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ABSTRACT. The rank one Gross conjecture for Deligne-Ribet p-adic L-functions

was solved in [DDPTI] and [VenI5| by the Eisenstein congruence among Hilbert
modular forms. The purpose of this paper is to prove an analogue of the Gross
conjecture for the Katz p-adic L-functions attached to imaginary quadratic
fields via the congruences between CM forms and non-CM forms. The new
ingredient is to apply the p-adic Rankin-Selberg method to construct a non-
CM Hida family which is congruent to a Hida family of CM forms at the 1+4¢
specialization.

REsUME. Le conjecture de Gross en rang 1 pour les fonctions L p-adiques de
Deligne-Ribet a été résolue par [DDP11] et [VenI5| au moyen de congruences
d’Eisenstein parmi les formes modulaires de Hilbert. Le but de cet article est de
prouver un analogue de la conjecture de Gross pour les fonctions L p-adiques
de Katz des corps quadratiques imaginaires, via les congruences entre formes
CM et formes non-CM. Le nouvel ingrédient est I’application de la méthode de
Rankin-Selberg p-adique pour construire une famille de Hida non-CM qui est
congruente & une famille de Hida de formes CM pour la spécialisation 1 + €.
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In [DDPTI], Darmon, Dasgupta and Pollack applied the congruence between
Eisenstein series and cusp forms to prove the rank one Gross conjecture for Deligne-
Ribet p-adic L-functions with some assumptions, which were later removed by
[Ven15]. The purpose of this paper is to apply their ideas in the setting of CM
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congruence to prove an analogue of Gross conjecture for the cyclotomic Katz p-adic
L-functions associated with ring class characters of imaginary quadratic fields. To
begin with, we let K be an imaginary quadratic field and let p > 2 be a rational
prime. Fixing an isomorphism ¢, : C =~ Qp once and for all, let p be the prime
above p induced by ¢,. We shall assume that

POk =pp, p#P.
Let § be a prime-to-p ideal of Ok. Let K(f) and K(p™) be the ray class fields

of K of conductor f and p*>. To any p-adic character b Gal(K(p>*)/K) — Q:
which is Hodge-Tate, one can associate a character ¢ : W — C* of the Weil
group Wy of K unramified outside places above p with qg(Frq) = 1p(¢(Frq)) for
q 1 p, where Fry denotes a geometric Frobenius at a prime q. The character $ is the
p-adic avatar of ¢ (c¢f. [HT93, page 190]). Let W be a finite extension of the Witt
ring W (F,). Let x : Gal(K(f)/K) — W* be a primitive ray class character modulo
f. The works in [Kat78], [dS87] and [HT93] have proved the existence of a (two-
variable) Katz p-adic L-function £,(x) in the Iwasawa algebra W[Gal(K (p™)/K)]
characterized uniquely by the following interpolation property: there exists a pair
(Qp, Qo) € WX x C* such that for any p-adic character ¢ : Gal(K (p>)/K) — Q;
which is crystalline of Hodge-Tate weight (—k — j, j) with either £ > 1 and 5 > 0
ork<landk+j>0,

(1.1) HLp(¥) _

QI;Jr?J 2(v/—1)k+i
Here L(s,x®) is the complete L-function of x¢ (cf. [Tat79, §3]). Let KL be the
cyclotomic Z-extension of K. Let ecyc : Gal(K (p™)/K) — Gal(KL /K) — Z) be
the p-adic cyclotomic character. Define the cyclotomic p-adic L-function L,(—, x) :
Z, — W by

(1= xo(Frs)) (1~ oy p ) - LA,

Ly(s,x) = €ye(Lp(X))-
In the remainder of the introduction, we suppose that

(1.2) x # 1 and x(Fry) = 1.

The assumption implies that L,(0,x) = 0 by the p-adic Kronecker formula,
and in view of Gross’ conjecture for Deligne-Ribet p-adic L-functions, it is tempting
to expect the leading coefficient of the Taylor expansion of Ly(s,x) at s =0 to be
connected with certain Z-invariant, or rather p-adic regulator, and special values of
a L-function. Along this direction, the work [BS19] provides an affirmative answer
in most cases. We would like to remark that the results of [BS19] indeed include
more general CM fields assuming some major open conjectures in algebraic number
theory. We recall the (cyclotomic) Z-invariant associated with y introduced in
[BS19, Remark 1.5 (ii)]. Let H = K(f) be the ray class field of conductor § and
O:I,E be the group of p-units. Put

05 I = {u €0} ©2Q, | (0@ 1)u=(1® x(0))uforall o € Gal(H/K)} .

We have Oy o[x] = Hg;, (K, x ' (1)) via Kummer map. The dimension of the space
is given by dimg Oéﬁ[x] = 2. Let P be the prime of Oy induced by ¢,. By
» ~H,

Dirichlet’s units Theorem, we can choose a basis {ux,u%} with uX € O} @z Qp
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and u% € O:If ® Q,, with ordﬁ(u%) # 0. Let ¢ denote the complex conjugation.
Define logarithms log,,, logg : H* ®z Qp — Qp by
log, (z ® a) = log,(tp(7))a;  logg(z @ a) = log, (T ® ).

Let Vy be the kernel of log, : OE,E[X] — Q,,. Then V, is a one dimensional space
generated by

(1.3) ui=ut - (1®log, w*) —uX - (1@ log, ul).
The Z-invariant £ () is defined by

1) 2 = o) ! (1&)~det<
p

_ordﬁ(u) - log, ux - ordg

X
log,, ug log,, uX
logy ug logg uX

Note that £ (x) is a Gross-style regulator for imaginary quadratic fields. The above
definition does not depend on the choice of basis. Let ;(Og) be the Robert’s unit
in H* ®z Q,, introduced in [dS87, p.55, (17)] and put

(1.5) o= Y alei(Ok) @ x o) € (0 @ Q,)X].
c€Gal(H/K)

We have the following Gross conjecture in the setting of imaginary quadratic fields

Conjecture 1. For all primitive ray class characters x of K modulo § satisfying

(1.2), we have

1
Ly(s,X) -1 (1 7 X(F;p )) log, ¢y - Z(x).

S s=0 12w;

Here wy is the number of units in OF congruent to 1 modulo f.

When p does not divide the class number of K, a proof of Conjecture [I] is
given in [BS19, Theorem 1.8]. In this paper, we offer an entirely different proof of
Conjecture [I] for ring class characters, removing the hypothesis on p-indivisibility
of the class number.

Theorem A. Let di be the fundamental discriminant of Ok . Suppose that x is a
ring class character and that (f,dgx) = 1. Then C’onjecture holds.

Regarding the non-vanishing of Z-invariants, we remark that it is shown in
[BD21, Proposition 1.11] that either .Z(x) or .Z(x~ ') is non-zero and that the
Z-invariant Z(x) is non-zero if the Four Exponentials Conjecture holds.

The proof in [BS19] requires the full arsenal of Iwasawa theory for imaginary
quadratic fields and the existence of elliptic units. In the case of general CM fields,
their method relies on the existence of Rubin-Stark units in ray class fields, which is
one of the major open conjectures in algebraic number theory. In contrast, we adapt
the ideas in [DDP11], replacing the Eisenstein congruence with the CM congruence
for elliptic modular forms. This approach is inspired by a series of works of Hida and
Tilouine [HT91], [HT93] and [HT94] on CM congruences and the anticyclotomic
main conjecture for CM fields and a recent work [BD21]. This method is units-free
and more amenable to general CM fields as in [DDP11] at least under the Leopoldt
conjecture for totally real fields. The details for general CM fields will appear in a
future work. We now give a sketch of the proof of Theorem [T}
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Cohomological interpretation of the Z-invariant. The staring point is the
observation dimp H'(K,y) = 1 by the global Poitou-Tate duality. Let k£ # 0 €
H'(K, x). Write locs(r) € H' (K5, x) = Hom(G k-, Q). Let kur : G — E be the
unique unramified homomorphism sending the geometric Frobenius Frgy to 1 and
Keye be the p-adic logarithm of the p-adic cyclotomic character. Then

locg(k) = 2 Kur + ¥+ Keye-
In Lemma [£.1] we show that y # 0 and

(1.6) LX) ==,

Therefore, to prove Theorem [I| we need to construct a non-zero cohomology class
whose = and y coordinates can be evaluated explicitly and related to the derivatives
of the Katz p-adic L-functions.

o7/-adic modular forms and construction of cohomology classes. The con-
struction of « relies on the idea in [HT94] of using the congruence between p-adic
families of CM forms and non-CM forms to prove anticyclotomic main conjectures.

Let 7 be the ring of rigid analytic functions on the unit disk {5 € Qp | |s|p < 1}.

