EISENSTEIN CONGRUENCE ON UNITARY GROUPS AND
IWASAWA MAIN CONJECTURES FOR CM FIELDS

MING-LUN HSIEH

ABsTrRACT. The purpose of this article is to prove Iwasawa main conjecture
for CM fields in certain cases through an extensive study on the divisibility re-
lation between p-adic L-functions for CM fields and Eisenstein ideals of unitary
groups of degree three.
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INTRODUCTION

The main conjecture for CM elliptic curves over totally real fields. Let
M be an imaginary quadratic field and let E be an elliptic curve over a totally
real field F with complex multiplication by the ring of integers O of M. Let
p be an odd prime split in M. Let Fo, be the cyclotomic Z,-extension of F
and let Ar := Z,[Gal(F/F)] be an one-variable Iwasawa algebra. We study the
cyclotomic main conjecture of Iwasawa theory for E which relates the size of Selmer
groups to special values of p-adic L-function attached to F. Recall that the Selmer
group Selr._(E) is defined by

Selr._(E) = ker {Hl(}'oo, Ep™]) = [[H" (Feon: E)} ;

where v runs over all places of Fo. It is well known that Selr_(F) is a cofinitely
generated Ar-module. Denote by charp . Selr_(E) the characteristic power series
of Selr. (E), which is an element in Az unique up to a Az-unit. Let W, be the
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p-adic completion of the ring of integers of the maximal unramified extension of Z,,.
On the other hand, the specialization of a suitable twist of a Katz p-adic L-function
to the cyclotomic line yields a p-adic L-function L,(E/Fu) € Arw, := Ar®z, Wp,
which roughly interpolates the algebraic part of central L-values L(E,r ® v,1)
twisted by finite order characters v : Gal(Foo/F) = C* (See for the precise
definition). The main conjecture of Mazur and Swinnerton-Dyer for F predicts the
following equality between ideals in Az )y, :

Conjecture 1 (The main conjecture for CM elliptic curves).
(charp . Selr(E)) = (Lp(E/Fs))-

If F = Q and F has good ordinary reduction at p, the above conjecture is a
theorem of K. Rubin [Rub91l Thm. 12.3]. Using the main result in this article, we
obtain one-sided divisibility in the main conjecture for a class of CM elliptic curves
over totally real fields. To state our theorem, we need some notation. Let X = F M
and let Dy, 7 be the relative discriminant of IC/F. If L is a number field, let iz, be
the class number of L and Dy, be the absolute discriminant of L. Let hg = hx /hx
be the relative class number of /F. One of our main results is as follows.

Theorem 1. Suppose that p1{6 - hy - Dr and that E has good ordinary reduction
at all places above p. Then we have the inclusion between ideals in Ax yy,

(charp . Selr_(E)) C (Lp(E/Fs))-

From the above theorem and control theorems (¢f. [Gre99, Thm. 1.2, Thm. 4.1]),
we can deduce the following consequence which provides evidence to Birch and
Swinnerton-Dyer conjecture.

Corollary 1. Suppose that p{6 - h - Dy and that E has good ordinary reduction
at all places above p. Then
(a) If L(E;F,1) = 0, then the p-primary Selmer group Selr(E) has positive
Z,,-corank.
(b) If L(E,F,1) #0, then
L(E/J:a 1)

E

),

where Qg is the period of a Néron differential of E over Z(p).

lengthy (Selr(E)) > ord,(

Remark. If W(E/F) = —1, part (a) is a consequence of the Selmer parity conjec-
ture proved by Nekovai [Nek06, Cor.12.2.10]. Our different approach provides a
constructive proof of this fact.

Iwasawa main conjecture for CM fields. We prove Theorem [I] by establishing
a divisibility result towards Iwasawa main conjecture for CM fields, which we will
describe after introducing some notation. Let I be a totally imaginary quadratic
extension of F and assume that X is p-ordinary, namely every prime of F above p
splits in K. Let X' be a p-ordinary CM-type of K (See . Let S]’DC be the set of
p-adic places of K. Fix an embedding ¢, : Q < C,. Then X and ¢, give rise to
p-adic CM-type X, which is a subset of S’Z’,C such that X, and its complex conjuga-
tion X¢ give a partition of S&§. Let d = [F : Q]. Let Ko be the compositum of the
cyclotomic Z,-extension and the anticyclotomic Zg—extension of IC. If we assumed
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Leopoldt’s conjecture for I, then K., would be the maximal Zg“—extension of IC.
Let I'x be the Galois group Gal(K/K), which is a free Z,-module of rank d + 1.
Let K’ D KC(up) be a finite abelian extension of K which is linear disjoint from K
and let A = Gal(K'/K). Let i : A — C be a character of A, which is called
a branch character. Let W)y,[¢] be the ring generated by the values of ¢ over W,,.
Denote by A = W, [¢][['k] the (d + 1)-variable Iwasawa algebra over Wy [¢].

Let K/, = K'K and let My be the maximal p-abelian X,-ramified extension of
KL, and let X5 be the Galois group Gal(Mx /K. ). Then My is also Galois over
K, and A acts on Xy by the usual conjugation action. Define the Iwasawa module

X(Ew) to be the maximal -isotypic quotient of Xyx. By [HT94, Thm. 1.2.2], X(Ew)

is a finitely generated and torsion A-module. Therefore, to X (Ew) we can attached

a characteristic power series Fy, » € A. On the other hand, it follows from Katz
[Kat78] and Hida-Tilouine [HT93, Thm.II] that to (¢, X) we attach a primitive
(d + 1)-variable p-adic Hecke L-function Ly » € A, which interpolates p-adically
the algebraic part of critical Hecke L-values for ¢ twisted by characters of I'x and
satisfies the functional equation. We can state the (d + 1)-variable main conjecture
for CM fields as follows (¢f. [HT94, Main conjecture, page 90]).

Conjecture 2 (Iwasawa main conjecture for CM fields). We have the following
equality between ideals in A

(Fyp,x) = (Ly,s).

The significance of the main conjecture originates from the applications to the
Birch and Swinnerton-Dyer conjecture for CM elliptic curves (See [CG83| and
[Rub9l] for the case F = Q). When F = Q, this conjecture is a theorem of
Rubin [Rub91] combined with Yager’s construction of p-adic L-functions for imagi-
nary quadratic fields [Yag82]. Rubin uses the technique of Euler system constructed
from elliptic units to bound the size of X(Ew) in terms of L-values. In other words,
he proves the divisibility (Fy,x) D (Ly,x), and then appeals to the class number
formula to conclude the equality. For general CM fields, the Euler system tech-
nique seems not applicable currently. In this article, instead of controlling the size
of X(Zw we construct sufficiently many elements in X(Zw
the technique of congruences among modular forms on the unitary group of degree
three. Namely, we prove the reverse divisibility relation (Fy, 5) C (Ly,s). To state
our result precisely, we need to introduce some notation. Let my be the maximal
ideal of A. For a number field L, we let G, = Gal(Q/L) and let wr, : G — Z) be
the Teichmiiller character. Let Dy ,r be the relative discriminant of IC/F and let
¢(¢0) be the prime-to-p conductor of the branch character ¢. Let 9 : G%’ — Gy
be the composition 1) o V', where V : G%_l’ — Gj‘cb is the Verschiebung map.

Theorem [l is a consequence of the following divisibility result in the (d + 1)-
variable main conjecture for CM fields and the control theorems of Selmer groups
for CM elliptic curves due to Perrin-Riou [PR&84].

in terms of L-values with

Theorem 2. Suppose that

(1) p13-hg - Dr-4(A),
(2) ¢ is unramified at X7, and Yw® is unramified at X, for some integer
aZ2(modp—1).
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Then we have the following inclusion between ideals of A
(Fy,2) C (Ly,z).-

Remark. The assumption (2) is in particular used to make some twist of 1) unram-
ified at p, which is necessary for the application of results on the non-vanishing
modulo p of Hecke L-values in the proof of non-vanishing modulo p of Eisenstein
series. It is possible to weaken this assumption if [Hid04al, Prop.2.8] could be
improved.

Thanks to the works of Hida and Rubin, Theorem [2is sufficient to prove the main
conjecture when 1 is anticyclotomic or obtained from the restriction of a Galois
character of an imaginary quadratic field. By Hida’s solution to the aniticyclotomic
main conjecture in [Hid06] and [Hid09b], Theorem [2] implies the main conjecture
for certain anticyclotomic branch characters.

Corollary 2. Suppose that p{3 - hi - Dr - §(A) and that

(H1) v is anticyclotomic,

(H2) the local character 1), is unlmmiﬁed and non-trivial for every w € X,
o

(H3) vla,, ., # 10" = (-1)Tp.
Then we have the following equality between ideals of A

(Fyp,x) = (Ly, ).

Combined with Rubin’s two-variable main conjecture for imaginary quadratic
fields [Rub91], Theorem [2| yields the following main conjecture by the same argu-
ment in [Hid07, Thm.5.7].

Corollary 3. In addition to the assumptions (1-2) in Theorem@ suppose further
that

(R1) K = FM, where M is an imaginary quadratic field in which p splits,

(R2) X is the p-ordinary CM-type of K obtained by extending the inclusion t :
M — C,

(R3) K’ is abelian over M and p 1 [K': M].

Then we have the following equality between ideals of A
(Fy,z) = (Ly,z).

The main conjecture from Greenberg’s point of view. We give a different
formulation of Conjecture [2| proposed by R. Greenberg in the context of Galois
representations ([Gre94]). Let Sy be the set of places dividing ¢() and let S D Sy
be a finite set of prime-to-p places in K. Let g be the maximal algebraic extension
of K unramified outside S U Sz’f. Define the tautological A-valued Galois character
EA by

EA Gal(Ks/’C) — F}C — A%
9 — gk

Let ¥ : Gal(Ks/K) — A* be the deformation of ¢ defined by ¥(g) = ¢(g)ea(g).
Let A* = Homeont (A, Qp/Zy) be the Pontryagin dual of A. We make A* a discrete
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A-module by As(z) = s(Az) for all A,z € A and s € A*. The A-adic Selmer group
associated to (¥, X)) is defined by

Sel (¥, 2) i=ker{H'(Ks/K, ¥ @x A*) —»  [[ H'(Iw, ¥ @1 A%)},
wESUTE
where I, is the inertia group in a local decomposition group of Gx at w. Define
the S-imprimitive Selmer group by
Sel (¥, X) :=ker{H'(Ks/K, W @x A*) = [[ H'(Lo,¥ @1 A%)}.
weXy
Let ht1 (A) be the set of height one prime ideals in A. If S is a cotorsion and cofinitely

generated discrete A-module and P € hty(A), we denote by S5 = (S*) @5 Ap the
localization of the Pontryagin dual of S at P and put

Lp(S) := length, ,(Sp).

We write L, (¥, X)) for the Katz p-adic L-function L 5;. Conjecture 2| can be re-
formulated as the following main conjecture for the one dimensional A-adic Galois
representation V.

Conjecture 3 (Main Conjecture). For every P € hty(A), we have the equality
Lp(Sel (¥, X)) = ordp(L,(¥, X)).

We shall consider the dual version of the above main conjecture, which has
the advantage of incorporating imprimitive p-adic L-functions and Selmer groups.
Define the S-imprimitive p-adic L-function sz (@, X)) for S by

LYW, D)=L, %) ] (1—%(Froby)).
wES—Sy
Here Frob,, is the geometric Frobenius. Let € be the p-adic cyclotomic character
of Gx and let ¥ be the character defined by WP (g) = ¥~1e(g). The dual Selmer
group for (¥, %) is the Selmer group associated to (¥P, X¢) defined by

Selg(FP, 2¢) = ker{H" (K5 /K, WP @x A*) = [[ H'(Lw,¥° @4 A")}.
weX),
We will prove the following theorem, which implies Theorem [2] by the functional
equation of Selmer groups for CM fields [Hsil0].

Theorem 3. With the same assumptions (1-2) in Theorem[d, for every P € hty(A)
we have the inequality

Cp(Selg (P, 2¢)) > ordp(L5 (W, X)).

