N ™).
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Let f° be the normalized newform of conductor N° = Np™ corresponding
to f. Enlarging O so that it contains all Fourier coefficients of f, let T :=
T2,(N°,1) be the Hecke algebra of level I'o(N°) and let Apo : T — O be
the homomorphism induced by f°. Denote by T - be the N ~-new quotient
of the T. Then Ay factors through Ty-, and we denote by Ao n- the
resulting morphism. Let 7o € O (resp. 7o y-) be the congruence number
corresponding to Ayo (resp. Ao n-). It is clear that . y- is a divisor of
the congruence number 7o of f°.

Let K be the anticyclotomic Z,-extension of K. Let ¢ be the complex

conjugation. We define the logarithm [ : '\ — Z,, by (o) := l(al_C\Kpoo).
Then the map [ factors through the Galois group I'y, := Gal(KL/K) and
induces an isomorphism [ : 'y, ~ Z, as Ky~ and the cyclotomic Zj-extension
K1 are linearly disjoint. Let v_ be the generator of '~ such that Flv(’y*) =1.
If ¢ € ppes is a p-power root of unity, denote by e; : I's, — ppeo the character
defined by e:(y~) = ¢. Fixing a factorization NTOx = 9N, by [BDYE,
[CHI18, Thm. A] and [Hunl7, Thm. A|, there exists a unique Iwasawa
function O/ (W) € O[W] such that for each primitive p"-th root of

unity ¢,

(8.1)
(Ogpen(c =1 =(am) 0 HEG B ) g .

x uje/DreDi 2 xec(om) - ep(f°),

where

— ap(f) € O* is the p-th Fourier coefficient of f,
— L(f°/K ®xec, s) is the Rankin-Selberg L-function of f° and the CM
form 0y, attached to xec,

(1= ()P X)) (X = ap(fp"'x(p) i ¢=1,
1 if ¢ # 1.

— Qyo n- is the Gross period of f° defined by

gp(fv C) = {

= 22

o2 -1
Qo N- MNP0y - Mo -+

— ug = #(0x)/2 and ,(f°) € {£1} is the local root number of f° at
.
When x = 1 is the trivial character, we write Ly for Ly 1.

8.3. Factorization of p-adic triple product L-functions. Let f € eS(N,w* 2 1)
be the primitve Hida family passing through f at some arithmetic point Q1
of weight kg, = 2r and trivial finite part eg, = 1. Let £{ Np be a rational
prime split in K and let x be a ring class character of conductor {™Og for
some m > 0. Suppose that y = £~ for some ray class character £ modulo
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MOy . Consider the primitive Hida families of CM forms
g = 0¢(S2) € eS(C, &t jqw ™, O[S2]);
h=0:1(53) € eS(C,& o™, O[S3])
with C' = Dgf*™. Let F = (f, g, h) be the triple of primitive Hida families

and let E§ € R =1I[S1, S2] be the associated unbalanced p-adic L-function
in Theorem with a = —r in (jev)).

Proposition 8.1. Set
Wo=v ' (1+82) 21+ 85)/% = 1; Wy =(1+S)"/2(1+85)" /2 - 1.
Then we have

L1(Q1, 51, 82) =+ WO (Wa) - O ce1-e (W) n;”" € O[S4, Sa],
°o N-—

where w = w(Wa, W3) is a unit in O[S1, Sa] given by
w = ul DUy Wy, (04).

ProoOF. For i = 2,3, taking (; primitive p™i-th roots of unity with n; > 0,
we let Q2 = (o(3v — 1 and Q3 = C2C3_1V —1, 50 gg, and hg, are CM forms
of weight one. Let T; = v 1(1+5;) — 1,7 = 2,3 and let

X, = \Il;l/Q\II;Sl/Q oY Gq — O[S1, S2]”"

2
be a square root of det Vg det V3. There is a decomposition of Galois repre-
sentations

IndR 07! @ ndF €105 @ A7t =IndR U6 & Ind R X T
Following the notation in the introduction with @ = (Q1, Q2,Q3), we thus
have

VTQ =V(r) ® Ind% €@ Vi(r)® Indg X€3;

r

Fﬂ}‘ VTQ =0 pEoyc ® (€2p @ 62_; D Xp€3,p D Xp_1€3_7;)7

where €¢; = €¢,: I'y, — ppeo is the finite order character with €(y7) =

1 = 2,3. Now we explicate the items that appear in the formula of L’{; (®)
in Theorem [7.1}

e The L-values
FVTQ(O) : L(VTQ, s) =4(2m) T (r)* - L(f°/K ® e3,7) - L(f°/ K ® xe3, 1),
e By definition, €5 and €3 are of conductors p™2 Ok and p™3 Ok, so the

modified Euler factor at p is given by
1

e(r, appxpesp)e(r, appXp 5 p)e(r, appeap)e(r, ayppes )
=ay(f)2matna) L p| (17202 tns) ey (1)eq (1)
(f)—2(n2+n3) . |p‘(1—27")(n2+n3) )