For an integer k > 1, a prime-to-p positive integer N and a Dirichlet character &
modulo N, let Si(N,x) be the space of elliptic cusp forms of weight k, level N
and character €. Denote by S(N, ) the space of ordinary «/-adic modular forms of
tame level N and character &, consisting of g-expansion F(s)(q) € «/[q] such that
F(k)(q) is the g-expansion of some p-ordinary elliptic cusp form of weight k + 1,
level Np for all but finitely many & = 0 (mod p — 1). Since x is assumed to be a
ring class character, we can write x = ¢!~ for some ray class character ¢ of con-
ductor ¢ prime to dgp. Note that the choice of ¢ is not unique. Let N = dxNc¢ and
§ = TK/Q¢+, Where Ti/q : (Z/dxZ)* — C* is the quadratic character associated
with K/Q and ¢4 : (Z/N¢Z)* — C* is given by ¢4 (a) = ¢(aOk). Let 84 and 6 4
be o/-adic CM forms in S(N, ¢4 7x/q) associated with ¢ and ¢¢ defined in .
Let £ = Frac /. The theory of «/-adic newforms yields a decomposition of Hecke
modules

(1.7) S(N,¢4+7K/Q) = H 0y ® H Oy & S™.

The submodule S+ interpolates the orthogonal complement of the space spanned by
0, and 64c. Let T be the o7-algebra generated by the Hecke operators acting on
S+. Suppose we are given a Hecke eigensystem A : T+ — &/T/(s?) and a character
VU : G — /1/(s?) such that

(a) ¥ =¢(mod s),

(b) A(Ty) = U(Fr() + U(Fr;) for £ = ([ split in K.
Write ¥ = ¢(1 + ¢'s) (mod s?). In Theorem [4.2} we use the argument in [DDP11],
§4] to construct a non-zero cohomology class x € H! (K, ) such that

(1.8) locg(k) = V|G, — P) T AU)'(0) - -

Here A(Up)’(0) is the first derivative of the Up-eigenvalue A(U,) at s = 0.
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Construction of Hecke eigenforms modulo s?. The problem boils down to
constructing a Hecke eigensystem \ : T+ — &/1/(s?) as above and computing
the derivative of the U,-eigenvalue A\(Up,). This is the main bulk of this paper and
is achieved by applying the p-adic Rankin-Selberg method. For any C | N, let
Yo (s) € 2/ [q] be the g-expansion defined by

o0

Go(s) =1+420,(1—s)7' > | DY a7 (d)* ] ¢“n,

n=1 \djn,pin

where (,(s) is the p-adic Riemann zeta function. For k > 2, 9 (k) is the ¢-expansion
of an p-ordinary Eisenstein series of weight k& and level T'o(Cp). From the spectral
decomposition of eoa(03%) € S(N,¢17x/q) in (L.7), we find that there exist
C(¢, ¢°) and C(¢°, ¢) in £ such that

eord(0390) = C(¢, )0y + C(¢°, $)04c + A

for some <7-adic form # € S*. According to [HT93, Theorem 8.1|, the coeffi-
cients C(¢, ¢¢) and C(¢°, ¢) are essentially a product of two-variable Katz p-adic L-
functions £,(s,t, x) (See for the definition). By Hida’s p-adic Rankin-Selberg
method, we will prove in Proposition the following precise identity

(1.9) C(¢°,¢)(S) _ 2£P<S7O71)‘CP(5707X) . <dSK> ——
L0, 7k /Q) Lp(s, =5, X)Gp(1 — 5) (1 — g3 (Frp))
for some good choices of ¢ and C. Following a similar calculation in [Venl5l §3],
we will see in Theorem [4:4] that the «7-adic form J# produces an explicit Hecke
eigensystem A\ : Tt — o/1/(s?) with the properties (a) and (b) and use
to show that the first derivative of A, (U,) is given by the derivatives of the Katz
p-adic L-functions. Putting all ingredients together, we prove Theorem [T in §4.3]
Finally, in we compare the definition of Z-invariants in and Benois’
Z-invariant in the setting of imaginary quadratic fields. First, Perrin-Riou [PR95|
formulated a general conjecture for special values of p-adic L-functions at all integer
points except for the exceptional zero case. Using an idea of Greenberg [Gre94] in
the ordinary case, Benois [Benl4] gave a general definition of .Z-invariant using
(¢,T')-modules and formulated a trivial zero conjecture including the non-critical
case. We will confirm that our formula is compatible with his conjecture in §5.2.

Notation and convention. If F' is a local or global field of characteristic zero,
let O be the ring of integers of F. Let Gr denote the absolute Galois group of
F and let Cp := F* if F is local and Cf be the idele class group A3/F* if F
is global. Let recp : Cp — Gj};b be the geometrically normalized reciprocity law
homomorphism.

Let F be a global field. If q is a prime ideal of O (resp. v is a place of F), let
Fy (resp. F,) be the completion of F' at q (resp. v). Then recg, : F¢ — G%z sends
a uniformizer @y of O, to the corresponding geometric Frobenius Fry. If S is a
finite set of prime ideals of Op, let Fis be the maximal algebraic extension of F
unramified outside S and let Gp g = Gal(Fg/F). For a fractional ideal a of a global
field F', we let Frq := Hq Fry® if a has the prime ideal factorization Hq q"a.

If x : Cp — C* is an idele class character of F* unramified outside S. If v is a
place of F, let x, : F,* — C* be the local component of x at v and let L(s, x,) be
the local L-factor of x, in [Tat79, (3.1)|. Let L(s, x) =[], L(s, xv) is the complete
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L-function of x and €(s, x) be the epsilon factor [Tat79, (3.5.1-2)]. If x = 1 is the
trivial character, then we put (g, (s) = L(s,1,) and (g (s) = L(s,1). In particular,
(r(s) =7 2T(%) and (q(2) = 7/6 under this definition. If y is a character of Gp,s,
we shall view x as a Hecke character of C'r via recy and still denote by y if there
is no fear for confusion. Therefore,

x(q) := x(Frq) = xq(wq) for q € S.

In particular, a primitive ray class character x modulo ¢ shall be identified with an
idele class character x of F' of conductor ¢.

We write A = Aq for simplicity. Denote by e =[] e, : A/Q — C* the unique
additive character with e, (z) = exp(2my/—1x). If x : AX/Q* — C* is a finite
order idele class character of Q of level IV, then let xp;. be the Dirichlet character
modulo N obtained by the restriction of x to Hfl ~ Z;. With our convention, if
¢ 1 N is a prime, then

(1.10) Xq(0) = x((@)) = xpu(a) ™"

We fix an isomorphism ¢, : C ~ Q,, once and for all. Let w : Gal(Q(()/Q) — C*
be Galois character such that ¢, o w is the p-adic Teichmiiller character. Identifying
w with an idele class character of Q, we have

tp(wpir(a)) = a(mod p); L(s,w) = L(s,wpi.).

2. ORDINARY A-ADIC CM FORMS

2.1. Ordinary A-adic forms. If N is a positive integer, let Si (N, x) denote the
space of elliptic cusp forms of level T'; (N) and nebentypus X]Silr' If feSk(N,x)isa
Hecke eigenform, let ;s := &( f) be the associated automorphic form. Let Qo be the
cyclotomic Zy-extension of Q and I'q = Gal(Qo/Q). Define the Iwasawa algebra
A := W[I'q] and write o — [o] for the inclusion of group-like elements I'q — A*.

Ifv:T'q — Q; is a continuous character, we extend v uniquely to a W-algebra

homomorphism v : A — Q; by the formula v([y]) = v(7). Let ecye : T'q — 1 +pZ,
be the cyclotomic character. For s € Z,, let Ps be the kernel of &g, : A = Zy,
i.e. the ideal of A generated by {[o] — &5 .(0) | 0 € Tq}. For a positive prime-to-p
integer N and a finite order idele class character y modulo pN, let S°*(N, x, A) be
the space of (ordinary) A-adic cusp forms of tame level N with nebentypus X]Silr,
consisting of g-expansions F(q) = _, a(n, F)q" € Alq] such that for & > 1, the
specialization F (mod Py) = > efyc(a(n,}'))q” is the g-expansion of some cusp
form Fy, in S,‘;’fl (pN, xw") ®c,., Qp at the infinity cusp.

If R is a A-algebra which is an integral domain and finite over A, let S°™4(N, y, R) :=
S°rd(N, x, A) ®a R be the space of A-adic forms defined over R. A basic result in
Hida theory asserts that S°™(NV, x, R) is a free R-module of finite rank equipped

with the action of Hecke operators {7y}, n - {Uq},,n- We let

T(N,x, R) = R[{TZ}HPN ) {Uq}q‘pN] C Endg Sord(Na R, x)
be the big ordinary cuspidal Hecke algebra generated by these Hecke operators
over R. By the freeness of S*4(N, x, R), we have T(N, x, R) = T(N,x,A) ®s R. A

prime ideal @ in Spec R is called an arithmetic point if @ is lying above Py for some
k > 2. A A-adic form F in S*4(N, x, R) is a newform of tame level Nx | N if for
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all but finite many arithmetic primes @ of Spec R, the specialization F (mod Q) €
ngl (pNz, xwk) is the g-expansion of a p-stabilized normalized elliptic newform of
tame level Nx.