Eisenstein congruence. Our main tool is the Eisenstein congruences on unitary
groups. The application of Eisenstein congruences to Iwasawa theory was first
introduced by Ribet in [Rib76], in which he uses the congruences between Eisen-
stein series and cusp forms on GL(2) over Q to obtain a proof of the converse of
Herbrand’s theorem. This approach was further exploited by Mazur and Wiles
[MWE&4] in their proof of classical Iwaswa main conjecture, and by Wiles [Wil90]
in his elegant proof of Iwasawa main conjecture for totally real fields through the
systematic use of Hida theory. Meanwhile, parallel to Eisenstein congruence, Hida
and Tilouine studied CM congruences for GL(2) over totaly real fields extensively,
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and in [HT94] they proved a divisibility result for the anti-cyclotomic main conjec-
ture for CM fields. In [Urb01] and [Urb06|, E. Urban proved the main conjecture
for adjoint modular representation by Eisenstein congruences on GSp(4). In his
joint work with C. Skinner [SU14], they prove the main conjecture for GL(2) by
Eisenstein congruences on U(2,2).

The proof of our Theorem [3] is based on a study of Eisenstein congruence on
U(2,1) the quasi-split unitary group of degree three. The use of Eisenstein con-
gruence for U(2,1) to study one-sided divisibility in the main conjecture for CM
fields was initiated by F. Mainardi in his thesis [Mai04] under the supervision of J.
Tilouine and E. Urban. In [Mai08] he defines the Eisenstein ideal of the cuspidal
ordinary topological Hecke algebra B, i.e. the Hecke algebra acting on the ordi-
nary cuspidal Betti cohomology groups, and proves the characteristic power series
of Selmer groups for CM fields is divisible by the Eisenstein ideal in B under some
technical assumptions. In this article, we introduce the ideal of Eisenstein congru-
ence Eis(¥,S) C A (Definition[7.19), which measures the congruence between Hida
families of Eisenstein series and cusp forms on U(2, 1), and we first prove Theorem
for every P € hty(A) which is not exceptional (Definition by establishing the
following two inequalities:

(LIE) ordp(Eis(¥,S)) > ordp(L5 (¥, X)),
(E[S) £p(Sel(¥P, X)) > ordp(Eis(¥, S)).

Let us explain the strategy briefly. To show the first inequality (L|E), we have
to work with Hida families for unitary groups. The first step is to construct
a A-adic Hida family of Eisenstein series €°"¢ (a p-adic measure with values in
the space of p-adic ordinary modular forms) on U(2,1) with the optimal constant
term, namely a product of the Katz p-adic L-function Lg(w, X)) and a Tate twist
of the S-imprimitive Deligne-Ribet p-adic L-function L7, r associated to the char-
acter 1/J+T,C/].-w;-1 (7x/7 is the quadratic character of K/F). The idea of this
construction is based on our previous work [Hsill|, which we describe briefly as
follows. We begin with the construction of a good p-adic Siegel-Eisenstein series
€20 on U(2,2). Applying the pull-back formula, we obtain an Eisenstein series
€ on U(2,1) by pulling back this Siegel-Eisenstein series to U(2,1) via a suitable
embedding U(2,1) x U(1) — U(2,2). The desired ordinary Eisenstein series is
constructed by taking the ordinary projection £°"¢ of & The idea of using the
pull-back formula was suggested to the author by E. Urban, and has been used in
[Urb06] and [SU14] to construct a Hida family of Eisenstein series on GSp(4) and
U(2,2) respectively.

The construction of our degree two Siegel-Eisenstein series €5 2 is inspired by the
construction of Harris, Li and Skinner [HLS06]. However, their Eisenstein series
does not quite fit for our purpose since the ordinary projection of the pull-back of
this Eisenstein series is zero. A heuristic reason is that the Fourier coefficients of
their Eisenstein series are only supported in the integral Hermitian matrices which
are non-degenerate modulo p. Therefore, we have to modify their construction to
meet the ordinary condition, which complicates the computation of the constant
term of the ordinary projection of of the pull-back of €3 5. To resolve this, we apply
the techniques in [Hsill) §6].

Second, to make congruences between Hecke eigenvalues of Eisenstein series and
cusp forms for U(2,1) modulo the constant term, we have to show that the Hida
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family of Eisenstein series £°"¢ is co-prime to the constant term (or even non-
vanishing modulo my). This is usually the most difficult step in the approach of
Eisenstein congruence. In the case of U(2,2) [SU14], this is achieved by showing the
non-vanishing modulo p of a very clever linear combination of Fourier coefficients
of certain Klingen-Eisenstein series. In our situation, we show directly that some
Fourier-Jacobi coefficient of £°7% is non-vanishing modulo m, making heavy use
of the theory of Shintani on primitive Fourier-Jacobi coefficients of automorphic
forms on U(2,1) [Shi79]. Our idea is to introduce an auxiliary Eisenstein series E°,
whose Fourier-Jacobi coefficients are manageable, and show that the non-vanishing
modulo p of p-primitive Fourier-Jacobi coefficients of E° and £°"¢ are equivalent
(See Proposition. The Fourier-Jacobi coefficients of E° are essentially a product
of two Hecke L-values for CM fields thanks to the works of Murase and Sugano
(IMS00], [MS02]) generalizing Shintani’s theory and the calculation of Tonghai Yang
on period integrals of theta functions. The problem is thus reduced to the non-
vanishing modulo p of these Hecke L-values, which is addressed in [Hid04a] and our
previous work [Hsil2]. Using the non-vanishing of £°¢ (mod m,) combined with
Hida theory for unitary groups, we are able to construct a non-trivial Hida family
of cusp forms congruent to the Eisenstein series £°"¢ modulo p-adic L-functions,
which leads to the inequality (L|E).

To show the second inequality (E|S), we need to construct sufficiently many
elements in the Selmer group in terms of the Eisenstein ideal. This can be done
by the technique of lattice construction due to E. Urban in [Urb01]. In our case, a
variant of the inequality (E|S) in the context of the topological cuspidal ordinary
Hecke algebra has been worked out by Mainardi [Mai08|. Working with the coherent
cuspidal ordinary Hecke algebra instead, we achieve the inequality (E|S).

There remains the case when P is exceptional. These are precisely common
divisors of the Katz p-adic L-function Ly 5, and the S-imprimitive Deligne-Ribet
p-adic L-function L% . We have trouble proving (E|S) for exceptional primes P
in general unless ordp(Ly, ») < 1. Nonetheless, if A has order prime to p, then
results of Hida [Hid10] and the author [Hsi14] on the vanishing of the p-invariant of
anticyclotomic p-adic L-functions for CM fields imply that there is no exceptional
prime unless ¢ = 7 /rwr and Wy () = —1 (mod my ), where Wx(¢) € AX is the
root number in the functional equation of the Katz p-adic function L, s, and in
this particular case, the only possible exceptional prime is the pole P, of Lpgr and
ordp, (Ly,5) = 1 thanks to a recent result of A. Burungale [Burl4] on the vanishing
of p-invariant of the cyclotomic derivative of Katz p-adic L-functions attached to
self-dual characters with root number —1.

Structure of this article. This paper is organized as follows.

In {I] we fix notation and definitions through this article. In §2/and §3] we review
the general theory of Shimura varieties associated to unitary groups over totally
real fields and the theory of Katz-Hida geometric modular forms. In §4 we ex-
tend Hida theory to include Eisenstein series on unitary groups U(r, 1) over totally
real fields. We prove the classicality and the control theorem for p-adic ordinary
modular forms. Hida theory provides the framework for the study of the con-
gruence among modular forms. In particular, the fundamental exact sequence in
Theorem [£.26] (¢f. [Urb06, Thm. 2.4.19] and [SUI4, Thm. 6.3.10]) is crucial to make
congruence between Eisenstein series and cusp forms modulo constant terms in §7]
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Hida developed his theory for cusp forms in great generality ([Hid02| and [Hid04b]),
and moreover he establishes an axiomatic control theorem for automorphic sheaves
on Shimura varieties of PEL-type using several standard results from the theory of
the minimal and toroidal compactifications of Shimura varities of PEL-type which
has been worked out by K.-W. Lan [Lan08] in full details. Hida theory for modular
forms on U(n,n),q has been carried out in [SU14], and the proofs therein work for
U(r,1),q as well. However, due to the appearance of non-torsion units in O%, one
requires a slight modification for the base change property in the totally real case
(See §4.1).

In and we construct the desired ordinary p-adic Eisenstein series on U(2,1)
and make an explicit calculation on its constant terms (Proposition . In
we show our ordinary p-adic Eisenstein series is non-vanishing modulo p (Proposi-
tion and construct congruences between cusp forms and Eisenstein series on
U(2,1), which leads to our first inequality (L[S) (Corollary [7.20).

Finally in by the technique of lattice construction we prove the second in-
equality (E[S) (Theorem [8.14). A variant of Mainardi’s work in the context of the
coherent Hecke algebras is carried out in §8.3] and §8.4] The applications to the
main conjectures for CM elliptic curves and CM fields are given in §8.6
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1. NOTATION AND CONVENTIONS

1.1. Throughout F is a totally real field of degree d over Q and K is a totally imag-
inary quadratic extension of F. Denote by ¢ the complex conjugation, the unique
non-trivial element in Gal(K/F). Denote by a = Hom(F, C) the set of archimedean
places of 7 and by h the set of finite places of F. Let Dx,r (resp. Dx,r) be the
relative discriminant (resp. different) of K/F and Sx,r = {v € h | v|Dx, 7}

Henceforth we fix an odd rational prime p which is unramified in F and assume
the following ordinary condition:

(ord) Every prime of F above p splits in K.
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This condition implies that p is unramified in K. We denote by .S, the set of places
in F lying above p. We choose once and for all an embedding to, : Q — C and an
isomorphism ¢ : C = C,, where C,, is the completion of an algebraic closure of Q,.
Let 1p = ttoo - Q= C, be their composition. Let Zp be the p-adic completion of
the ring Z of algebraic integers in C, and let m,, be the maximal ideal of Z, and
let m := 71 (m,). Every number field L will be regarded as a subfield in C (resp.
C,) via i (resp. ¢,) and Hom(L, Q) = Hom(L, C,).

If L is a finite extension of Q, or a number field, we denote by Oy, the ring of
integers of L. If L' is a quadratic extension of L, denote by 7.,/ the quadratic
character associated to L’/L. If L is number field, let G = Gal(Q/L) be the
absolute Galois group. Let A be the adele ring of L and Ay ¢ be the finite part
of Ay. For brevity, we shall write O = Ox throughout this article.

We often write w for a place of K and v for a place of F. Write K, (resp. F)
for the completion of K (resp. F) at w (resp. v) and F, for F ®q Q,. Denote by
w,, (resp. w@,) a uniformizer of K, (resp. F,). We also write K, for K ®x F, and
O, (resp. O,) for Of, (resp. O ®z Zy).

Denote by Z the finite completion of Z. If M is an abelian group, let M =
M ®z Z. If I is a number field, E:ALJ and @L =11 Or,

v<oo v*

1.2. For a finite set [ of rational primes, we define Z ) by
Z0) :{%€Q|bZ+qZ:Zforallqu}.

By definition, Zm) = Qif U is empty. If R is a Z-algebra, we let Rig) = R®zZ () -
When O = {p}, we write Ry as R(,). Denote by Z the set of positive integers.
Put

O+ = {a € 0O®zZ) | ais totally positive} .

If R is a ring, we denote by SCH,r the category of R-schemes and by SETS
the category of sets. If X is a scheme over F (resp. O), Rr/qX (resp. Rp/zX) is
the restriction of scalar of X from F (resp. O) to Q (resp. Z).

If R is an O-algebra, the complex conjugation ¢ induces an involution on R®o K
by r ® z — r ® c(x). Define the nxn Hermitian matrices 3, (R) over R ®o K by

Ho(R)={9€ Mp(R®0K)|[g=9"},
where g* = ¢(g') and g¢* is the transpose of g. When n =1 and g € R ®0o K, we
sometimes write g for g*. If g € GL,,(R®0c K), we write g~* and g~ for (¢*)~! and
(g*)~! respectively. We denote by B, (R) the upper triangular subgroup of GL,,(R).

Let T,,(R) be the diagonal torus of B, (R) and let N,,(R) be the unipotent radical
of B,(R).