Ep(Fil} VTQ ) =

:ap

o Oy = (—2\/—1)2T+1||f°\|%0(N0) -77;01 and Yexe = 0.
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Comparing with the interpolation formula of © in (8.1, we find that

(E}i(QhVCQCs —1,vGG ! - 1))2 =w((—1,3-1)"20/k((—1)°0 Kk , ((—1)?

for all non-trivial p-power roots of unity (s, (3, and hence the proposition
follows. O

Remark 8.2 (An Euler system construction for ©¢,x). This square root
Ok of the anticyclotomic p-adic L-function in the definite setting is con-
structed by using Gross points in definite quaternion algebras, and a priori
there is no obvious Euler system construction. Below we explain how ©/x
can be actually recovered by the Euler system of generalized Kato classes a
la Darmon and Rotger. Suppose that the weight kg, = 2. In [DR17|, Dar-
mon and Rotger introduce a one-variable generalized Kato classes k(f, gh) €
HY(Q, V&V, ®o[s]Va) and prove that the image of x(f, gh) under the Cole-
man map over the anticyclotomic Z,-extension, which we denote by Col, is
given by the one-variable unbalanced p-adic L-function [,{I'(Ql, vS—1,vS—
1) (JDR17, Theorem 5.3]). On the other hand, in virtue of Proposition
combined with a result of Vatsal on the non-vanishing of central L-values
with anticyclotoic twist, we conclude that when y is sufficiently ramified,

Col(k(f,gh)) = E{,(Ql,vS —1,vS8 —1) = Oy/k(S) - (non-zero constant).

In a work joint with F. Castella [CH22|, we will make use of the explicit
version of the above equation to prove first cases of a conjecture of Darmon-
Rotger on the non-vanishing of generalized Kato classes.

8.4. An improved p-adic L-function. Let
Z=04+T)"1+T)(1+T3) € Ro.

In this subsection, we introduce a two-variable improved p-adic L-function
Ly € R/(Z) attached to F' = (f, g, h) a triple of primitive Hida families as
in §3.5| To lighten the notation, we let o, (?) := a(p, ?) be the Up,-eigenvalues
of Hida families ? € {f, g, h}. Then we have the following

a

Proposition 8.3. Suppose that 1/11_1w1+ is unramified at p. Then there
ezists an improved p-adic L-function Ly € R/(Z) such that

Prw " (p)ay(g)ap(h)
ap(f)

Moreover, for Q = (Q1,Q2,Q3) € %72 with Z(Q) = 0, we have

. L(1/2, 1) .
(Lr(@Q) = ¢ Neearo & (Ig,),

L’{; (mod Z) = (1 —

) L.

where
q+ v 1 $)2
1 Ly(Fil; VQ7 S)Lp<UQ, s)

g*H — . =0,
(gp) E(WDp(FiI;VTQ)) Lp(vg/FﬂJtVT,s)Lp(Vg,S)\s

where U = (Fil’ Vg, )Y @ Fil’ Vg, @ Fil° Vi @ 97w
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PROOF. Let G := g* - h* (mod Z). Then the argument in Lemma
shows that

G € S(N, vy, 1)B1L R/ (2),
so we can define G™™ as H*"™ in (3.8), replacing H by G and define £}
by
Zp = a(l, 1’}(TTN/N1(GauX)) €ER/(Z).
In what follows, we shall keep the notation in . For each @ = (Q1,Q2,Q3) €
xf with R(Q) = 0, ie. kg, = kg, + kg, and €, = €g,€Qy, let F =
(f,9:h) = (£0,,9¢, hqs). Applying the proof of Proposition to the
improved p-adic L-function £, we obtain
2@ %@
I(p(tn)dF)  I(p(tn)dy")’

where @3 = P(Js0)} Wy W, and I(p(tn)p") is the global trilinear
period integral

(8.2)

I(p(tn)gb}’*) = ¢?*($tm$am)d7$'

/Ax GL2(Q)\ GLa(A)

kQ3

kq kg
: 1-=2 and a3 = a(p, h)p'~ 2,

. —1/2 _koy
Letting ay = me/ (p)a(p, f)p'~ 2 , a2 = a(p,g)p

one verifies that

. 0 -
¢F=1®1®(1—yp|a3-7rh(<p0 1)))-¢F’
and that

* 3 *
I(p(tn)d”) = I(p(tn)dF") — Ip|? cxazas - I(p(tn-1)¢F")
for n sufficiently large. From the above equation, (8.2)) and Proposition

we can deduce that

1 — *
LHQ) = (1= ]2 wopwnp(p)ay ' azas) - Z(Q).
Now as in Theorem[7.1] we apply the above construction to a suitable Dirich-
let twist F’ of F so that F’ satisfies the minimal hypothesis and define
~1
L= L - \/dJL(p)(—l)(—l)IF/ . Then L} clearly does the job.