2.2. Classical CM forms. Let K be an imaginary quadratic field and let dx > 0
be the fundamental discriminant of Og. If ¢ is an idele class character of K of
conductor ¢ with ¢, (2) = 27* for some non-negative integer k, we recall that the
CM form associated with 1 is the elliptic modular form 6, of weight k + 1 defined
by the g-expansion

05, = > v(a)g",
(a,0)=1
where a runs over ideals of Ok prime to ¢ and Na := N /q(a) is the norm of a.
Write 94 := 1| AL~ H’;Qw for some finite order idele class character w of Q. Then
0;’) is a newform of weight k + 1, level Nedg and nebentypus wgilr. Let p be a prime

of Ok lying above p. The p-stabilization 91(/)'3) is defined by

o = > vl

(a,pe)=1

2.3. A-adic CM forms. Suppose that pOx = pp, where p is the prime induced by
the fixed embedding Q < C ~ C,. Let Ky~ be the Z,-extension of K in K (p)
and I'gp, = Gal(Ky~/K). Let ¢ be an ideal of Ok coprime to p. The transfer map
Vs G‘éb — G% induces a map ¥ : I'q — Gal(K (p>®)/K) — I'k p, which in turns
gives rise to an embedding

(21) VA= WHFQH — AK = WHFK,P]]
such that ¥ (recq, (2)|q..) = reck, (2)|k,~ for z € QF. Let U™V : G — A} be
the universal character defined by the inclusion of group-like elements I', — Aj
(2.2) \I/‘miv(a) = [0_1\1(,,00] € Ag.
For any primitive ray class character ¢ modulo ¢, we define
(2.3) Os() = Y o(a) UV (Fro)g™® € Ax[d].

(a,pc)=1

Let ¢ = ¢ o ¥, regarded as an idele class character of Q. Then 8, is a A-
adic newform of tame level N := dxNc and nebentypus ¢;7x/q, where 7x/q
is the quadratic character associated with K/Q. Let S := S°'4(N, ¢4+ TK/Q, AK)
and T := T(N, ¢, 7x/q,Ax). Then S is a free Ag-module with T-action. Denote
K = Frac(Ag). Let S* be the subspace of S ® K generated by the following set

=L — {]—'(qM) | F # 64 or 84 a newform in S of tame level Nx and M Nr | N}.

By the theory of A-adic newforms [Wil88| Prop. 1.5.2], we have the decomposition
of T-modules

(2.4) SO K=K 00K 0, &S+
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3. THE p-ADIC RANKIN-SELBERG CONVOLUTIONS

3.1. A classical Eisenstein series. We recall a general construction of Eisenstein
series in the theory of automorphic forms. If w is a finite order idele class character
of Q and k is an integer, let Aj(w) denote the space of automorphic forms ¢ :
GL2(Q)\ GL2(A) — C such that

_ 2my/—Tk6 x [ cosf sinf
p(zgrg) = w(z)p(g)e , zZ2€AX Ky = (_ sinfd  cos 9> € SO2(R).

Let A (w) C Ag(w) be the subspace of cusp forms. For a € Z), put (a) :=a- (1,0
w)(a)~!. For each place v, let w, be the local component of w at v. Let D be the
pair
D= (k,C), C€ZsoandptC.

Let S(A?) be the space of Bruhat-Schwartz functions on A?. Define ®p = $p o @)
q)D?g c S(AZ) by

— Dp ol y) = 27 (w4 V/=Ty)re @ ),

— CI)D,Z(xa y) =lcz, (1’)1[21 (y)7

— Cpyp(2,y) = w, (@), (2)Iz, (y)-
Recall that fps = @y fpse, Where fpso = for 1,05, ¢ GL3(Q,) — C is the
Godement section associated with ®p , defined by

S 1 S
fp.50(g0) = wi(det g) det g, |32 /Q B0, ((0,10)gu)w® (£2) 1o, A"t

v

(cf. [CH20, (4.1)]). Let B(Q) be the upper triangular matrices in GL2(Q). Then
the Eisenstein series Ea(—, fp,s) : GL2(A) — C is the series defined by

EA(ngD,s) = Z fD,s(fyg> € Ak:<1)
v€B(Q)\ GL2(Q)

(cf. [Bum97, (7.8), page 351]). The series Ea(g, fp,s) is absolutely convergent for
Re(s) > 1/2 and can be analytically continued to the whole complex plane except
at s = 1. Suppose that k > 2. For z = z++/—1y € $ = {z € C | Im(z) > 0}, put

x

_k Y
B0 =y 5 Ea() 7)ol
Then Ej(C)(z) defines a classical Eisenstein series of weight k and level I'g(pC').

Proposition 3.1. The Fourier expansion of E(C) is given by

()" "
Ei(C) = 556G =k + Y alm, E(C)d",
n>0,C|n
where
(3.1) a(n, By(C)) = > d" 'wpu(d)".

Cld|n, ptd

Proof. For each positive integer n, the Fourier coefficient a(n, Fy(C)) is the prod-
uct of local Whittaker functions

a(n,Ek(C)) = n% HW( (g 2) 7fD7s,€)|s=1%ka
4
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where W (—, fp.s.¢) : GL2(Q¢) — C is the local Whittaker function defined by

Wiootoo =t [ goeal(§ ) (5 7) oer-antan

n—00 fp-ng,

and the Haar measure dz, is normalized so that vol(Z,, dxy) = 1 (¢f. [CH20, Corol-
lary 4.7] and [Bum97, (7.14)]). Hence we get from the explicit formulae of
these local Whittaker functions in [CH20, Lemma 4.6].

On the other hand, the constant term a(0, E;(C)) of Ex(C) at the infinity cusp
is given by

a(0, Ex(C)) = fp 1o (1) + (M fp,)(1)

1-k’

s=-5

where M fp s(g) is obtained by the analytic continuation of the intertwining integral

Mfp.s(g /st < _1> ((1) T))dx,geGLg(A)

(¢f. [Bum97, (7.15)]). A direct computation shows that for Re (s) > 0,

MfD,s(l):H Q f'D,s,v(((l) _xl))dl‘v

7025 Hac w?(C) L(2s,w")

N 2 L(2s, wk

_CFw((C)F (25, wb) - (1—p 2wk(p)) if w} is unramified,
- 2 1 if wllf is ramified,

(cf. [Bum97, Proposition 2.6.3 and (7.27)]). Since fp s (1) = 0, we see that

a(0, E(C)) = Mfp(1)],_1e

o) o _ o)
= et~ kwpl) = S0 k)
This finishes the computation of the Fourier expansion of Ex(C'). O

Remark 3.2. Let Ej(z) be the standard classical Eisenstein series with the g-
expansion

Ep = 76(12_ k) + Z or-1(n)q

n>0

Let E,(f) (2) == Ex(2)—p* 1 Ex(pz) be the p-stabilization of Ej.. From the inspection
of Fourier expansions, we have

Ex(C)(z) = C~H(C) - EP(C2).

The adelic construction of Ej(C') will be used in the later computation of the adelic
Rankin-Selberg convolution.
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3.2. A A-adic Eisenstein series. Let P be the augmentation ideal of A. Let
CEL(I) € P~1A be the Kubota-Leopoldt p-adic L-function associated with trivial
character, i.e. €5, (LK"(1)) = (»(1 — s). Define the g-expansion

cyc
. [Fre]™' ko n
EC = T ! ‘Cp (1) + Z a(“’ng)q )
n>0,C|n
a(n,&c)= > d'[Frg "' €A
Cld|n, ptd

Proposition 3.3. The g-expansion Ec defines a A-adic form of Eisenstein series.
More precisely, for k > 2, we have

k
Eeye(€c) = Ex(C)(9)-
Proof. Note that with our convention ([1.10)), for any positive integer a prime to p,
Fr, is an element in Gq corresponding to the ideal (a) = aZ and
Eeye(Fra) = (a) ' = a twpi(a).
The assertion thus follows from Proposition [3.1] immediately. ([
3.3. Two-variable and improved Katz p-adic L-functions. Let §{ be an in-

tegral ideal of K. If x is an idele class character of K with the conductor §f. The
(finite) Hecke L-function for y is defined by the Dirichlet series

Lan(s,x) = Y, x(a)Na™*.
(a,f):l
If the infinity type of x is (a,b) € Z?, i.e. Xoo(2) = 292°, then the Hecke L-function
associated with y is given by
(3.2) L(s, x) == 2(2n)~tmax{abH (s 4 max {a, b}) Lga(s, X)

Suppose that (pp,f) = 1. We consider the p-adic L-functions Ly, = and L, 5 of
K defined in [dS87, (49), page 86]. Let x be a primitive ray class character modulo
f. Let £,(x) be the unique element in the Iwasawa algebra W[Gal(K (p>°)/K] such
that for every p-adic continuous character e on Gal(K (p>°)/K), we have

€(Lp(X)) = Ly, = (xe)e(0),
where o5 € Gal(K (fp™)/K(fp™)) is the element defined in [dS87, (7), page 92|.
We call £,(x) the two-variable Katz p-adic L-function associated with x. Let g, :
Ik p = Gal(Ky /K) — WX be a p-adic character such that

ep(reck (2)) = (zp), 2 € OF.
By definition, e, 07 = €cye. Let e5(0) := ep(coc). It is convenient to introduce the
two-variable Katz p-adic L-function £,(s, ¢, x) : Zf, — W defined by
(3.3) Ly(s,t,x) = (ege%) (Lp(x)) for (s,t) € Z2.