1.3. Characters. Let Ix = Hom(K, Q). For w € SII,C, we put
(1.1) I, = {0, € Hom(K, C,) | 0, induces w} = Hom(K,, Cp).

We shall identity Ix with LI, by o — 0, := ¢y 00.
Let x : Ag/K* — C* be an arithmetic Hecke character of £*. We say that x
has infinity type kK = koo € Z[Ik] if

o€l

Xoo (@) = oo () := H o(a)" for all a € K*.

o€l
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We can associate x to a unique p-adic Hecke character X : Ag/K* — Z; defined

by
(2) =) [T %) IT 11 on(zu)®-

o€l wlp op€Ly

=)

We call X the p-adic avatar of x, whereas x the complex avatar of X.

Denote by recg : Ag/K* — G the geometrically normalized reciprocity map
which takes recx(w,) = Frob,,, where Frob,, is the geometric Frobenius at w.
Throughout this article, every character of Gx implicitly will be regarded as a
Hecke character of K> via reci.

1.4. CM-types. Let X be a CM-type of K, i.e. X' is a subset of I such that
YNYXe=0and XU Xe=Ig.

Denote by X, the set of places of K above p induced by ¢,00 for 0 € X. We further
assume XY is a p-ordinary CM-type. Namely,

2N Epe=0and X, U e = Sk

The existence of a p-ordinary CM type is assured by the assumption .

Henceforth, we simply write X = Yc and X7 = X,c and identify the CM-type
X (resp. the p-adic CM-type X)) with the set a of archimedean places of F (resp.
the set S), of places of F above p).

1.5. Let K™ be the normal closure of K in Q. To every o € Ix we can attach an
idempotent e, € Ox ®z Oxne such that ae, = o(a)e, for a € Ok and

O}C ®Z O]Cnc = @ O}Cnc s Co.

o€l

For a subset J of Ix, we put ey = > ., e,. Let et =ey and e = exy.. For
w € Sk, let e, = er,,. Since p is unramified in K, e,, belongs to Ox ®z Z, and

ew(OIC Kz Zp) = Ova

where v is the place of F lying below w. By the definition of X,, we have et =
D wes, €w (resp. e = Zwezg ey) and e (O ® Z,) = e (Ox ® Z,) = 0,. f M
is an Ox-module, we put M, = M ® Z, and

Ms = et (M,) and Mse = e~ (M,).

For o € Ik, denote by C(co) the K ®q C-module whose underlying space is C
with KC-action via ioc0. Put

C(J) = Clo).
oedJ

Let Op(X) (resp. O,(X°)) denote the Ox ®z Z,-module O, on which Ok acts
through e, (resp. e_).
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1.6. Unitary groups. Let r and s be two nonnegative integers such that r > s > 0.
Let (W,9) be a skew—Hermitian KC-space of dimension r — s with a skew-Hermitian
form 9. We fix a K-basis w’ ,w™™* of W and assume that 9(w®,w?) = a;4; ;.
We assume further that V- 1 a(al) >0 and tp(o(a;)) are p-adic units for all ¢ and
o€ X Let X = @ Kzt and Y = @ Ky® be K-vector spaces of dimension s

i=1 i=1
and let (V,9,5) be the skew-Hermitian space with the underlying K-vector space

V =Yk ®W @ Xk and 9, 5 the skew-Hermitian form on V defined by
1

with respect to the decomposition Y @ W @ Xi. Let (, )rs : VXV — Q be the
alternating pairing defined by (v,v'), s = Trx,q(Vr,s(v,v")).

Let G = GU(V) be the group of unitary similitudes attached to the quadratic
space (V,9,5). As an algebraic group over F, the R-points of G for a F-algebra R
are

G(R) ={g € GL,4+s(K @7 R) | g9,s9" = v(g)9, s for some v(g) € R*}.

The morphism v : G — G, 7 is called the similitude map. The unitary group
U(V) is defined by

U(V)(R):={g € GUV)(R) | v(g) =1}.
We let GU (0,7 — s) be the group of unitary similitudes attached to (W, —9).
For g € Endx V, we let gV denote the element in Endyx V such that 9, (vg,v’) =
Yy s(v,0'gY), v,0" € V. Then g¥ = g 'v(g) if g € G.
1.7. Standard basis. The basis {yl xl} and {w’} s 1s called the

standard basis of V. The basis {ewy W, ewa: }weS’C (resp. {egy eeW', enT }

»S

wGI)C
is called the standard p-adic (resp. complex) basis of V®Q Q, (resp. Vg C). We
identify GL(Vx) (resp. GL(Vze) with GLy(Fp) = I[,eg, GLr+s(Fy) with respect
to the standard p-adic basis of Vyx (resp. Vxc). Consider the following embedding:

Rr/QG(Qp) = [ G(F.) = GL(Vx) x GL(Vxe) x Fyf
vES),
9= (9lvs, glvee, v(9))-

For each v € S, the above embedding gives rises an identification

GU(V)(Fo) = G(Fy) ~ {(z,2",v) € GLyrys(Fy) X GLyrys(Fo) x FS |2’ =00 a9, L v},
If w is the place above p in Y, then we have the identifications:

GU(Fy) = GLrvs(Fo) X oS5 g = (gle,v,v(9)),
U(V)(Fo) =GL1s(Fo), g—yg

Thus, (g,v) € GU(F,) has the similitude v. Similarly, the standard complex basis
gives rise to the identification:

Rr/QG(R) = GL,;4(C(X))xC*(X).
We shall fix these identifications throughout this article.

(1.2)

ewV'+
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1.8. Lattices and polarization. In what follows we make a choice of the lattice
M in V. Denote by dx the absolute different of /Q. Let XV = D,Elxl@~ . ~D,E1:c5 =

(D,El)s and Y = Oxy! & Oxy® = OF be the standard Oxc-lattices in Xx and Y
respectively. We choose an Og-lattice L in W such that Tri,q(9(L, L)) C Z and
L,=L®zZ,=5%._7(0k ®z Z,)w'" = (Ox @z Z,)"*. Define the Ox-lattice M
in V by

(1.3) M:=YeL®X".

Then (M, M), s C Z and M, := M ®z Z, is self-dual with respect to (, ), s as
p is unramified in . A pair of sublattices Pol, = {N~', N°} of M, is called an
ordered polarization of M, if N~ and N° are maximal isotropic submodules in M,
and they are dual to each other with respect to (, ), s. Moreover, we require that

rank Ngl = rank N%. = r, rank Ngul =rank N% = s.
We now endow M with the standard ordered polarization as follows. Put
M =Yy ®Ly®Yse and M° = X% ® Lye ® X¥%.

We call Polg = {M~',M°} the standard (ordered) polarization of M,. We make
the following identification according to the standard p-adic basis.

Mg = X\/ = OP(E)S Mgcl - YEC = Op(EC)S
(1.4) 3 and 0 ¥
Mg' =Y @ Ly = 0,(5)" MY = X% & Lye = 0,(3°)".

1.9. Filtration. Let R be a ring and N be a free R-module of rank [ with an or-
dered basis {v,...,v'}, define the standard (decreasing) filtration Fil§, (N, {v?,...,v'}))
of N by Fill,(N, {v!,...,v'}) = Zi;?“ Rv'. We endow the O,-modules M% and
M?.. with the filtration defined by

Fil' MY = Fill, (XY, {eta®,... eTa'}) if1<i<s,
(1.5) Fil 170 Filét_s(Lgc,{e‘wl,...,e_wr_s}) ifs+1<i<m,
i .= )
> Lye ® Fill, (XY, {e7at,...,e7a"}) if1<i<s.
Define the filtration Fil®* M, of My as follows.
(1.6)

Fill;"(XY, {eta®, ... etal}) ifr+1<i<r+s,
Fil' Mg = S Fill; (L, {etw™5, ..., etw' ) @ MY ifs+1<i<r,
Fill,(Ys, {eTy®,....etyt )@ Ly MY if1<i<s.

1.10. Open compact subgroups. For v € h, put
(1.7) K):={g€G(F,) | (M®00,)g=M®0O,}.

and K9 = [loen K. Let Ny > 3 be a prime-to-p positive integer and fix an open
compact subgroup K such that K, = K? for all v|p. We assume K is neat in the

following sense:
Kc{geGAry) | M(g—1)C No-M}

(neat) V(K)NOY € (KNOX)?
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The first condition assures that K is torsion-free ([Shi97, Lemma 24.3 (2)]), and
the second one is possible by choosing sufficiently large Ny (¢f. [Hid04bl page 136]
). Under the identification (|1.2)), we have

~

K? = GL(Mx)x0) = GL,14(0,)x O for vp.

For g, = (91(91)7 v(gp)) € K}, we write 91(71) = (é g) according to the decomposi-

tion My = Mgl ® M%. Forn € Z, put

L(p") = {g € Kg | 9p € Nrts(Op) x {1} (mod p")}
and define

n 17‘ * n
K :{g€K|ng<O 1) x {1} mod p },

K = {g e K| gz(;l)|gr’ My = 1(mod p"), v(g,) =1 (mod p")} = K(”)Il(p"),
Ky ={9€ K| gV € B.ys(0,) (mod p) }
2. SHIMURA VARIETIES FOR UNITARY GROUPS

One approach to explore the arithmetic of modular forms on unitary groups is
to study the associated Shimura varieties and understand its structure as a moduli
space of certain abelian schemes with additional structures. We review these objects
in this section, following the exposition in [Hid04b, Chapter7]|. In what follows, let
X be a finite extension of K"¢(e?™/No) which is unramified at p and let p be the
prime ideal of X induced by ¢, : X < C,. Let O := O () be the localization
of Ox at p and let O, be p-adic completion of O. We shall identify O, with the
p-adic closure of ¢,(0) in C, via i,. An O-algebra R is called a base ring, and
similarly a scheme S over Spec O is called a base scheme.

2.1. Shimura varieties associated to GU (V). Let O be a finite set of ra-
tional primes not dividing Ny. Let U C K be an open compact subgroup in
Rr/QG(Aq.1)-
Definition 2.1 (S-quadruple). Let S be a locally noetherian connected O-scheme
and let § be a geometric point of S. A S-quadruple of level UM) is a quadruple
A= (A 1,7D))s consisting of the following data:

e A is an abelian scheme of dimension (r + s)d over S.

e 1: O — Endg A ®z Z(D) .

e )\ is a prime-to-J polarization of A over S and )\ is the O(m),+-orbit of A.

Namely

= O(|:|)’+/\ = {)\/ € Hom(A,At) Xz Z(D) ‘ N =MXo a, ac O(D)7+} .

e 70 = nOU is a 7 (S, 5)-invariant U-orbit of the isomorphism of Oj-
modules n@: M @ Z& 3 TO)(A) = H (A5, Z)). Here we define
ng(z) = n(zg”) for g € U.

Furthermore, the quadruple (4, , ¢, 7 U) g satisfies the following conditions (K1)-
(K3):
(K1) Let * denote the Rosati involution induced by A on Endg A ® Z ). Then
1(b)t = 1(e(b)), Vb € O.
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(K2) Let e* be the Weil pairing induced A. Lifting the isomorphism Z/NoZ ~
Z/NyZ ( ) induced by e2™/No to an isomorphism ¢ : Z ~ Z(1), we can re-
gard e* as a skew-Hermitian form e* : T(F) (4;) x T(D)(AS) — DKl Rz yAC
Let e denote the skew-Hermitian form on 7™ (A) induced by e”(z,2') =
P s(n(z),n(z’)). We require that

et =wu - e for some u € Ag}.
(K3) The determinant condition:

(2.1) det(X — (b)|LieA) = [[ (X — (0¢)())"(X — 0(b))* € Os[X], Vb € O.

ceX

Define the fibered category Q%JD) over SCHo,. o, as follows. Objects over S are
S-quadruples. For A = (A, X, ¢,7™))g and A’ = (A", N,//, 7)), we define the
morphism by

Hom%m)(é,i) = {qb € Homp, (A, A") | ¢*N = X, ¢(i7P)) = ’(D)}.
We say A ~ A’ if there exists an isomorphism in Hom, o) (A,A").
U

If O = 0 is the empty set, we define the functor &y : SCH;« — SETS by
GU(S):{A A)\L??Useez[] }/N

By the theory of Shimura-Deligne, &; is represented by a quasi-projective scheme
Sa(U)x over X. We call Sg(U) 5 the Shimura variety attached to G = GU(V)
over K.