To see the interpolation formula, applying the proof of Corollary and
Theorem [7.1]to Z;, we can show that

L(1/2, 11
@ -2 gy i@ TT 0+,
fa, T gIN 0E€ S exe

where JEQ p 18 the improved p-adic zeta integral defined in Remark
Then the interpolation formula follows from the expression of .# ﬁ@p given
in Remark B O
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8.5. An alternative proof of anticyclotomic exceptional zero con-
jecture. We return to the setting in and Suppose that f = f° is
the newform attached to an elliptic curve E/q of conductor Np with split
multiplicative reduction at p. For a ring class character y, put

Ly(f/K®x,8):=0pg, (v —1) for s € Z),

Then we know £,(f/K,0) = 0. Write p"* = @O with w € K* and let
log,/=: C, — Cp be the p-adic logarithm such that log_, =(w/@) = 0.
We provide a Greenberg-Stevens style proof of the anityclotomic exceptional
zero conjecture for elliptic curves that was proved in [BD99).

Theorem 8.4 (Bertolini and Darmon). Let gqg be the Tate period of E.
Then we have

dL,(f/K,s) log/m(qm) | L(E/K, 1)@1)}(/2.

ds ls=0 = ord,(qr) 412 N

Proor. By [CHI8, Theorem D], we can choose a ring class character y of
¢-power conductor with £ { Np split in K such that £,(f/K @ x*,0) # 0.
Let f = f(T) € Zy[T][q] be the primitive Hida family passing through
f at the weight two specialization 7" = u? — 1 with u := 1 + p. Let
F = (f(T),04(S2),0,-1(S3)) be the triple of Hida families and let cl =
E{;(T, S, 53) be the unbalanced p-adic L-function attached to F in Theo-
rem Fixing a lift Z} € R of L} (mod Z), we define analytic functions
on Zy:

Ly(k1, ko, k3) :zﬁ{;(uk1 —1,vk2 — 1, vk —1);
Lk, ko, ks) ==L (ub —1,vk2 —1,vFs — 1)

for (kla k27k3) € Zg Let af(kl) = ap(f)(ukl _ 1)7

ag(k2) = ay(g)(v** — 1) = x(Froby)v!(Frobp)(1=ha);
ap(ks) = Xfl(Frobﬁ)vl(FrObF))(k%).

It is clear that
ap(2) =1; ag(1)ag(l) = 1.

By Proposition there exists H(T1,S51,52) € R and H(ki, ko, k3) =

H(uF —1,vF2 — 1, vk — 1) such that

(8.3)

ag(k2)an (ks)

L,(ki, ko, k3) = (1——L—=2 227
p( 1, 2, 3) ( af(kl)

(the nebentypus ¢1 = 1, 92 = ¥3 = w ! and a = —1). We may assume
L(f/K,1) # 0, so the root numbers of f and its quadratic twist f ®7x/q are
+1. This in turns implies that the root numbers of f and f ® 7x/q are —1,
and hence the one-variable Iwasawa function £,(k1, 1, 1) vanishes identically.

)-Lp(k1, ka2, k3)+H (K1, ka, kes)-(u— k1 thatks _q)
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Taking the derivative with respect to k1 on the both sides of (8.3]), we find

that
oL,

0k e
This implies that

0= 22(2,1,1) = dp(2) - £3(2,1,1) — H(2,1,1) - log, u
H(2,1,1) - log,u = a4(2) - £;(2,1,1);

By an elementary calculation and a theorem of Greenberg-Stevens [GS93)
Theorem 3.18],

log, @™ 1 log,(qr)
") = —=L2—: dp(2)=—= 222,
ap(l) = == dp2) =~ s
It follows that
oL, oL, log, @
2.1,1 2.1,1 P Y. #H2,1,1)+ H(2,1,1) - 1
akQ(,,)aks(,,) (— hK)«i”(HH(,,)ogpu
log, @ 1 log,(qr) .
=(——2 - SN L £4(2,1,1).

hx 2 ordy(qr)
By Proposition we have

ko + k3 — ko — k3
— Ly(f @, 5—)

for some nowhere vanishing analytic function v(ks, k3). Letting v = v(1,1) #
0, we find that

L(2, ko, ks) =v(ka, ks) - L,(f/K,

L, oL,
2,1,1)+ —=(2,1,1
By B LD+ G LD
log, (qE 2log, @™
(1)), 2106,
ord,(¢E) hx
— )Ing/E(QE)
ord, (qz)
On the other hand, the interpolation formula in Proposition shows that

£5(2,1,1) =0 (27m)” QL(é/Kl uie/Di - Lyp(f/K @ x*,0)%.
FN-

v L, (f/K,0)Ly(f/K ®x*,0) =

) - E;(Q, 1,1)

LL3(2,1,1).

Combining the above two equations, we obtain

log_ ,— 2
e

and the theorem follows. O
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