Let ¢ be the idele class character of K* such that ¢ = €p, le. Pt A /K™ — C*
is an idele class character of K unramified outside p and 1 (2) = z and ¥(q) =

Yq(wq) = €y (Frq) for any prime q # p.
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Proposition 3.4. There exists periods (Qoo,$p) € C* x WX such that for all
(k,j) € Z* such thatk >1 and j >0 ork <1 and k + j > 0, we have

Ly(k+ 7, =3, x) _ (07X¢k+j(1_c))

' _ L k=0 (B)) (1= pF =0 (p= 1y~ 1) &
L+ 2(ﬁ)kﬂ( XY (P)(1—x¥ (= )p)
Proof. Let (©2,9,) € C* x W* be the periods introduced in [dS87, Theorem 4.14,
page 80] and put Q. := (27) 71Qy/d. Write e = slgﬂsﬁ_j. One deduces the desired
interpolation formula of L,(k + 7, =7, x) = L, = (xe)e(os) from [dS8T, (50), page
86 and Lemma (i), page 92]. O

Q2

Likewise we define £ (x) to be the unique element in W[Gal(K (p>)/K)] such
that

(L (X)) = Lyp j(xe)e(os)
for any p-adic character € on Gal(K (p*°)/K). Put
L5(s,x) = (L (X))-

Then £} (x) is called the (one-variable) improved p-adic L-function associated with
X in the sense that

(3-4) Ly(s,0,x) = (1 = x(p)ey (Frp)) Ly (5, x)-

If x # 1, then by the p-adic Kronecker limit formula [dS87, Theorem 5.2, page 88],
we have

* _ -1 _X(pil)
(35) £3000 = 5 (1= X5 )t

where ¢, is the Robert’s unit in (1.5)). It follows that £{(0, x) # 0 by the Brumer-
Baker Theorem.

Remark 3.5. Recall that the cyclotomic p-adic L-function Ly (s, x) := €, .(Lp(X)).

cyc
Let h be the class number of K. Since s{je% = sf}yc,

Ly(ht,ht,x) = Ly(ht, x) for t € Zy,.

we have

3.4. Rankin-Selberg convolution with CM forms. Let x be a ring class char-
acter unramified outside pdx . There exists a ray class character ¢ such that

x=0¢'"°

(¢f. [Hid06, Lemma 5.31]). Replacing ¢ by ¢ - { o Ng,q for a suitable Dirichlet
character £, we may further assume ¢ satisfies the following minimal condition

(min) the conductor of ¢ is minimal among Dirichlet twists.

Since y = ¢'~¢ is unramified outside pd, this in particular implies that the con-
ductor ¢ of ¢ has a decomposition
¢ =cics, (6, pdr) =1; (T, ¢) =1,

where ¢; is only divisible by primes inert in K and ¢4 is only divisible by primes
split in K. The level of the associated CM form 9;’) is N = dgC2Cy, where C; and
Cs are positive integers satisfying (C;) = ¢; N Z and (Cs) = ¢ N Z. Put

C = dgCiCs.
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With the transfer map ¥ : A — Ak in (2.1, we define
(3.6) Go =¥ (L;LCEU .5C> e Apld,
where Ap is the localization of Ax at P. By construction and the fact that ,(s)
has a simple pole at s = 1, we find that
(3.7) Go = [Frg'] = 1 (mod P).
Let eorq be Hida’s ordinary projector on the space of A-adic forms. The spectral
decomposition of
eora(05Gc) €8 = SN, ¢4 7x/q, Ak)

according to allows us to make the following definition.
Definition 3.6. Let C(¢, ¢°) and C(¢°, ¢) be the unique elements in K such that
(3.8) H = eora(0390) = C(6,6°) - 0y = C(¢°,¢) - Oy € S*.

Let ¢ be the positive integer such that cOg is the conductor of x.

Proposition 3.7. With the ray class character ¢ and the integer C' as above, we
e (5,0.1)£,(5,0.%) (dce)
s . 2£,(5,0,1)L, (5,0, x dic)®
EP(C(quqb)):L(OT . L _P 1— ’ 1 —es(Fr=))2"
TK/Q)Lp(s, =5, X)Gp(1 —5) (1 — 5 (Fry))
Proof. This can be proved by Hida’s p-adic Rankin-Selberg method. We shall use
the representation theoretic approach in [CH20]. We follow the notation in [CH20
Section 5, Section 6]. It suffices to show that for all but finitely many positive integer

k with £ =0 (mod p — 1),

2L,(k,0,1)L,(k,0,%) (dgc)k
3.9 ek (C(¢°, 9)) = PR TP - .
B9 &) = L0 By (k)G (L B) (- 0 (F))?
Here recall that 1 is the idele class character of K corresponding to €, with ¢ (2) =
z. To evaluate e’; (C(¢°, ¢)), we consider the spectral decomposition

2C
(3.10) Gp(1=k)
=Ci(9,6°) - 0F)_ +Cu(0%,0) - 08, + Hi € Sp1(Np, 67 7/q);

* €ord (9;Ek (0))

where 7 is orthogonal to the space spanned by 9¢—1w—k,0((;,)1w,k, O —cy—x and

newform of weight k + 1, the decomposition (3.10)) is indeed obtained by the image
of (3.8) under the map E’g, and hence

5 (C(¢%, 9)) = 1, ' (Cr(9°,9)).
Now we use the adelic Rankin-Selberg method to compute the value Cy(¢¢, ¢). Let
f° = 04-1y-+ and g° = 67 be the newforms associated with Hecke characters

Gép)cw,k under the Petersson inner product. Since s’; (0y) = 0212,,9 is a p-stabilized

¢ M~ and ¢. Let w = ¢;1TI;}Q viewed as an idele class character of Q. Let

o :=D(f°) € Apt1(w) and pgo = B(g°) € A1 (w™') be the automorphic newforms
corresponding to f° and ¢° via the map @ in [CH20, (2.4)]. Let m; and 7o be the
unitary cuspidal automorphic representation of GL2(A) associated with ¢y and
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@go. The m and m are the automorphic inductions of the idele class characters

k
¢’1¢’k|~\gk and ¢, and the automorphic forms ¢ and @go are normalized new
vectors in w1 and 7. In addition, we have the equality of automorphic L-functions
and Dirichlet series of modular forms

k
o) = Ls+ 50707,

Let f=460 p—)ll/)—k be the p-stablized newform associated with f° and let f = Hfbiw i
be the specialization of 3 (6 4:) at s = k. Then the automorphic representation gen-
erated by the associated automorphic forms ¢ F is the contragredient representation

7y = m @ w™!. Define the C-linear pairing (, ) : A%, | (w) X Agy1(w™t) — C by
(1, 02) = / p1(9)p2(g)d"g.
A§ GL2(Q)\ GL2(AqQ)

Here d'g is the Tamagawa measure of PGLy(A). By [CH20) Proposition 5.2|, for
n > 0 large enough, we have

(p(Tsotn)@s, pgo - Eal—, fD,s—1/2)>|s=1—g 2C

C Ca QS = : )
Kool Tt 27) G0 h)
1 0 0 pn
where Joo = 0 € GLz(R) and ¢, = 0 € GL2(Qp). In order to

explain the Calculatlon of Ci(¢°, ¢) by the adelic Rankin-Selberg method, we need
to prepare some notation from the theory of automorphic representations. For any
cuspidal automorphic representation 7 of GLa(A), let W(m) denote the Whittaker
model of 7 associated with the additive character e : A/Q — C*. For each place
v of Q, let W, (m) be the local component of W(r) at v. For (Wy, Wy) € W, (m1)
Wy (m2), let U(W1, Wa, fps) be the local zeta integral defined in [CH20, (5.10)].
If v is finite, let Wy, € W, () be the new Whittaker function with Wy ,(1) =1
and if v = oo and 7w is discrete series, let Wy, be the Whittaker of minimal
SO(2)-type with W (1) =1 (¢f. [CH20, §2.6.4]). For ¢ € Ag(w), the Whittaker
function W, : GL2(A) — C is defined by

We(9) :/A/Q <P(<(1) gf) g)e(—x)dz.