2.2. Kottwitz model. Suppose that O = {p}. Let K be an open compact sub-
group such that &, = K0. Define the functor & : SCH,o — SETS by

&0 (s)={a= (A5 ecl(s)}/ =

In [Kot92], Kottwitz shows that 6%)) is represented by a quasi-projective scheme
Sa(K) o over O if K is neat.

2.3. Igusa schemes associated to GU(V). Let Pol, = {N~',N°} be a polar-
ization of M, = M ®z Z,, where M is the Ox-lattice defined in (1.3).

Definition 2.2 (S-quintuples). Let n be a positive integer. Define the fibered
category Qfgg)n Pol, whose objects over a base scheme S are S-quintuples (A, j)s =

(A, X, 0,7®) | j)g of level K™, where A € Q:g?)(S) is a S-quadruple and
j : an ®Z NO — A[p"]

is a monomorphism as Ox-group schemes over S. We call j a level-p™ structure of
A. Morphisms between S-quintuples are

Homgo  ((A,9). (A7) = {6 € Homyn (4. 4) | 65 = 7'}

K.,n,Polp
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Define the functor 3 1, + SCHo — SETS by

jgg,)n,Polp(S) = {(Aa]) = (A75‘5 L7ﬁ(p)aj)5 € thg,)n(s)} / =.
It is known that 3(11()7)”71;,01? are relatively representable over Sg (K)o (cf. [HLSOG,

Lemma(2.1.6.4)] and [SGA64] Prop.3.12]), and thus it is represented by a scheme.

~(p)
J K,n,Pol9

ization Polg = {M~*,M°} defined in (L4). Let A be the universal quadruple of
level K®) over Sq(K). Then we have

IE(K™) = Inj, (p,n ©z MO, A).

Denote by Ig (K™) /o the scheme that represents for the standard polar-

In addition, IZ(K™) is a model of Sg(K™) over O in view of the following lemma.

Lemma 2.3. Let L D X(e2>™/?") be a field. There is a non-canonical isomorphism
over Spec L.
IG(K™) = Sa(K™) /L.

PROOF. Since My = M @ Mgl, we have a natural exact sequence
.0 1
0— M —"—Ms—Mz"'—0.

We fix an isomorphism (pn : Zy, > pt,,n, which induces an isomorphism g‘;} o
MY, ~ Z,@MY. Let S be ascheme over L and A = (A, \,n") K)5 be a S-quadruple
of level K(). A level-p" structure j of A is equivalent to a class 1, (j) K (p"), where
np(j) : M~ & M° = M, = T,(A). We can define the isomorphism (dependent on
the choice of (pn) I&(K™) /1 = Sa(K™),1, by

(A7, 5)] = [(AA 1 0P xm, (D)K. O

2.3.1. Change of the polarization. It is clear that the notion of level-p™ structures
depends on the choice of the polarization of M,,. Choose v € Kg such that N=1 =
M~y and N° = M%y. Then we see that j — ~j is an isomorphism from the level-
p" structures with respect to Pol, to those of Polg. Therefore the map [(4,7)] —
[(4,~7)] induces an isomorphism between jg‘?)n por. and jg)l Pol® -

5Ty P PR P
2.3.2. p-adic one forms. Suppose p is nilpotent in R and p™ R = 0 for some m > 1.
Let (4,7) be a R-quintuple of level K™, n > m. Identify M° = My' @ M. with
the basis in ([1.4). Then the level p™-structure j over R induces a trivialization of
Lie A:
JE MY @RS et LieAp"] = et Lie A; j, : MY ® R = e™ Lie A[p"] = e Lie A.
Let w, = Hom(Lie A, R) be the R-module of invariant one forms of A. Taking
the duality Homo,(—,O,) of the identification in (1.4), we obtain an isomorphism
induced by j,:
(2.2)

W) =w([iT) Op(D) @RS etwy; w(i)” =w(i): Op(Z) @RS e wy.

2.4. Complex uniformization. Let U C K° be an open compact subgroup in
G(Ar,f). We recall the description of the complex points S¢(U)(C) following
[Shi98, Chap.VI].
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2.4.1. We begin with the Hermitian symmetric domain attached to unitary groups
with signature (r,s). We treat two cases r > s > 0 and rs = 0 separately. If
r > s >0, we put
x . kg
X, s={r= [y} |2 € My(C%),y € M(,_5)xs(C¥), i(z* —x) > —iy*d~ 'y}
According to the standard basis of V', we can write o € Rz/qG(R) in the form

a b c
(2.3) a=|g e f
h 1 d

with a,d € M,(C¥) and e € M,_;(C*). The action of &« € Rz/;qG(R)" on X, ,
is defined by

b
(24) ot =[] oo

If rs = 0, X, ; consists of a single point written xo with the trivial action of G.
Then X' := X, ; is the Hermitian symmetric domain associated to G. Put

Mg(XtT,U) = GF)N\XT x G(Ary)/U,

where G(F)* = {g € G(F) | v(g) > 0}. Then Mg(X™",U) is a complex manifold
when U is neat. Denote by [1,g9] € Mg(X™*,U) the complex point represented
by (1,9) € XTxG(Ar ). The group G = GU(r,s) satisfies the Hasse principle
([Hid04bl 7.1.5, page 319]). Hence we have

(2.5) Mg(XT,U) 5 Sq(U)(C).

2.4.2. Analytic construction of the universal abelian scheme over C. Let A(V),c
be the universal quadruple of level U over S (U)c. We shall recall a construction
of A(V)c after introducing some notation. Define the K ®q C-module C™* by

(2.6) C™* = C(Z9)° @ C(Z°)~* @ C(X)°.

Here C"~° and C? are regarded as spaces of row vectors. According to the above
decomposition ([2.6)), we define ¢, 5 : C™* — C™® by

cr,s(ula U2, U3) = (uih Uz, U3),

where u means the complex conjugation of u € C. We denote by z‘(/l) (2),..., zg) (X)

the first r d-tuple complex coordinates of C™*, where zE,i)(ZJ) = (z‘(})g)ge ». Simi-

larly, we denote by zg/TJrl)(Ec), cee z‘(/rﬂ) (X¢) the rest of s d-tuple complex coordi-

nates. If s > 0, we put

B(r)=(0 9 y | &M, (C%).
1, 0 1,
If rs = 0, we put B(xg) = 9. The CM-type X induces an isomorphism X :
K®qR = C¥, by which we regard V ®q R as a C-space of row vectors according
to the K-basis {yi,wi,xi}. For each 7 € X, define the R-linear isomorphism
p(1): V@qR = C™ by p(1)v = ¢, s(vB(7)). Then V acts on (7,z) € X+ x C™*
by
v (1,2) = (1,p(T)v + 2).
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We define a left action of G on V' by

(2.7) g*xv:=vg" =vg 'v(g).
Put
(2.8) M[g] :g*M:Mgv and M[g](T) :p(T)(M[g]).

To each point (7,9) € X" xG(AF ), we can attach a C-quadruple A(V),(7) =
(AV)g(7), (s ) ean» tc, ngK™) of level K™ defined by the following data

e The abelian variety: A(V),(7) := C™* /My () with p(7) : V@qR/M|y =
Ag(7), L

e The polarization: (, )., is the Fi-orbit of the polarization induced by
the unique Riemann form (, )ean on C™® such that (p(7)v,p(7)v)can =
(v,0") s for all v,0" € V.

e The endomorphism: ¢ : Ox = End Ay(7) ®z Q is the Ok-action induced
by the action on V' via p(7),

e The prime-to-p level structure: né(,p) MoZr 5 Mg = Hy(Ay(T), Zr) is
defined by

nép)(a:) =gx*x for x € M.

e The level structure at p: fix a primitive p”-th root ¢ = e2™/P" and let
C:Z/p"Z > H,n be the induced isomorphism. Define

Je: M° @ pyn =~ MO R Z/p"Z — Ag(7)[p"] = My @ Z/p"Z
by je(2%) = g * 20 for 2° € MPO.

Let 1, be the full level structure nép )an(jc)- The isomorphism in (2.5) can be
described explicitly as follows

Mg(X*, K™) 5 86(K")(C)
(2.9) (7] = AWV )y (1) = [(AV)g(7): T T b 1K™,

By definition, we have

[T7 gu] = [(AQ(T)ﬂmcanv Lc777(p)uK",j<up)} (U c KO)

We put
(2.10)

dzy (2) = {dz§}>(2), . .,dz$;>(2)} and dzy (2°) = {dév””(m, N .,dz§;+s>(26)}.

Then dzy, = (dzy (X)), dzy (X¢)) form a basis of Q4 (). We define a d-tuple r-form
wy,c(¥) and a d-tuple s-form wy/c(2¢) by

r r+s
(2.11) wyc(X) = \de (D) wype(Z9) =\ daf (59
=1 1=r+1
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2.5. Igusa schemes associated to U(V). For the future application, we have
to consider the Igusa schemes associated to the unitary group U(V) as well. Let

ClE(K) be a set of representatives of the group Fi\A % ;/v(K) in A(ﬁ)f. For each
c € Cl3(K), we consider the functor jg?nﬁpolp’c :SCH;9 — SETS

TJ&?’)R’POIWC(S) = {(A,/\,L,ﬁ(p),j)s | (A,X,LJ)(”)) € Q(Ig?n(S), Alis a c-polarization} /.

Here by c-polarization we mean that A is a polarization in the class A such that

et =u-e uccv(K).

It is shown in [Hid04bl page 136] that the isomorphism class [(A4, \, ¢, K, j)] is

independent of the choice of A in A under the assumption . Then jgg.)n,Polp.c

is represented by a scheme over O, which is denoted by Ig(v) (K™, ¢)/0- ’ ’
Pick g. € G(Agf) ) such that v(ge) = ¢ and let K" = g K"g ' NU(V)(Ax.f).

W
We have an isomorphism

My (X+,°K) 5 Iy (K™, ¢) e
As explained in [Hid04bl §4.2.1] for the Hilbert modular varieties, we have
ucecz;(K)Ig(V) (K",c)/o = I?;(Kn)/o-

We write 17y (K™) for Iy, (K", ¢) if ¢ = 1.

2.6. Morphisms between Igusa schemes. Let (W, 4, L) and (V, 9, 5, M) be as
before. Put L™' = Ly := (L®Z,)s and L° = Lyc := (L®Z,)xe. Then {L7', L°}
is a polarization of L, = L ®z Z,. Recall the standard polarization of M, in is
M= Z(O,C ®z Zy)y' + L~  and M® = L0 + Z(O,C ®z L)z
i=1 i=1
Let V = (V, 0y, M, M~ & M°) and —W = (W, 9, L, L0 & L~). Let (W,7,) =
(Vo (=W),0,,s®(—1)). Let L :== M®L be an Ox-lattice in W and let {L™*, L0} =
{M‘l ®L’, M L‘l} be the direct product polarization of L,. Put

W=Vao (W)= (W, LL " aL).

Let Gy =U(V), Go = U(W) and G3 = U(W) be the associated unitary groups.
For open compact subgroups K; C G;(Aq,r) such that K7 x Ky C K3 and a fixed
c € (A% )%, we write I} (K;(p")) for the Igusa schemes I¢; (K;(p"),c) associated
to unitary groups with additional data. Then we have a natural morphism

ivaw I (K1(p")) j0 % I3 (K2(p")) 0 — I3(K3(0™)) 0

defined by

iv,w [(Aly)\l,Llangp)Klajl)}, |:(A27)‘27L2,77§p)K23j2):|
(2.12) (p) (p) : :

= [(Al X Ag, A1 X Aoy t1 X g, () xmy ) Ks, 1 % ]2)}-

Now we consider a different polarization of L,. Let w™' (resp. w™) be the
image of w’ in W (resp. —W) as a subspace in W. Define a basis {yi,xi}z:1 of
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Wby yi =yf, x' =27 if 1 <i < s and

. 1 . 1 .

—+.,i—s —,1—S

yl =Zw’ —Zw )
2 2

xt=wht TS w9 L if s < i <
Put Y =37 (Ox ®Z,)y" and X = Y, (Ox ® Z,)x". Then {Y,X} is also a
polarization of L, = M, & (—L,) and
Lyr=Mys®(-L)s=Ys®Xs.