In our setting, the Whittaker functions of ¢y € m and ¢g4o € T are given by

d
=W, I | Waiwi We,o = I | Wiy v
VFED v

where W29 € W(my ) is the ordinary Whittaker function characterized by Werd ( (

0
af(a) |a|fQ Iz, (a), where ay : Q) — C* is the unramified character with a(p) =
¢~ 1 (p)p~ % (See [CH20, Definition 2.1]). Following [Jac72, Chapter V] (cf. [CH20,

a 0

1

)-
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(5.11)]), we have the identity

<p(j00tn)50f7909° 'EA(iﬂnys» = / Qof(gjootn)(pg" (g)EA(gafD,s)dtg
PGL2(Q)\ PGL2(A)
1 T
= < ( ) (WT(r)ldp7W7r2,pafD,s,p> ( (joo) T1,00 Trg,ooastoo H \I’ Wﬂ'l,’l}?W‘ﬂ'z,’UﬂfDS’U)'
Q v#p,00

By the calculation in [CH20, Proposition 5.3] with k1 = k3 = k+ 1 and ke = 1, we
find that
(P(Tctn)psspge - Ea(— y ID,s— 1/2)>| =1—k

2

(3.11) L(s,m X m3) (vV-1F
e S

 (Q(2)[SLa(Z) : To(N)] " T ok+2

2

where L(s,m X mg) is the Rankin-Selberg L-function for m X mg, ¥} (s) and ¥,(s)
are local zeta integrals defined by

CQ/z(l) \II(Wﬂ'l,27WWQ,[?f‘bD,z,Sfl/Q)
(Q.(2) [Nlq, L(s,m1¢ X ma )

(( )W-r?lrci,vw‘lrz,Pvf‘I’D,p,s—l/Q)
L(s,m1p X Tap) ’

Wi (s) = it ¢ # p,

Up(s) =

Note that N is the conductor of m; and my. Let supp(N) be the set of prime
divisors of N. In [CH20| §5.1, page 220|, to (m1,m2), we associate a decomposition
supp(N) = ) U X5y U X5y, and in our case, £ € Xy if £ | dxCs, £ € Xy if £] C;
and Yy = (). According to the computation of local zeta integrals ¥ (s) in [CH20),
Lemma 6.3, Lemma 6.5] at £ | N, we have

Uj(s) =1if £ | dCy;  Wj(s)=|Cilq, (L+¢7)if €| C.

We compute the local zeta integral ¥, (s) by a similar calculation in [CH20, Lemma
6.1]. Put Wy = W and Wy = Wi, ,. Then W (p(t,) W Wi, . far . o 1/2)

m1,pP T1,p’
equals

SBLL G D (@ Y e
x f%,,,g_l(<1 . >)dxdx

alh [ Lo ) (i sl

(1)
x Iz, (z)d* ydx
)

-1

o, (g1, (7 ) (07) SOy e
- (q, (1) /;W( 0 1>>af'|Q,, (y)d*y

el g, (™)Ga, (2)
B Cq,(1)

L(s,m2p ®ay),
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so we obtain that

wy gl ! 2 E E
o= !“Zpg))gqp( sy xma ) (1= 5 =g 0 ),

From the above equations with the equality of L-functions

L(s,my X ma) = L(s + k/2,05 ® 04-14-+) = L(s + k/2,0 ") L(s + k/2,¢° 7' 7F),
we find that (3.11]) equals

Ly H)LE ¢ ) (VD)
(q(2)[SL2(Z) : FO(N)] ok+2

w, 'l g, (P")Cq, (2
_ .k —1\(1 _ pe—1,—k -1y, P —f Q,\P v
X (A =y (p)p )L =0 (p)p ) o, () -G ql_C[

(p(jootn)gof,gogo 'EA(_afD,sfl/2)>|s:17§ =

On the other hand, by [Hsi2ll, Lemma 3.6],
I lIFg ) € AD) wylaf]-lq, (P")q, (2)
¢Q(2)[SL2(Z) : To(N)] (Q,(1) ’

where £(f,Ad) = (1 — xyy (=% (p=1)p~1)(1 — xvy(1=9%(p)). By the minimal condi-
tion of ¢, the level of the newform f° = 9; is minimal among its Dirichlet
twists. By [HT93, Theorem 7.1],

<p<-700tn)90f ‘Pf>

£, oy =2~ "L, m, Ad) - N [+ 7Y (N =C0y).
£|C;

Put v_ = '~¢. From the above equations, we deduce that
(3.12)

o) - WDMLOL UL, 60 (1 (e )1 oy ) 2

2L(1, 71, Ad) (L= xpE ()~ p )L —xvh ()  GU—k)
By the functional equations of L-functions, one has
L(L, 4™ )L(1, 077" = (1,07 )e (1, x ™) L0, *) L(0, x9*),
L(1,7m,Ad) = L(1, TK/Q) (1, ¢! cypltmlk)
=Vdx e(1,x¥") - L(0,7x/q)L(0, x¥").

Since 1* is unramified everywhere and v _| ax = 1, we have
Q

= Vi (VAR (L xg ) = e(1,x) (v —dr o)k,
(1 wk) (1, x).
It follows that

(V=D*L(, "ML, ¢ 7% L(0,9*)L(0, x¥")
L(1,m,Ad) (\/jl)kL(OvTK/Q)L(vawﬁ)

(3.13) (dge)*.
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By the interpolation formulae of the Katz p-adic L-function in Proposition [3.4] we
find that

O (0006(0.0) 1 L0tHL0.69
Ly(k,~k,x)  2(v/=DF L0, xy%)
L A= e — e (ppT (L -9 ()*
(1= x¥® (p=H)p~H) (1 — x¥% (p))
Combining (3:12), (3.13) and (3.14)), we obtain (3.9). a

Recall that Ap is the localization of Ax at the augmentation ideal P. Let h be
the class number of K and let @ € K* be a generator of p”. Put

log,@ log,@

Z(1):= b W # 0.
Corollary 3.8. We have C(¢°,¢)~' € PAp. Let B(s) := e5(C(¢°,¢)""'). Then
LI AT SV
ds s=0 L5(0,x)
Proof. By Proposition [3.7]
L, T 1—s)(1 - es(Fry
B19) B0 = alo—s0) g g B

By the residue formula of the p-adic zeta function,

61— 8)(1 = &3 (Frp))lomo = (0~ — 1)-Z(1) 0.
On the other hand, from Katz’s p-adic Kronecker limit formula [dS87, Theorem 5.2,
page 88| and the fact that L(0,7x/q) = 2h/#(Oj ), we deduce that

log,, w1

#(Ok)
By (3.5) and the Brumer-Baker theorem, £;(0, x) # 0 and B(0) = 0. We thus con-

clude from (3.15) that C(¢¢, ¢)~1 € PAp and the desired formula of the derivative
B'(0). O

£,(0,0,1) = (1—p~Y) = =1)Z1)-27'L(0,7x/q) # 0.

4. GALOIS COHOMOLOGY CLASSES AND .Z-INVARIANTS

4.1. Cohomological interpretation of .#-invariants. Let F' = FracW. As in
the previous section, x : Gal(K(c)/K) — F* is a non-trivial ring class character
unramified outside pdx with x(p) = 1, and ¢ is a ray class character of conduc-
tor ¢ with y = ¢'7¢. For a finite set S of primes of Ok, denote by HL (K, x)
the subspace of cohomology classes unramified outside S. By the global Poitu-
Tate duality, it is known that Hj(K, x) = H%} (K,x) = {0} and dimp HY(K, x) =
dimp H%pﬂ (K, x) =1 (cf. [BD21, Proposition 1.3]). Let locg : H' (K, x) — H'(Ky, x) =
Hom(G e, F) be the localization at p. With the embedding ¢), : K < Qp, we iden-

tity K, =K ®Qp,~Q,®Qp, by a®a — (,(a)z, tp(@)x). Let
recg, : K = Q) ©Q, — Cxg =5 G
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be the composition of the natural inclusion K < Cx = K*\Aj and the reci-
procity law map recg. Therefore, for any x € H' (K, x), we can identify locg(x) €

Hom(G g, Q,) with an element in Hom( ;,Qp) by
locg(k)(a) = K(reck, (1,a)) for a € Q,.
Lemma 4.1. Let k be a non-zero class in H (K, x) and write
locg(k) = = - ord, +y - log, .
Then y # 0, and
x
Z(x) =~
Y
Proof. First we note that y # 0 since H%} (K, x) = 0. Let locy () = w-ord,+2-log,.
By the relation (locy (x),locy (2)) + (locg(k), locg(x)) = 0 for = uX or u%, we obtain
the equations
2z - log, uX +y - logg(uX) = 0;
z - log, u% +x- ordg(u%) +y- logﬁu% =0.