We let T be the unique element in GL(Wx) =[] e GLor(Fv) = U(W)(Fp) such
that y'T = y*, xX*T = x*if 1 < i < s and w;’FST = y% and wE’FST = x4 if
s < i <r. Then LOET = Xy and L;T = Y 5. The matrix representation of YT
according the basis {y%, x4} is

(2.13)

(2.14) T = 2 7| ¢ U(W)(F,).
91 91

We give an explicit expression of the morphism iy in (2.12) in terms of the
complex coordinates defined in ([2.9). Notation is as in §2.4.2 By the definition of
C"™" we can decompose

Crr = CQ(Z(’) D Cr—s(zc) @ CG(Z) @ CT—S(E) —Qns @ CO,T—S-

For 7 = B] € X, s, we let i, € GL(C™") be the matrix such that according to the

above decomposition

1
- 1,
iy = 1,
Iy 1.
and put
(2.15) Z, = (Z _20119> € Xy,

For g €e U(V) and h € U(W), a straightforward computation shows that
(L(g’h)(Z.,—)) iy = M[g] (7’) (&) Lh(XO).

Hence, i, induces an isomorphism

(2.16)
Qrr ZNT Qs QOr—s
AW) (1 (Zr) = i — A(V) () AW )1 (x0),
( )(g,h)( ) L[(g,h)](ZT) M[g](T) L[h](XO) ( )9( ) ( )h( 0)
and

(2.17) ir(wy/c(X),wyv/c(X) A ww/c(X9)) = (ww/c(X), ww/c(X9)).
In view of (2.9) and (2.16), the morphism ¢y in (2.12) over C is given by
(218) Z‘V,W ([Ta g]’[XOah]) = [Z‘ra(gah)T]
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Here the appearance of T € U(W)(F,) given in is due to the change of
level structures at p obtained from the direct product polarization {L_l, LO} to the
standard polarization {Y,X} when GU(W) is regarded as the standard matrix
group GU (r,r).

2.7. Compactifications. We collect some basic facts in the theory of the toroidal
and minimal compactifications of unitary Shimura varieties. For details and proofs,
the reader is referred to [FC90|, [Fuj89] and [Lan08]. We shall follow the exposition
in [SU14l §5] but restrict ourself to the simple case s = 1 (so dim Xx = dim Y =1
and G = GU(r,1);7). Let P be the stabilizer of the flag {0} C Xx C V in
G = GU(V). Then P is the standard parabolic subgroup of G. Let Np be the
unipotent radical of P and let

Mp := GL(Xx)xGU(W) < GU(V), (a,g1) — diag(a, g1, v(g1)a”")

be the standard Levi subgroup of P. Let Gp := GU(W) — GU(V), ¢1 —
diag(1, g1, v(g1))-

2.7.1. Cusps. The set of cusp labels for Sg(K) is defined to be the double coset
C(K) := (GL(Xk)xGp(Ar f))Np(Ar )\G(AF ) /K.

Since G p is a totally definite unitary group, the set C'(K) is finite. For g € G(A £ y),
we denote by [g] the class in C(K). By the strong approximation and Iwaswa
decomposition G(Ar ) = P(Ar ;)K°, we can choose a convenient set C(K) of

representatives of C(K) in G(Ag?f) such that g = pk® for p € P(Agf_’)j}lo)) and
k9 € K° and with the similitude v(g) € O.

2.7.2. Toroidal compactifications. The existence of toroidal compactifications of
Siegel modular varieties has been established in [FC90]. For general Shimura vari-
eties of PEL-type, these are done in the works of [Fuj89] and [Lan08]. To a datum

of smooth rational cone decompositions {g[g]}qu(K) of Fy, we can attach the

toroidal compactification S (K) /0 of Sq(K) o, which is a proper smooth scheme
over O containing S (K) as an open dense subscheme. The complement of S (K)
is a relative Cartier divisor with normal crossings. In addition, there is a quadruple
G = (9, t,n) over Sg(K), where § is a semi-abelian scheme with an Ox-action by

¢ and a homomorphism A : § — G such that G| Se (k) = A, the universal quadruple
over Sg(K) and 7 is the level structure in the quadruple A.

2.7.3. The minimal compactification. Let w := 6*99/§G<K> be the pullback of the
sheaf of the relative Kahler differentials Q2g /S along the zero section e of G /S (K)"
Then w is a locally free coherent O§G( K)—module. The minimal compactifcation
SE(K) o of Sq(K) is defined to be

St (K) = Proj @ ['(Sq(K),detw").
k=0
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The O-schemes Sg(K), Sg(K) and S&(K) fit in the following diagram:

Sa(K) —— S5(K),

where ¢ and 4 are open immersions, and 7 is a blow-down map. The following
results about the minimal compactification S (K) is due to Kai-Wen Lan in his
Harvard thesis [Lan08].

Theorem 2.4.
1) modetw is an ample line bundle on SE(K) and S5(K) is a normal projec-
G G
tive scheme of finite type over O.
2) .0z = Qg (k). Hence m has geometrically connected fibres.
Sa(K) & (K)
(3) SE(K)(C) is the classical Satake-Baily-Borel compactification.
ere 15 a natural stratification o = G indezed by
4) Th ; l ificati f 0SE(K SE(E)N\Se(K) indezed b
C(K):
9SG(K) = Ugeo(x)Sarp (Kp), Kp = Gp(Ars) NgKg™".

If K, # K}, currently we only have toroidal compactifications S¢(K),% and
the minimal compactification S¢ (K) /% of Sq(K) % over X = O[1/p]. If we choose
compatible rational cone decompositions, then the maps Sq(KJ)/x — Sa(K)/x
extends to these compactifications over XK.

2.74. Local charts and Mumford families. Let ¢ € G(Ar ) with g, € Kg. We
write g = kgYvy withk € K, g; € C(K) and vy € G(F)* (recall that gV = g~ 'v(g)).
Let Yy = Yg; and X/ = XVgY. Then Y; = by' and X = a1 'zl for some
fractional ideals a and b of Ox. Let X, = {y € Iy | (y, X/ )r1 C Z} = c(a)y' be
the Z-dual of X;/ (c is the complex conjugation). With our choice of Y = Oxyt,
XV =dc'a! and g; € C(K), (Yy, X)) CZ,50b Cc(a). Let i: Yy =by' — X, =
c(a)y! be the inclusion map. Let I, be the subgroup in X, ®z Y, generated by
iY)oy—ily)@y;zbey—z®cb)y (v Xgy,y €Yy be Ok).

Let 7, = S(X,®zY,) be the maximal free quotient of the group X,®zY,/I,. The
Z-dual %Z} = Homgz(#y), Z) is the space of Z-valued symmetric and Hermitian
bilinear forms on c(a) x b, so .} is isomorphic to (abd) "' N F, and S is the
fractional ideal (abdx ﬂ]—')b}l of F. Let Hom(F, Q) be the space of Q-linear maps
from F to Q and choose a set of d linear independent elements £ = {ly,...,l;}
in Hom(F, Q) such that ;(Fy) C Q4 for all i. Let Ny be the level of K as in
.OSet y@ ={seN ' A lUs)>0,1cc}, S h={se Ny ' Ay |seFi}
and g = 71 U0} i

Let Sjg = Sgp(K}) and let B = (B, Ag,t5,78) be the universal quadruple
over Sig. Let P be the Poincaré line bundle over Bx Bt. Define the group scheme
Z[g] over S[g] by

Z[g] = HOI’IIO)C (Xg, Bt) XMOK (ygﬂgt)HOl’no)C (Yg, B)

= {(c,¢") € Homo, (X, B') xHomo, (Yy, B) | e(i(y)) = Ac'(y)),y € Yy} -
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Let Z["g l be the connected component of Z. Each § € X ® Y induces a tautological
map from ¢(B) : Z7; — B x Bt We let L£(8) = ¢(8)*P be the line bundle over
Z[‘;J] obtained by the pull back of P via c(). Because of the symmetry of the
polarization A and the ampleness of P, £() only depends on the holomorphic
image of 3 in .

For ¢ = 0,1 or (), we let K%:L = gK:Lg_l N GP(A]:J) and let I[g](K:L) =
IGP(KI%”:’) be the associated Igusa scheme over Si;. In our simple situation, S,
and Ijg)(K{') are affine schemes of finite type over O. Let Ajg (resp. Af)) be the
coordinate ring of Sy (resp. I, (KT)). For ¢ = ¢, 0 or +, we write ., for
p "S5 and let Rp | be the AR [77 [-algebra defined by

b= 1L HYEG mg o) £8)d”

ﬂe‘y n
(2.19) ”

2 0 o
H A[g] ®A[9] H (Z[g]“c(ﬁ))qﬂ
BeSL?

g,n

Write fR[' fR[g o- Let J4 be the ideal of IR' , generated by {q }5e5ﬂ+ By
Mumford’s construction ([Cha85] and [FC90]), there exists a semi-abelian scheme
(Mig), tar) over Spec .'R[&g] together with an Ox-action ty : Ok — End M @z Z(,)

such that M is an abelian scheme over Spec R[&g] [1/7.], and M := M & fR[Eg]/jJr is
the universal Ox-Raynaud extension over Z[‘; l with the exact sequence

(2.20) 0—X) ® G —M—B—0.

The datum (Ag, K%n5) induces a polarization and a level structure (Ayr, 7755[)) of M
over ng] compatible with the degeneration (¢f. [FC90, IV. 6.4, 6.5 and V. 2.5(5)]).

The Mumford quadruple M, at the cusp [g] is the ing}—quadruple of level K given
by

\ ~(p)
M[g] = (M[g]7 )\M7 LV 775& )/R[sg] .

Moreover, there is a morphism L[ |+ Spec IR[Q] — Sq(K) such that (v [5])*9 =My
Let T'y) = GL(Xx) N 9:Kg;*. Then the group [y C O% acts on X/, and thus
induces an automorphism of M[g} by the functoriality of Mumford’s construction.
Let (B, jp) be the universal quintuple over Ij;(K™). Fixing a p"-level structure
Jae on My lifted from the tautological p"-level structure js on B and the natural

one on XV ® G,,, we obtain the Mumford quintuple (M), ) over fR[gg] n

2.7.5. The local structure of 0SE(K). We have the following description of the
local structure of 0S&(K) at a cusp [g]. It is similar to the Siegel case [FCI0,
v.2.7] (¢f. [SUT4, Thm. 5.3]).
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Proposition 2.5 (Prop.7.2.3.11 [Lan08]). The completion of the local ring of
OSE(K)@. at a geometric point T in Sy is given by

O/S\E(K),i = (W*OEG(K))Q = HO(F[g]v :R[g])

2.21
221 =4 D a(@)q’ € Ry |a(Be’) = a(B), Ve € Ty

ﬁey’[o

gl

2.7.6. Igusa schemes over Sc(K). Let n be a positive integer. The Igusa scheme
I (K™) over Sg(K) is the scheme that represents the functor

Iﬁ(Kn) = @o,c (/‘l’p” ®Z MO7 9)

For n' > n, let my p : Ig(Kyn) — Ig(K™) be the natural morphism induced by the
inclusion M° @ 0 — M0®upn/. The forgetful morphism 7, : Ig(K") — Sg(K)
defined by 7 : (4,75) — A is étale . Hence Ig(K™) is smooth over SpecO. Let
H = GLo, (M°) = GLo(M%)x GLo(M$%.) and let H act on I¢(K"™) over Sg(K)
by h-j(m°) = j(m°-h). Let N (resp. B) be the stabilizer of gr®* M (resp. Fil® M?)
in H. Define

Ig(K?) == Ig(K™)/N and Ig(K}) := Io(K™)/B.

2.8. CM abelian varieties and periods. We briefly recall the notion of complex
and p-adic periods associated to CM fields. Consider the special case s = 0. Then
G = GU(W) is a totally definite unitary group of degree one. It follows that S (K)
is finite over O and S¢(K)(C) is a finite set. Let B be the universal quadruple
over Sg(K) with the structure morphism 7 : B — Sg(K). Replacing O by a
finite flat unramified extension of O, we may further assume that Sg(K)(0) =
G(F)"\G(AFry)/K and B = Upjess(k)(0)By,- By the complex uniformization
constructed in §2.4.2] we have

(222) 'Bh(C) = (j(jl ) for all h € G(A]:J).

(A]

Let (B, j) be the universal quintuple over Sg(K™),c. Since By is an abelian va-
riety with CM by Ok and the CM type X is p-ordinary, it follows that Bj, ®¢ F,
is an ordinary abelian variety, and j- descends to a level p™-structure over a fi-
nite unramified extension of 0’. This in particular implies that I¢(K™)(W,) =
G(F)\G(Ar )/ K™

Let S = Sq(K) o and let Hp := m,(Qs,s) be a free e™ (Ox ®z Os)-module of
rank r. Then B¢ carries the e (Ox ®z O, )-basis dzy = dzy, (X)) of Hp @05,
Os, introduced in . On the other hand, let (B7_, jz..) be the universal quin-
tuple sitting over Z, := @n Ig(K™) /w,, and then the universal p>-structure jz_
of Bz gives rise to a e™(Ox ®z Oz )-basis d*t of Hxp ®0s,., O, It follows

from the fact that CM abelian schemes {(B,,, jh)}[h] e7..(w,) are pririloe—to—p isoge-

nous to each other that there exist a et(Ox Rz (’)5)—basisp wp of He and a pair
(Q6,00,26,p) € GL, (67 (Ox ®2.C))x GL, (e T (Ox ®2W,)) = GL,(C*)x GL,.(W,")

such that

2.23 Qg ocdzyy = ws = Qg ,d*t.
( ) G, w G.,p
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When r = 1 and G = K%, we let Qoo = Qg0 € (C*)¥ (vesp. Q, = Qa, €
(W))*) be the complex CM period (resp. p-adic CM period) of (K, X). We remark
that up to a p-adic unit, (Q, 2p) are precisely the periods defined in [HT93| (4.4
a,b) page 211] (cf. (2 ¢) in [Kat78, (5.1.46), (5.1.48)]).

3. MODULAR FORMS ON UNITARY GROUPS

3.1. Rational representations of GL, x GL,. Let R be an O-algebra. For a
(r+s)-tuple k = (a1, --az;b1,---bs) € Z™*, we consider the schematical induction
module Li(R) given by

Ly(R) = {f € RIGL, x GL,] | f(tn,g) = k= *(t)f(9), t € T, xT,, ny € N.x N},

where R[GL, x GL;] denotes the polynomial functions on GL, x GLs with coeffi-
cients in R and k is regarded as an algebraic character on 7T, x7T defined by

k(diag(ty, ...t ), diag(tssts ... tops)) = 50 -t 0 o tle

Then L (R) is a free R-module and is the algebraic representation of GL, (R)x GL4(R)
with the minimal weight —k with respect to N, x N£.

Let H := Ro;z GL» xRo,z GLs. Let T = Rp,zT-xRp,zTs be the diagonal
torus of H and let Ny = Ro/zN; xR zN! be a unipotent subgroup. A weight
k of T is an algebraic character of 7)o, which can be written as a (r + s)-tuple
k = (a1,a92, - ,a,;b1,b2 -+ ,bs) € Z[Z]T+s with a; = Zai,aa for i = 1,---,r
and b; = Y bj,0 for j =1,...,s. We say k is dominant with respect to Ny if
Ul > 2 Qrg > —by o> > —bs, forall o € X. Put

k]| :=a1+ - +ar+b + -+ bs € Z[X].
For n € Z, we write n- X' =3 - no € Z[X]. Let
I"=(1-%,...,1-%;0,...,0)and I~ =(0,...,0;1-X,...,1-%).

Define the algebraic representation of H(R) =[] GL,(R)x GLs(R) of the min-
imal weight —k by

cex

Lu(R) = @ Li,(R) (k=3 k,0).

oex
We define the distinguished functional [j:
lp:Lg(R) — R
fo—= Q).
Then I, is the vector of maximal weight k in Lj(R) := Hom(Lg(R), R). The R-
module L;(R) has a functorial decomposition into weight spaces of T'(R):

(3.1) Li(R) = €D Ry,
x=>—k

where v, is of weight x. Denote by v_j the vector of the minimal weight —k in
L (R) such that I (v_g) = 1.

Remark 3.1 (Twisted action). Let X.(T) be the co-character group of T)o. Let
p € X.(T) such that (i, x) < 0 for all positive roots x (with respect to the unipotent
subgroup Ng) and let o = p(p). We define the twisted action pg(a™1) on Li(R)
by

pr(a vy, = p~ k0,
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Note that this action preserves p-integrality since x > —k. In addition, if p is
invertible in R, we have

prla v, = a2 Xy, = a Ep (a7,

3.2. Geometric modular forms. We recall the theory of classical modular forms
and p-adic modular forms on unitary groups from Katz-Hida’s point of view. Recall
that G = GU(V) and w = e*QS/§G(K)/o' Decompose w = @yei€ow and define

&= EBISﬂ(O%G(K),eag); & =P Isom(OF ) €ow)-
oeX oeXxe
Then &y := 5$ ® &, is a H-torsor over Sc(K) with the structure map 7 : & —
Sc(K). A R-point in €y is a pair of (z,w), where x is a R-point in Sg(K) and
w=(whw ):e"(Oc@R")Be (Ox@R*) ~etw, De w, is an Ox ®z R-module
isomorphism. For h = (h*,h™) € H(R) = GL,(R*)x GLs(R¥), h acts on w by
the rule h - w(vt,v™) = (WT(vTh"),w™ (v™h7)).

Definition 3.2 (Katz-Hida). Let k be a dominant weight such that | k|| is paralle]ﬂ
Define the automorphic sheave of weight k£ by

wp o= (7)) Vi [k

Then wy, is a locally free coherent O§c( K)—module. A section f of wy can be regarded
as a function on £y such that

f(z,tniw) = E(t_l)f(wi)'

Equivalently, we can define wy, = &y xH Ly, and a section f of wy is a morphism
f &y — Ly such that

f(z, hw) = p(h) f(z,w) for all h € H.

Definition 3.3. Let R be a base ring flat over Z,). Define the space of geometric
modular forms over R of wight k and level K] by

ME(K;naR) = HO(IG(K:L)/R7WE) (.:0,1,®)-

If R is a field of characteristic zero and rs > 1 (or F # Q), then it follows from
Koecher principle (c¢f. [Shi97, A4.5, page 230]) that

My(K{, R) = H*(Sc(KJ) ) rowi)-

3.3. p-adic modular forms. Let H, 1 € H°(Sq(K)z,,det(w)’~") be the Hasse
invariant. Since 7, detw is ample, we can lift a power of the Hasse invariant

F;_l for some sufficiently large positive integer ¢ to obtain a global section E €
H°(S¢(K),det(w)*?=1), and by Koecher principle, we have E € H?(Sg(K), det(w)!®—1)).
By our notation, det(g)t(p_l) = wg, is an automorphic sheave of weight kp =
t(p—1)(IT 4+ 17). Let m be a positive integer. We let Tp ,, := Sq(K)[1/E] /0, be

the ordinary locus of Sg(K)/e,,. Moreover, it is known that under the ordinary
condition (ord)), Tp,,, is open and dense in S¢(K)/o,, ([Wed99)]).

IBecause Aut § = O4 Nv(K) # {1}, our moduli problem for @ is not rigid. We have to assume
|k|| is parallel to get a well-defined wy.
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Let Vi(K, Op,) := H(Ty,m,ws). By definition, we have

. H°(Sa(K)jo,, Wkinks)
(3.2) Vi(K, 0,,) = ling L :

n

Set Ty m = Ia(K") 0, for n > 1. Then /b @ Tyt — Trym, 0’ > n > 0 is finite
étale . The Igusa tower T, over Oy, is defined by

Toom = y%nTn,m.
Then Tt is a Galois cover of Tj ,,, with Galois group H = GLe, (M?). Hence-
forth, we identify H (resp. N) with the group H(Z,) (resp. N} (Z,)) with respect
to the p-adic basis fixed in ([L.4).
Definition 3.4. Let R be a p-adic Op-algebra and let R,, :== R/p™R for m € Z.
Define

Vn,m = HO(Tn,m» OT,,L,,,,L)7

VE(K{Lv Rm) =H° (Tn,m/Rmv WE)N

Let Voo,m = hi>nn Vom and let Vo oo = @m Voo,m- We call V (G, K) := VOIC\)I’OO
the space of p-adic modular forms. Let T = T(Z,) C H and let Ay := O,[T].
The Galois action of T on VY s given by [t].f(A,j) = f(4,tj) for t € T and

co,m

fe Volj,m. This action makes Volim a discrete Ap-module.

Suppose that n > m. In §2.3.2] to each R,,-quintuple (4,7) of level K™ we
can attach a canonical basis w(j) of H°(A4,Q4). In other words, the Hodge-Tate
morphism 75, ., — Evo,., (4,7) = (4,7,w(j)) defines a section of & over O,
and induces the canonical isomorphism by the pull-back:

HO(Tn,m/Rmvwﬁ) :> ‘/n,m Ko LE(Rm)

-~

[ f(A5) = (A J,w())-
We shall call fthe p-adic avatar of f. Define the evaluation morphism
By Vi(KT, Om) = Vi,
I Bilh) = ().
It follows from the definition that 3 is T-equivariant in the sense that
(3.4) Bi([t]-f) =t 75 [t].8,(f) for all t € T(Z,).

Proposition 3.5. Let H, = {h € H|h=1(mod p"M°)} and let J > H,, be a
subgroup of H. Then we have

(3.3)

~ o~

H (T, wi)” = {f € Vom @0 Li(Rim) | pe(h*)F(A, hj) = f(4A,j), h € J} :

ProoF. Let f € HO(Tn’m/Rm,wﬁ). Then f belongs to HO(Tnvm/Rm,wﬁ)J if and

only if for all h € J, we have

FA hj,w(j)) = f(A,j,w(j) <= F(A hjhw(hj)) = F(A]) (w(hj)= (") w(j))
— pu(h) (4 k) = F(4.)). 0
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3.4. Complex modular forms and automorphic forms. Define the standard
cocycle J : Rr/qG(R)" x XT — GL,(C¥) x GL,(C*) = H(C) by

ap(t) = plat)J(a,7), V(a,7) € G(R)TxXT.

We recall the explicit formula for J(o,7) = (k(e, T), (e, 7)) when rs > 0 [Shi97,
(6.3.6) and (6.3.7)]. Writing @ € Rr/qG(R)" in the matrix form as in (2.3) and

T= [ﬂ , we have
Y

B hat +d hyt + 10 . _
(3.5) Ko, 7) = (0—1(g$t +F) O lgyt+d-tev)’ (o, 7) = ha + ly + d.
If s =0 and X+ = {x0}, we put J(a,%xg) = v(a)a~! € GL,.(C¥). Fix a base
point i € X and let KJ, be the stabilizer of i in Rr,qG(R). Then J : KI, —
H(C), koo + J(koo,1) defines an algebraic representation of K9..
We define the algebraic representation LE(C) of H(C) with the highest weight

k as follows. The underlying space of L%(C) is L;(C) and the group action is given
by

pE(h) = pr(h™*"),h € H(C).

Definition 3.6. Let U C G(Ar,f) be an open compact subgroup. A holomorphic
function f : X* x G(Ax ) — Li(C) is called a holomorphic modular form of
weight k and level U if

(3.6) flar, agu) = v(a) Bk (T (o, 7)) f (1, g) for all (a,u) € G(F)* xU.

We denote by M3 (U, C) the space of holomorphic modular forms of weight k£ and
level U. a

The following lemma is a consequence of GAGA principle, which enables us to
identify geometric modular forms over C with holomorphic modular forms.