The lemma now follows. (I

4.2. Construction of a cohomology classes. Let S be the set of prime factors
of pc. Let Gi,s = Gal(Kg/K), where Kg is the maximal algebraic extension of
K unramified outside S. Let T+ C EndS* be the image of the Hecke algebra
T = T(N, ¢4+ 7k /q, Ax) restricted to S+. Then T+ is a finite flat A x-algebra. Fix
a generator vo of I' ,. Then A can be identified with W[X] and the augmentation
ideal P of Ak is the principal ideal generated by X = o — 1. We use the argument
in [DDP11) Theorem 4.2] to construct nonzero cohomology classes in the following

Theorem 4.2. Let A\ : T+ — Ap/(X"2) be a Ax-algebra homomorphism. Let
o G, — Ap be the unique unramified character such that a(Fry) = AUy).
Suppose that there exists a character U : Gr.s — Ap/(X""2) such that

(i) ¥ =1(mod X),

(i) NTy) = ¢V (Fr() + ¢W(Fry) for all £ 1 p splits in K and

(i) \II\GKF = ¢ La — nX" (mod X" *2) for some non-zero homomorphism

n: GYKF — Qp'
Then there exists k # 0 € HY (K, x) such that
o~ a— W,
locy(k) = — P =

Proof. Let AT O Ap be the local ring of rigid analytic functions around X = 0, i.e.

At = {Zaan € F[X]
n=0

Let Tt = T+ ®,,. At be a finite Af-algebra, and hence a finite product of henselian
local rings. Let I be the kernel of the map A : TT — AT/(X"*2). Let 7 : Gq.s —
T+ — TT be the pseudo character defined by .7 (Fr,) = T,. The assumption (ii)
implies that

there exist r > 0 such that lim |a,|r" = 0} .
n—oo

Tlaxs = W + ¢°¥€ (mod ).



18 M. CHIDA AND M.-L. HSIEH

Since ¢ # ¢°, applying the theory of residually multiplicity free pseudo characters
[BCOY, Theorem 1.4.4]) to 7|g, s, we obtain a continuous representation py :
Gr.s — GLa(Frac TT) such that the image of py(TT[G K s]) is a generalized matrix
algebra of the form

T ¢
§ _ 12
mTGrsh = (o, 3.

where t;; are fractional Tt.ideals in Frac Tt and ty5t2; C 1. Writing

a(o) b(o)
pa(o) = (C(O‘) d(U)) for o € Gg,s,

then we have
a(o) = ¢U(0) (mod I); d(c) = ¢¥(coc) (mod I).

Note that TT/I ~ AT/(X™*2?) is a local ring. Let Q be the maximal ideal of T
containing I. Let R = Tz? be the localization of Tt at Q. Then R is a finite flat
and reduced Af-algebra since N is the tame conductor of 9;. Put R;; :=t;; @1+ R.

By [HT94, Theorem 6.12], there exists (é g) € GLy(Frac R) such that
a(o) blo)\ (A B\ (A B\ (afo) *
(c(a) io))\c p)=\c p)\ o &) fralocCny
and hence
(4.1) C-b(o) = A (o) —a(o)) for o0 € G-

Note that Ry is a faithful R-module. Otherwise writing R @+ Frac AT = @,L; as
a product of fields, we would have R ® g L; = 0 for some ¢, which implies that
there exists a Hida family /1 = ©¢, of CM forms in Spec T+ for some ray class
character ¢1 # ¢ or ¢¢ whose specialization at some arithmetic point P’ above P
agree with 6((;), which in turns suggests that ¢1 + ¢ = ¢ + ¢°, and ¢1 = ¢ or ¢°,
a contradiction.

Define the function % : Gxg¢ — Ri2 by #(0) = b(o)/d(c). For any R-
submodule J D QR12 of Rys, the reduction of £ modulo J

A :=b/d(mod J) = ¢ °b(mod J) : Gx.s — Riz/J

is a continuous one-cocycle in Z!'(Gk s,x ® Ria/J). We claim that if the class
[#] € HY(K,x ® Ry12/J) represented by # is zero, then Rj5 = J. We can write
b(o) (mod J) = (¢°(0) — ¢(0))z for some z € Ry2/J. Consider the pr(R[Gk,s])-
module (R12/J, R/Q)%. Then the line R(z,1)* C (Ry2/J, R/Q)" is stable under the
action of p)(R[Gk,s]). On the other hand, (8 ?) € pA(R[Gk,s]), so we find that
(0,1)* € R(z,1)%. This implies z = 0 and b(c) (mod J) is zero. Since Ris is the
R-module generated by {b(0)},cq,. ., we conclude Rip = J. In particular, this
shows that ¢ (mod QR;2) represents a non-zero class x in HY (K, x ® R12/Q).
Let R}, be the submodule of Ry5 generated by {bd}aeGK, and let J := QRo +
P

‘5. Then # : Gxg — Ria/J is a cocycle which is trivial at p, and [#] €
H%E} (K, x) = {0}. By the above claim, we find that J = R;2 and hence R}, = R12
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by Nakayama’s lemma. Then the assumption (iii) and (4.1) suggest that C' €

(Frac R)* and
A
Ry = GX"“R.

Since x(p) =1, ¢ = ¢° on Gk, , and it follows that for 0 € Gk,
A A
H(0) (mod QRiz) = 5 X" (o) (mod 5 X"+ R) = (o) (mod QRz).

Therefore, the non-zero class k = [# (mod QR2)] € H' (K, x) enjoys the required

local description. This finishes the proof. ]
Let UV : Gk g — A} be the universal character in (2.2). By definition,

VU is unramified outside p. For each 0 € Gk, we can write Y"1V (g) = 1 +

(o)X (mod X?) for some n, € Hom(G%S7Qp). By definition,

(4.2) ep (U™ (rec, (u, 1)) = (u) ™" for u € ZX.

Let v := e,(70) and put
15(0) = ny(coc); ;= log, v -1, v=porp.
Lemma 4.3. We have
locg(ny) = £(1) -ord, and  locg(ng) = —log, —£(1) - ord,,.
Proof. Write U,(0) := &5 (V"™ (0)) = ep(0)~*, and then by definition we have
0, (0)]am0 = my(0) Tog, v = (o) (€4(X) =" — 1)

Recall that £ (1) = logﬁa, where h is the class number of K and @w € K* with

p" = wO. Evaluating both sides of ([£.3) for o = recg, (1, @), we obtain

(4.3)

d d
hng (Fry) = gll's(rec;(p(l,w)ﬂs:o = %\I/S(rec;(p (@', 1))|s=0 = log, @ = h-Z(1).

Since 7 is unramified at p,
locg(ny) = ny (Fry) - ord, = £ (1) - ord,,.
From and , we find that
n5(reck, (1,a)) = ny (reck, (a,1)) = —log, a for a € Z;.
On other hand, ¥ (reck, (ww,1)) = Uy(reck, (1, 1)) = 1, so ns(reck, (1,@)) =
ny (reck, (w,1)) = 0. These equations imply that
locg(n5)(a) = n5(reck, (1,a)) = —log,(a) — £(1) -ordy(a) fora € Q,. O

Theorem 4.4. We have the following formula for £ -invariant:

L1,(8, =5, X)]s=0
- 40X

Proof. Let B(s) = ;(C(¢°,¢)"") be as in Corollary In view of Lemma
Lemma[4.3]and the formula Corollary it suffices to construct a nonzero element

x € H' (K, x) such that locg(x) is a nonzero multiple of
-ord,.
s_O) '

Z(x) =22(1)

(4.4)
-ord,, = log, + <2$(1) — %B(S)

* * d
locg(n,) — locg(ng) — %B(s) o
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We shall use Theorem and adapt the calculations in [Venl5, §3] to construct
such a class. Recall that the Fourier expansion

o0

05 = a(n,0,)q"

n=1

of the A-adic CM form 8 is given by
PO (Fr() + @V (Fr;)  if (O = [l is split,

(4.5)  a(l,04) =120 if £ is inert,
AUV (Fry) if ¢| dgCs and [ (dgcs, £).
The CM form 6 is a A-adic newform of tame level N = dxCsC?, so we have
(46) Tze(z, = a(f, 0¢)0¢ if £ 1’ N, Uz0¢ = a(€,9¢)0¢ if £ ‘ N.
Consider the A-adic cusp form # € S* constructed in (3.8)):
1 1
H = —Za¢ — an + eora(05Gc), where A =C(¢,¢°)"" and B =C(¢°,¢)"".
Put B ) J
by == — = -—B .
' Xx=o log, v ds () 5=0

There are three cases.

Case (i): ordp(A + B) = ordp(A). Define
A, = (—B) - A (mod X?) = g 0y + 04 — B - e0ra(Gcb3) (mod X3?).

Let F = W[]. Put

A
A+ Blx=o
Then a(1,74) = u; ' (mod X). Define the additive homomorphism v, : G 5 — F
by

(5% x

V1= (1 —w)np +wng
and the character ¥1: Gk s — Ap/(X?) by

Uy =1+ X (mod X?).
By , Ge = 1(mod X) (3.15)) and the equations
(4.7) X0, = X0, = X0F (mod X?), X4 =u7 X6 (mod X?);
(48) Uy =om)05 + 6@ (9p) = 6(p).
we verify that 47 is an eigenform modulo X? with
Ty =(¢W1 (Fry) + ¢y (Frq)) 74 if £4 pN and (O = [l s split,
Upsti =¢(p)(1 + X (ny (Frp) — u1b1)) 7.
Since .# € S+, this induces a homomorphism A : T+ — Ap/(X?) defined by
Ao (t) == a(l,t-24)/a(l,54) = a(1,t - #)/a(1, ) (mod X?)
with
Ao (Ty) = U1 (Fr()+¢¥: (Fry) if Ok = [is split, ¢(P) ' A (Up) = 1+X (1 (Frg)—uiby).
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By Theorem with ¥ = ¥; and n = 0, we find that there exists a nonzero class
k € HY(K, x) with

locy (k) = locg(nyp) — u1by - ord, —locy(11) = ui(locg(n,) — locg(ny) — by - ord,).