Lemma 3.7. Let dzy = (dzy, (X)), dzy (X)) be the Ok ®z C-basis of the space of
invariant one forms of A(V) defined as in (2.10). Then we have the isomorphism:

H°(S¢(U)c,wi) = My (U, C) = MU, C),
frr f(rg) = FIAWV ) (1), (S ) cams tes ngU, 2midzy, ).
For each weight k = (a1, - ar;bs, - ,b1), we define |k| € Z[Ix] by

|E| = Z(b170+"'+bs,0) 'J+(a1,a+"'+ar,a) s ocC.
cex
Definition 3.8. Let x be a Hecke character of * with infinity type |k|. Let
A(G,U, x) be the space of automorphic forms of weight k& and level U with
central character x. In other words, Ai(G,U, ) consists of smooth and slowly
increasing functions F : G(Ar) — Li(C) such that for every (o, koo,u,z) €
G(F)xK2 xUxZ(AF), we have

F(zagkecu) = p*(J (Koo, ) ™) F(g)x " (2)-

We associate a Ly (C)-valued function AM(F) on X" XG(Ar ) to a function
F € A;(G,U, x) defined by

(3.7) AM(F)(7, 9) = x5 (1(9))P*(T (o0, 1) F (900 9))
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where go € Rr/QG(R)™ such that goi = 7. Then AM(F) is a well-defined Ly (C)-
valued function on X+ x G(Ax ¢)/U. We put

.AZOZ(G, U,x) = {F € Ax(G,U,x) | AM(F) is holomorphic on X"} .
It is clear that AM induces an injective map

AM : AP°NG, U, x) = M (U, C).

3.5. Modular forms on totally definite unitary groups. Suppose that G =
GU (W) is a totally definite unitary group (i.e. s = 0). We give a simple description
of complex and p-adic modular forms on G. Let U C G(A £ ;) be an open compact
subgroup. If R is a base ring such that R = R[1/p], then the space My (U, R) of
modular forms over R is the space consisting of functions f : G(Ar ) — Li(R)
such that

F(agu) = pul@) f(g) for all (a,u) € G(F)xU.

On the other hand, suppose that R is a p-adic Op-algebra. Let 1/\\/IE(U, R) be the
space of functions f : G(Ar ;) — Ly(R) such that

flagu) = pﬁ(ugl)fp(g) for all a € G(F), u € U.

Then ﬁE(K{L,Rm) = Vi(K7, Rp). In addition, if R = R[1/p|, then we have a
natural isomorphism
M, (U, R) = My (U, R

(3.8) £(U, R) M k( 4 ) 1
f=fo £9) = plg, ) f(9)-

Proposition 3.9 (Base change). If U satisfies (neat]), then ﬁE(U, Op) ®o, R =
M (U, R).

ProOF. Let h = (G(F)\G(Ar)/U) and write
G(Ary) =| |Gt
i=1

The assumption implies that U N t;lG(A]:)f)ti = U NOZ. In addition,
pr(OX) acts trivially since ||k|| is parallel. We thus find that for every Op-algebra
R?

h h

My (U, R) = €D Ly(R)N 6 AA010 — (B L, (R).
i=1 =1
The proposition follows imediately. (I

3.6. Fourier-Jacobi expansion and Siegel operators. In this subsection, we
assume that s = 1 (so G = GU(r,1)) and retain the notation in We give a
brief account of Fourier-Jacobi expansion of modular forms on G.
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3.6.1. To begin with, we introduce some notation for the totally definite unitary
group Gp = GU(W). Let Hp := Ro;zGL,_1. Let Tp := Rp,zT,—1 be the
diagonal torus and let Up := Rp,z N1 be the upper triangular unipotent subgroup
of Hp. We shall regard Hp as a subgroup of H by x — diag(1,z,1). Let I =
Iy (KY) for g € G(Agg)f). Recall that A, = HO(I[g] Ol[n ) is the ring of regular
functions on I@]. Then A[T;] is nothing but the space of O-valued functions on
Gp(F)\Gp(AF)/K%. The space Viy of p-adic modular forms for (Gp, K3) is
given by

Vig :=lim Afy ©0 0y = U{f Gr(F\Gpr(Ar )/ Kpi =0 }

Let Tp := Tp(Zy) and Ap := Op[Tp]. The action of Tp on Vj, is given by
[t].f(g1) = f(g1t), where t € Tp C U(W)(F,). This makes Vg a compact Ap-
module.

3.6.2. Fourier-Jacobi expansion. Each pair (g,h) € C(K)xH can be regarded as a
p-adic cusp, i.e. cusps of the Igusa tower. Suppose that (g, h) is a p-adic cusp such
that h='Up(Z,)h C N. Let B be the universal family over the Shimura variety Spg
associated to Gp with the structure morphism 7 : B — Sj;. The exact sequence
induces the exact sequence of Ox ® Os[g]—modules

0— Q3 — Qi —Qy, —0, Ty := X @Gy,

Let wg be the O Rz OS[g]—baSis of W*QB/S[g] chosen in @ for the totally definite
unitary group Gp and let d*¢ be the canonical Ox-basis of Qg . Let d*t_ be a
canonical lifting of e~d*¢ in Q. Choose a lifting d*#/, of eTd*¢ in Q¢ and let
wi = (¥t} , ws;d*t_). Then (M, wi) gives rise to a point in EV(RE}M). Eval-
uating a modular form f € H(Ic(KT)/r,ws) over an O-algebra R at (M;,), h™" jar, win),
we obtain the Fourier-Jacobi expansion of f at the cusp (g, h):

FIly(f) = F(Myg), b~ v, wne) € Le(RS) ) ®0 R.
Let N}, = {(i 10 )} x {1} C H. Note that the N}-orbit N}wy¢ does not
r—1
depend on the choice of the lifting d*#/.. Therefore, the image FJ[}!‘]]( Iy of

FJ[Z] (f) in the N }I—covariant module Ly (:R[fg] .
of wp. We thus obtain the expansion

FJ[Z](.f)N}{ = Z aﬁ]] (ﬁa f)qﬁa where
(3.9) PES
a[g] (B, f) € LE(A@] ®o R)N}{ @A, H()(Z[i;]vﬁ(ﬂ))~
We consider the Fourier—Jacobi expansions of p-adic modular forms. Let Ry o :=

cusp ( h) is deﬁned by

FIpy(f) = FMyp b = S0 & (8, 1)’ € Rigjoo B0, O
BeSg

)Nlli ®@ R only depends on the choice

OO m, then the p-adic Fourier-Jacobi expansion ar the

—~h —~h
If f € Vi(KT,Op), then we define F'J(,(f) := FJg(Be(f))-
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3.6.3. Siegel ®-operators. Define the Siegel ®-operator by

o) H(Io(KT) rywi) — Li(Ay ®0 R)n,
fr= @0 (f) == a0, f)ny,-
Remark 3.10. To each weight & = (a1,---a,;b1) of T, we associate a weight
k= (a1,a2, -+ ,a,—1) of Tp. Then —k’ is the minimal weight of the representation
(Li)ny, |1, over a field. It follows that if R is a field and f € Mg(KT, R), then
aflg] (0, f) belongs to Ly (Af, ®o R).

The p-adic Siegel ®-operator 5@} : Volim — Vg ®0 Op, is defined by

e @ (F) =27, (0, f).

When h = 1, we drop the superscript and simply write F.Ji (resp. ®pq) for F' J[Z ]

(resp. (). Let

. 0 1
Wy 1= d1ag(<1 » O) ,1) € Hp(Zy,).

We have the following commutative diagram:

@ g
(3.10) Vi(KT, 0) — = Li(AT) ®0 Om) iy,
\Lﬂk iﬁk/
@wT

N
Voo,m

Vig) ®0 O

3.6.4. The g-expansion principle. We put

T T T
R[g] = H :R[g],oo and RC = H :R[g]

heT geC(K)

Define the Fourier-Jacobi map:
FI:VN  —RT @0, 0,

— —~h

fo BI(f) = (FJ[Q](f))(g,h)eC(K)xT'

Thanks to the work of Ching-Li Chai and Hida (see [Cha08] for the case U(n, n) and
[Hid09a] for general unitary groups), it is known that the image of the monodromy
group of the ordinary locus (Sg(K) ® F,)°"® in Aute, (A°"¢[p]) is isomorphic to
(GL,(Op) x GLS(OP))dEtzl. In particular, this implies that C(K)xT contains at
least one cusp at each connected component of I (K7)®F, and hence the following
g-expansion principle for p-adic modular forms:

Theorem 3.11 (The g-expansion principle). The Fourier-Jacobi expansion FJ:
VN . = RE ©o, O, is injective.
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3.6.5. Analytic Fourier-Jacobi expansions. Let U C G(Ar, ;) be an open compact
subgroup and let R C C be a base ring. Let f € M} (U,R) = My (U, R). Then f
can be viewed as function on X,.; x G(Ar ;). We have the Fourier-Jacobi expansion
of f at the standard maximal parabolic P:

1([2] ) = 0to. 1)+ 3 sty $)expieniTerq(po)). ([1] 9) € XaxGaz ).

BG]‘—+

Here the functions ag(—, g, f) : (C*¥)"~! — C are theta functions with complex
multiplication by L. We put

(3.11) Fp(g, f) =a0(g, )+ Y as(y. 9. f)a’.
BEF+

The formal power series F'Jp(g, f) is called the analytic Fourier-Jacobi expansion
of f at g.

Let (g,h) € C(K)xH. We have seen that If (C) = Gp(F)\Gp(Ar )/ Kp]
in : For each g1 € Gp(Ar,s) let [g1] be the class of g1 in I[’ZJ](C) and let
INE A?g] — C be the associated C-algebra homomorphism. We have the following

important comparison between analytic and algebraic Fourier-Jacobi expansions
[Lan12].

FJp(g91hg, [N ) =¢lg1] (f(M[g]) A e, (d¥F QWidéw;dXt—)))

:pﬁ(dlag(lv 27”95‘119,005 1))90[(]1] (FJ[}_Z]] (f))N}I(C)a
where we identify H with a subgroup of U(V')(F,) by
h = (hy,h_) € GL.(0p)x GL1(0,) — diag(h; ', h—) € GL,4s(Fp) = U(V)(Fp).

(3.12) Nj(C)

3.6.6. Analytic Siegel operator. For g € G(Ar 5), the analytic Siegel operator ®p 4
sends f to a function ®p4(f) on Gp(Ar s) defined by

Br(1)(01) = (o, 1) =aalsng: 1) (o= (V! hresr € o)

Then ®p,(f) has the following integral expression

(313) @py(f)cn) = / F(n - (o, g19))dn,

Np(F)\Np(AF)

where dn is the normalized Haar measure of N (A r) so that vol(N(F)\N(Ax),dn) =
1.

Lemma 3.12. The function ®py(f) takes value in Ly (C). Moreover, ®p4(f) €
M, (U9, C) is a modular form on Gp of weight k' (Recall that k' = (a1,...,ar—1)
ZfE: (ah' . 'aar;bl))'

Proor. By [Har84) page 71 (2.2.2.6)], ®p4(f) indeed takes value in LE(C)Nu(©),
Viewing LE(C)V#(©) as the representation of Mp(C) = (K ® C)*xHp(C) ~
C*(X)xC*(X)x GL,_1(C(X)), we have

LEC)N5 O3 o) = Li(C)wa, () |ap(©) = La, (C) @ Ly, (C) ® Ly (C)
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(¢f. [Jan87, 11, Prop.2.11] and Remark . In particular, LE(C)N}I(C”GP(C) =
Li(C). Ttis straightforward to verify that ®p ,(f) belongs to My (U?,C), using

formulas in ) and (| ., O

By [Har84, Prop. 2.4.4] and the above lemma, we obtain an exact sequence

0 MY(U.C) — My(U.C) "5 @B My (U.C),
lg)ec(v)
where MY (U, C) is the space of cusp forms of weight k and level U and C(U) is the

set of cusps of Sg(U)(C).
If U = K} and h € H with h~'Up(Z,)h C N, then by (3.12) we have

(3.14) Opng(f) = pr (2miQ% 1 )P (f) € Mk/<K,%?, C).

3.7. Hecke correspondence and Hecke operators. In this subsection, we re-
view the interpretation of the action of Hecke operators as algebrac correspondences
on the sheaf wj, over various base rings.