Case (ii): ordp(A+B) > ordp(B) = ordp(A). In this case, 74 is not an eigenform
of the Hecke algebra T but a generalized eigenform. Put

B
= — F*.
2 Alx=0 <

Define the additive homomorphism v, : Gx g — F by
Yo 1= ugmp + N

and define the character Uy : G g — Ag/(X?) by ¥s = 1 + X1bs. Using the
relations (4.6), (4.7) and (4.8), we find that the Hecke algebra T stabilizes the

two-dimensional subspace spanned by X 9((;) and 771. In addition, we have

T4 = (6(1) + 6(0) A4 + (o) (Fro) + d(1)ea (Frp)) X6,
T,X0% = (1 ())Xo““) if £4pN and (Ox = I is split,

Up A = ()74 + 6(0) (1 + uz)np (Frg) — by) - X6
UPXQ(;P) _ ¢( ) Q(P)

)+
)+

This yields a homomorphism A s : T — U C Ms (Qp)7 where U = { (8 Z)

It is clear that A factors through T+, and with the identification Ax/(X?2) &

U, X (8 é), we obtain the homomorphism Ay : T+ — Ap/(X?) with

a,bGW}.

Ao (T) = ¢Ws(Fri) + ¢Uo(Fry) if £ 1 pN and (Of = [l is split,
OF) " A (Up) = 1+ X (1 + uz)nmp (Frp) — br) -
It follows from Theorem [£.2] that
locg(k) = (1 4+ ug2) - locg(ny) — by - ord, — locg(¥2) = locg(ny) — locg(ny) — by - ord,,.

Case (iii): ordp(A) > ordp(B) > 0. Let n = ordp(A/B) and

A
BX"|x=0

X

uz =
Let

H = (—A) A (mod X"2) =04 + % 04 — A eora(03Gc) (mod X2,
Then a(1, 74) = 1 (mod X). Define the additive homomorphism 3 : Gx — F by

3 = uz(np — X '),
and define the character U3 : Gk g — Ap/(X™2) by
Uy = UV 4 ghs X" (mod X7H2).
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Using the equations (4.6)), (4.8),

A A A

A
(1 - B> KX = 04X (mod X"1?),

A
0P x = 504X (mod X"+7);

we can verify that 4% is an eigenform modulo X"*2 and

Ty = (¢V3(Fr;) + ¢Ws(Fry)) 4 if £ f pN and (O = [l is split in K,

Up it = ¢(p) (\I/“niv(Frg) - b1U3) X"t (mod X™2).
Likewise we obtain a homomorphism A : T+ — Ap/(X"+?) defined by A (t) =
a(l,t- %) /a(1, 74%) with

Ao (Ti) = ¢W5(Fry) + ¢W3(Fry) if €O = Il is split,
$(B) " Ao (Up) = (U (Fry) — byug) X"+

It follows from Theorem [£.2] that

locg(k) = —brus - ord, — locg(1h3) = us(locy(n,) — locg(ny) — by - ordy,).

In each cases, we see immediately that locg(k) is a multiple of the function in (4.4),
and the theorem follows. (|

4.3. Proof of Theorem [I} We are ready to prove Theorem [I} By Remark [3.5

Lp(s,X)

L0, x) = =222 (
»(0,X) 5 o
By Theorem and Corollary we find that the cyclotomic derivative L; (0, x)

equals

= £;)(Sa S, X)|SZO~

L858, X)|s=0 = 2L,(5,0,x)|s=0 — L}, (8, =8, X)|s=0
=22(1) L3(0,x) — L3,(s, =5, X)]s=0
=L,(0,x) - Z(x)
Now Theorem (1| follows from .

5. COMPARISON OF .Z-INVARIANTS

5.1. Benois’ Z-invariant. Here we briefly recall the definition of #Z-invariant by
Benois [Benlll Benl4l BH20]. Let p be an odd prime. Let & = ({yn ), >0 be primitive
p"-th roots of unity such that Cﬁnﬂ = (pn for any n > 0. We put K,, = Q,((pn)
and Ko = ;>0 Kn. Denote I' = Gal(K,/Q,) and decompose I' = A x Ty, where
I = Gal(Koo/_Kl). Let xcye : I' = Z, be the cyclotomic character. Let E/Q, be
a finite extension. For r € [0, 1), we set

Ay = {f(x) =3 ax"

nez

an € B, f(X)converges on {X € C,, | r < |X|, < 1}}

Then the Robba ring with coefficients in E is defined by Zr = Jy<,. 1 %g). The
Robba ring #Zg has actions of I" and a Frobenius operator ¢.

For a (¢,I')-module D over the Robba ring Zg, we put Z.s(D) = (D[1/t])",
where t = 3.°° X" For each p-adic representation V of Go, = Gal(Q,/Q,), we

n=1 n
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can associate a (p,I')-module ]D)Ilg(V). Fix a generator v; € I';. For any (¢,I')-

module D, let H*(D) be the cohomology of Fontaine-Herr complex
Cory : D 25 D2 DA 4, DA,

where do(z) = ((¢ — Dz, (y1 — 1)z) and di(y,2) = (1 — 1)y — (p — 1)z. Let
D*(Xeye) = Homg, (D, ZE(Xcyc)) be the Tate dual. For a (¢,I')-module D, define

Hfl (D) = {a € H'(D) | Dy is crystalline}

where D, is the extension class associated to «.

From now on, we consider the global situation. Fix a finite set of primes S
containing p and denote by Qg/Q the maximal Galois extension of Q unramified
outside S U {oo}. We set Gg,s = Gal(Qg/Q). Let V be a p-adic representation
of Gg = Gal(Q/Q) unramified outside S with coefficient in a p-adic field E. Let
H J} (Q, V) be the Bloch-Kato Selmer group defined by

Q.. V
H}(Q,V) = Ker GQ s,V %@Hl Qv,

We also denote the relaxed Selmer group by

H'(Q,,V)

H} (,1(Q, V) =Ker |H'(Ggs, V)~ P Q. V)

veS~{p}
We assume the following conditions:
— C1) H%Gq.s,V) = H°(Gg.s,V*(1)) = 0.
2) V is crystalline at p and De,is(V)?=! = 0.
— (3) The action of ¢ is semisimple on De,is(V) at p~1.
4) H} (Q,V*(1)) = 0.
— C5) loc, : H}(Q, V) — H}(Qp, V) is injective.

Definition 5.1. A ¢-submodule D of Dis(V) is regular if D N Fil° Deis(V) =0
and ry p : Hf1 Q, V) — Dcris(V)/(Fil0 Deyis(V)) + D) is an isomorphism, where v, p
is the map induced by ry = logy oloc,, : H]} QV) — Dcris(\/)/Fil0 De.is(V) and
logy is the Bloch-Kato logarithm.

Let D C Deuis(V) be a regular submodule. Then we can decompose Dy = D into
D=D_ 1€BD‘/’:1’_1 with D"’:p_1 = 0. Let FOD (V) and F_ 1D;r]g(V) be the (¢, T')-
modules associated to Dy and D_; by Berger’s theory. We set W = gr,D/. (V).
Assume that all the Hodge-Tate weights are non-negative. Then

w - gcris(W) D gcris(W) — Hl(W)

rlg(

defined by (z,y) — cl(—z, ylog Xcyc) is an isomorphism ([Benll, Proposition 1.5.9]).
Let iw,s and iw,. denote the restriction of iy on the first and second direct
summand respectively. Then we have Im(iw f) = H}(W) and a decomposition
HY W) = H}(W)® H} (W), where H! (W) = Im(iw,).

For the dual module W*(xqyc), let

Z.W*(chc) : @criS(W*(chc)) @ gcriS(W*(chC)) — Hl(W* (chc))
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be the unique linear map such that iy (@, 8) Uiw (2, y) = [, z]lw — [, ylw,
where [, |w  Deris(W*(Xeye)) X Deris(W) — E denotes the canonical pairing in-
duced by W*(Xeye) X W — Zg(Xeye). Similarly, we can define iy« (v, o), f5 W+ (xeye).c
and H! (W*(Xeyc)) using the map iy« (y.,.)-

Let

HY(Q,,V)
H} (FoDl,(V))
be the composition of the map loc,, : H}’{p} (Q,V) — HY(Q,, V) and the canonical
projection. Then xp is an isomorphism ([Benl4, Lemma 3.1.4]). We denote

H'(V,D) = rp! (H' (Fo D}, (V))/H} (FoDJ5, (V).

Kp : H]},{p}(Q7 V) —

Then the composition of the map H(V, D) — Hl(FODrTig(V)) — HY(W) induces

an isomorphism H!(V, D) =~ Hl(W)/HJ}(W) We consider the following diagram:

pW,ci lpw,c

Deria(W) 25 HY(W),

where pw, r and pw,. are the canonical projections, and pw, r and pw,. are defined as
the unique maps making this diagram commute. Note that pw . is an isomorphism.
Now we define the .Z-invariant associated to V and D by

LV, D) = det (pw. © pigte | Zeris(W) )

Remark. In [Benll], the choice of the sign of the Z-invariant is slightly different
from [Benl4l BH20]. Here we follow the definition given in [Benl4l BH20].

Next we consider the dual construction of the Z-invariant. Let D be a regular
submodule of D,i5(V') and put
D* = Dy = Homp(Deris(V) /D, Dexis(E(1)))
and
Di- = Homp(Deyis (V) /D—1, Dexis(E(1))).
We denote by FoDjig(V*(l)) (resp. Fy D1 (V*(1))) the (g, T')-submodule of D}_(V*(1))

rig rig
associated to Dy (resp. Di ). Then we have a short exact sequence

0— FiDL(V*(1)) = FoDl,(V*(1)) = W* (xeye) = 0.
Let
. H'(Q,, V(1)

H}(Qp, V(1) + HY(Fo Dl (V=(1)))
be the map obtained by the composition of loc, with the canonical projection. We
set

HY(V*(1),DF) =k}

kpe t HE(Q,V*(1))

(Hl(FlDT

rig

(V* (O)/(H}(Qp V(1) + H (Fo DY, (VF (1)) ) -
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Then the composition of the maps

H'(V*(1),D') —» HY(F, D}

rig

(V*(1)) = H (W (Xeye))

induces an isomorphism H'(V*(1), D*) ~ H'(W*(Xeye))/Hf (W* (Xeye)). We con-
sider the following diagram:

7;"V*(chc)«f

s (W (X))~ HEOV* (o)
pW*(chc)va TPW*(XC‘YC)J
HY(V*(1), DY) = 1 (W (xeyo))
pW*(chc)qcl lpW*(chc):C

-@c1ris(VV>‘< (XCyC)) Hcl (W* (chc))a

where pyy«(y.,0),f @A DW= (y,.),c are the canonical projections, and py«(y.,.),s and
PW*(xeye),c are defined as the unique maps making this diagram commute. Note
that py«(yy.),c 18 an isomorphism.

We define the .Z-invariant associated to V*(1) and D+ by

LV (1), D) = (<1 det (b (revons © P (e | Zeras( W (xexe)))
where e = dimpg Zeris(W* (Xeye))-
Proposition 5.2. Z(V*(1), DY) = (-1).Z(V, D).

TW* (xeye),c

Proof. See [Benlll, Proposition 2.2.7] and [BH20l Proposition 2.3.8|. O

Using this Z-invariant, Benois formulated the exceptional zero conjecture for
general crystalline case including non-critical range.

5.2. Comparison of .Z-invariants. Let K be an imaginary quadratic field and
p a prime such that pOx = pp. Let x : Gal(H/K) — @; be a non-trivial ring
class character. Let E be a p-adic field containing all of the values of y. Assume
that x is unramified at places above p and x(p) = 1. Now we consider the case
V= (Ind% X)*(€cyc)- In this case, we have V*(1) = Ind% x and it is known that
HHQ,V) = HNE,x"1(1) = (0 © E), HL,,(QV) = HL (K, x"1(1)) =
(Ou[1/p)* ® E)[x] and H}(Q,V*(1)) = H}(K,x) = 0. For V = (Ind x)*(1), it is
easy to see that V satisfies the conditions C1) — C5).
Denote

Vt={veVige | o(v) = x 1 (0)ecyc(o)v for all 0 € G}
and
V™ ={veV]|ge | 0(v) = x ! (coc)eeye(o)v for all o € G}
Since x # x¢, we have a canonical decomposition Vg, =Vt @ V~. Put V, =
V¥gy, and Vg = V7 lay, - Then the natural map ¢ : Vlg, — Vy © Vi becomes
an isomorphism. Hence, H'(Q,, V) = H'(Q,, (Ind% x)*(1)) can be identified with
HY Ky, xH (1)) & H' (K5, x (1)

Definition 5.3. We choose a regular submodule D of Deis(V) as D = Dy (171 (V%))
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Then Hl(FoDrTig(V)) is identified with H'(Kg, x~'(1)) under the isomorphism
Hl(DrTig(V)) ~ H'(Q,,V). Here we recall that FoDrTig(V) is the (¢, I")-submodule
of D;rig(V) associated to D. This property also characterizes the choice of the regular
submodule D. Then the modified Euler factor associated to (V, D) is given by

E(V, D) = det(1—p~ ¢~ [D) det(1—¢| Deris (V) /D) = (1=x(B))(1—x""(p)p~") = 0
and

EX(V.D) =det(1—p~ '~ [D_y)det(1 = p~ '~ D) = (1 - x(p)p~"),
where £1(V, D) is the modified Euler factor which is used in the formula of the
exceptional zero conjecture ([Benl4, Conjecture 4]). Note that £¥(V, D) coincides

with the Euler factor appeared in Conjecture[I} Therefore Conjecture[I]is compat-
ible with the exceptional zero conjecture formulated by Benois.

Proposition 5.4. We have Z(V,D) = —2£(x), where Z(x) is the L -invariant
defined in .

Proof. In this case, FoDrTig(V) ~ Xp(|r|r) and F_lDrTig(V) = 0, where we write x
for the character given by the identity map and |z| for |z| = p*»(*). Hence we have
W = g1y D} (V) ~ #pllals) and H'(W) ~ B (Zp(ale)) ~ H(#5(xee) =
H*(Qyp, E(1)).

Define aw = iw,f(1) and B = iw,(1). Let £ : QF ® E — H'(Q,, E(1)) be the
Kummer map. Then we have pyw, ¢ (r(u)) = log, u-ayw and pw,c(k(u)) = ord,(u)-Bw
for u € Q) ® E (see [Benlll, 1.5.6 and 1.5.10] for details). Since H}}{p}(Q,V) =

(Op[l/p]* ® E)[x] and HY(F,D\. (V)) = H'(Kp, x*(1)), one has

rig

H'(V,D) = k3! (H (Fo D, (V))/H} (Fo DL, (V)

rig
— Ker [H]}’ Q. V) = H(K,, X*(1))}
= Ker [(Ou[1/p* @ E)[x] = H; @ E].
In this case, H'(V, D) is an one-dimensional E-vector space.

Let ordy and logg be the elements in H' (K, Q,) = Hom(Gk,,Q,) correspond-
ing to ord,, and log,, under the identification Hom (G, Qp) = Hom(Gg,, Qp). They
can be viewed as maps ordg, logg : KﬁX — Q, via the geometrically normalized reci-
procity law map recg : KﬁX — Gy

We fix a non-zero element u in the one-dimensional E-vector space H'(V, D).
Then we have

logg(u)
Z(V,D) = —F
(V. D) ordy(u)
by the definition. This shows .Z(V, D) = —Z(x). O

Next we compute the dual construction. In this case, it is easy to see

H'(FiD},(V*(1))) = H'(Df,(V*(1))) = H'(Q,, V*(1)) = H'(Kyp, x)BH" (K, X),

rig
Y (R, (V* (1)) = H(Ky,x)
and
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Hence we have
HY(V*(1), DY) = Hf 1,1 (Q,V*(1)) = Hf 5 (K, x) = H' (K, ),
which is an one-dimensional E-vector space. Moreover

HY (W* (Xeye)) = H' (FLDL (V1) /B (Fo DL, (V¥ (1)) = H' (K, x) ~ H'(Qp, E).
Define aW*(chc) = iW*(chc)7.f(1) and BW*(chc) = iW*(chC)7c(1)' Under the identi-
fication
HY (W (Xeye)) = H' (%) ~ H'(Q,, E),
one has ayy«(y,,.) = —ord, and By«(y,,.) = log, (see [Benll, 1.5.6 and 1.5.10]).
Note that our normalization of the reciprocity law map is different from Benois
[Benlll Benl4, BH20]. More precisely, we have ord,(Fr,) = 1, where Fr, is the
geometric Frobenius. This gives the difference of the sign with Benois’ description.
Fix a non-zero element n € H'(V*(1), D*) = H'(K,x). Then we can write

Kpt (’I’]) =x- OI'dE +y . logﬁ = (—x) . (_ ordﬁ) + Y- logﬁ
in HY(W*(Xeye)) ~ H' (K, x) and we have .Z(V*(1), D) = (—1)° <z>, where

e = dimg D¥=?"" = 1. By Proposition [5.2] we get 2(V*(1), D) = —2(V,D) =
Z(x) again. Therefore this gives an alternative proof of Lemma
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