3.7.1. Hecke correspondence outside p. Let ¢ be a prime. For each non-negative
integer n, let Oy, = O[e2™/?" %] We consider the Hecke correspondence at /¢
for Ig(K:L)/OLn with e = 0,1. We let Ig(Kg) = Sg(K) if n = 0. Let a €
R7/QG(Q¢) NEnd(M ®Z;) and o be the dual of v under the Weil paring induced
by the polarization. Then o = a~!v(a). An f-isogeny of type a is the isomorphism
class of a triple z = (z 4 T4 ), consisting of points z = (A, j) and z, = (A, ja) of
I6(KJ) )0, , and an f-isogeny ¢ such that

M @20 S 1,(4,20)
b
M®Z(D) H1(Aa,z( )
with p*A = v(a)A,. Here O =0 if £ = p and O = {p} if £ # p.

Consider the scheme Z,, classifying f-isogeny of type a and the following corre-
spondence:

.%‘—).’Ea /One

/\

IGIG /Ong xOégIG( :L)/Onyg'

It is well known that p; and py are Galois covering maps ([Kot92, §6] and [FC90,
Chapter VII, §3]), so Z induces the algebraic correspondence [KJa K] on Ig(KY) 0, ,-

3.7.2. Hecke operators on modular forms. Since £ is invertible in O, ¢, the isogeny
¢ is étale and induces an isomorphism ¢* : H(A,, QAa/R) =~ HO(A, QA/R).

Definition 3.13. For f € wy, define the Hecke operator f | [K7aK]] by
FIESaK] = (p1)so ()" ops f.

If Ky = K}, we write T'(a) = |[K}aK?]. If £ =p and K = K} for n > 0, we write
U(a) for [[KJaKY].
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3.7.3. Hecke correspondence at p. We also consider the correspondence over Igusa
schemes Ig(K()/r for n > 0, where R can be X, O or O,,. Let X.(T)y =
{n € X.(T) | (x,n) < 0 for all positive roots x} and A, = {u(p) € T(Q,) | p €

X.(T)+}. Then A, is a semi-group generated by aq,as,. .., Q,ts, where

1, . p-ls_ .
Qjys = (( e p-1i> ,1g),i=1,--- ,rand o = (1r,( 57 1j>),] =1,
Let a = 04z for some i = 1,--- ,r +s. We regard @ = (a,d,p) as an element in

End(Mg")x End(M )x]-" x Under the identification in (1.4), we further view «
as an element in End( ») "Rr/QG(Q,p) with v(a) = p and write

= (a,d",d,a") € End(M5") x End(M%) x End(M5?}) x End(M%2.).

On the other hand, the action of a on Ve is given by o/, and a simple computation
shows a¥ = a7 'p and d¥ = d~'p. Under the identification GL,4(F,)xF) =
GL(Vs)xF) = RF/qQG(Q,), we find that

o= (" g,) ) ECL (B < 5

We consider the scheme Z /% classifying a triple (x A Z4) as in previous sub-
section, but now ¢ is p-isogeny of type a. We have ¢* A, = v(p)A and the following
commutative diagram

(3.15) o @z, (MY & M) > Alp"]

i(a,d) \L‘P

iy @z, (MY © MBI A, [p"].

We shall call « the source and z,, the target of (z 4 Zo) respectively. Consider the
correspondence:

x—>sca EZO‘

/\

x € Ig(K?), To € Ig(KQ)/R-

The deformation theory of ordinary abelian varieties shows that p; and p, are indeed
finite and flat (¢f. [Hid04bl, §8.3.1, page 358-359] and [FC90, Chapter VII, Prop. 4.1])
and thus obtain the algebraic correspondence [KJaK}'] on Ig(K]')/z induced by
Zy. In addition, if R = O[1/p], then ZJ /g(eanisvn) = Zf o, ,» and the two corre-

spondences coincide.

3.8. Hecke operators on p-adic modular forms. Let R = O and 0,,. We
recall Hida’s definition of normalized Up,-operators on the sheaf wy, over Io(KJ') /=
with n > m.
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3.8.1. We begin with some notation. Let o € A, and let R be a R-algebra. Let
x: Spec R — Ig(K,')/r be a R-point. Let (A, j) be the R-quintuple over z. We
consider the fiber product

Z;m = Zg‘ XIG(KI‘) SpeCR—> Zg/R

| :

Spec R ————*—— I(K2) ».

Then Z), is an affine scheme which is finite and flat over Spec R. Let R® be

the affine coordinate ring of Z7, and let (x % 24) be the tautological triple with
the target vo = (4,,Ja) in Z. Note that R® is not étale over R, but it can be

decomposed as
Ra - @ gua
UENH(Zp)*\Nu(Zp)

where Ny (Z,)* = a 'Ng(Z,)a N Ny (Z,) and R is the coordinate ring of the
local deformation space of (A,u'j) with respect to p-isogeny of type a. If R is
local artinian, we can determine the ring R§“ explicitly in terms of Serre-Tate
coordinates (See §3.8.2).

We first consider the |, U(a)-operator on Ig(K7') over R = O,,. This definition
is due to Hida [Hid04b) 8.3.1]. Since p is nilpotent in O,,, the p-isogeny ¢ : * — z,
is not étale in general. The naive definition of Hecke operators U(«) as algebraic
correspondence in Definition does not work over O,,. To define |, U(«) on the
sections of the sheaf wy, we identify wy with the N-invariant subspace of Or,, ,, ®o,,
Li(0,,) (n > m) and fix a set N} of representatives of Ny (Z,)*\Ny(Z,) in
Ny (Z,). For each section f of wy, we define the section f |, U(a) by the formulae

(316) f |& U(Q)(A,j) = Z Tng“/R(pE(u)ﬁE(ail)f(Aauajozu))a

ueENg

where (A,,;Jjou) is the target of the tautological triple over R,, with the source
(4,7) and p(a™!) is the twisted action defined as in Remark
Now we assume R = O. Let R be a flat O-algebra. We rephrase the definition
in Definition in terms of Li-valued functions on &y. For (z,w) € Ey(R), let
wao = (¢*)"Hw). Then we have
1

(3.17) FlU(@)(z,w) = Trger(f(Ta;wa)) € Lg(R M )

~—

Define the twisted operator |, U(«a) by
(3.18) f(z,w) |p Ula) :==k(a™) - f| U(a)(z,w).

We examine the p-integrality of |, U(a). Let R,, = R/p™R. Then we have
R*/p™R™ = (R,,)“. Recall that w(j) = (w(j)",w(j)7) = (w(j7),w(5")). From
the diagram (3.15)) and Remark over R, we have

~—

¢ (w(i)a) = w(j) and p*w(ja) = a-w(j),

which implies w(j,) = @ - w(j)a over R%,. In other words, we have

w(ja)+ =d- w(jJr)a and w(ja)Jr =a- w(j )a~
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Let f be a local section of the stalk (w), and choose a lifting w of w(j) over R*.
Form the above discussion and the fact that R* has no p-torsion, we conclude that

f(l‘a,Oz : wa) = p&(a)f(xomwa) € LE(RQ)

and its reduction modulo p™ is f(za,w(ja)). For each v € Li(R%), we know
k(a™Ypp(a™)v is still in Lgy(R®) for every a € A,. Thus k(a™!)f(za,wa) €
Li(R*), and

E(a™)f(za,wa) = k(o™ )pp(a™) f(a, w(ja)) (mod p™)
= i) f (20, w(ja).

hS)

Hence, the definition (3.18)) is p-integral and is compatible with its reduction modulo

p™ as defined in (3.16)).

3.8.2. Serre-Tate coordinate. Following [Hid04bl §8.3.1], we explain briefly how to
optimize the p-integrality of this twisted Hecke action by Serre-Tate theory on the
deformation of ordinary abelian varieties [Kat81]. Let R be a p-adic local ring with
the residue field F,. Let x = [(A,\,+,7(®), j)] be a F,-point of the unitary Igusa
tower lim Ig(v) (K™) — lim I2(K™). The level p>-structure jo induces an exact
sequence

0—M° @ pyoe — Ap®]—M ' ® %—m.
P

Let qu: M~ 'xM~! — @m be the Serre-Tate coordinate of x. In our unitary case,
¢ is determined by its restriction on My, ! ngcl. Thus the coordinate ring of the
local deformation space of  is given by R = R[t;;] with t;; = q.(e;, f;).

We compute the Serre-Tate coordinate gy, of o = [(4,,ja)] for o = a; = (a,d)
for 1 < j <r+s. From the diagram , the isogeny ¢ induces

My o Myl —L=T,(4) .
l(av,dv) %
Myt @ M5! —125 T, (A,)
From the equation g, (¢u, pv) = g.(u,v)?, we see that
o, (U, ) = @ (ua, vd)/P on M5t x Mgt

Therefore, the local deformation ring of z, is R* = R[t;] with coordinates

1

rool< ] - j > -
t%ZQz(eia,fJ‘d)l/pZ L Z_san.dz>s lorl>sand j>r+s—1
t;;  otherwise,

and the trace map from R® to R has multiplicity

Xr.s(@) == (deta) *(detd")".
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3.8.3. Hida’s U,-operators. It follows from the discussion in the previous section
that the operator |, U(a) is divisible by x, s(a). We recall the definition of Hida’s
normalized p-integral U, («)-operators on the space of modular forms.

Definition 3.14. Let R = O or O,, and n > m be a positive integer. For f &
H°(Ig(K?) R, wk), define

1
mf k. U(a);

r+s
Up = H Up(a).
j=1

Up(a).f =

We still need to consider the case K = K, the correspondence [K o K}] defined
by the p-isogeny of type o, where w runs over the Weyl group of GL(Vy) =
GL,45(F,) associated with 7. In general, the correspondence [Ka“K(}] can be
only defined over X, and the T'(«)-operator is a sum of these [Ka” K}]. However,
we can show easily that the normalized definition of [Ka¥ K{] in over X (sum
over o) still preserves the p-integrality. In other words, for f € H(S¢(K) 0, ws),
we define Up(a®).f by the rule

]42(05_1) 1 k(a_l)
Uy,(@®).f(A, w) == = Ko Kj|(A,w) = ——= Trpaw A v, waw)).
P( )f(f ) Xr,s(a)f | [ 0}(— ) an(a) R /R(f( ))
If s=1and k = (a1,...,a,;b1), there exists an integer B(a) depending on a =

(a1,...,a,) such that Up(a®) are p-integral if by > B(a)X. In general, it can be
shown that U,(a') are p-integral operators if k — x, s is sufficiently regular. We
put
r+s—1
(319) TS =Upl)-f+ D Upla®)f: T= ] Tilay).
j=1

wa¥#a

3.9. Hecke algebras. Let S be the finite of places where K, # K°. For v ¢ SUS,,
let Ho(G, K) := C°(K\G(F,)/K?,Z) be the local spherical Hecke algebra under
convolution. Then #H, (G, K) acts on f € My (K7, C) by the formulae

fd(rg) = / f(r g Vo(@)de, 6 € H.

G(Fy)

Define the global Hecke algebra H° (G, K) = ®;¢Susp H,(G,K) to be the re-
stricted tensor product of H,(G, K) with respect to the spherical function Ixo.
Using the identification between holomorphic modular forms and geometric mod-
ular forms in Lemma we find that if f € My(U,C) and o € G(F,) with
v g SUS)y, then

(3.20) 1 T(a)(1,9) = f*Ikar(T,9) = Z f(r, gua™").
weK/KNa—1Ka
IfFe AZOI(G, U, x), we define

(3.21) F|T(a)(g) = Z F(gua) (a¥ =a 'v(a)).
weK/KNa—1Ka
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It is easy to verify that the inclusion AM : AY(G,U, x) — Mi*(U, C) defined in
Definition is Ty(«)-equivariant. B -

Similarly, we have the following formulas of the normalized Hecke operators at
p for holomorphic modular forms.

Proposition 3.15. Letv € Sy. Fora=a;, j=1,...,7r+s, let

o 17'+s—i 0 X _
a, .(< : p_li)m)eGLm(a)xa — G(F,).

For f € M*(KT,C), we define

Up(0).f(r,g) = 2100 ) . )3 F(r guaz),

Xrs (@) UEN, 4 +(0y)/ay ' Nyt a(Oy) ey
For f € My*(K, C), we define

o1
To(a)-f(r.g) = %)

 xrs(aw) 1 T(aw)(T,9).

Put
r+s r+s

Uy =[] Uula)); T = [ To(e).
j=1 j=1
Then Up = [l,es, Uv and T, =], eg, To-

4. HIDA THEORY FOR UNITARY GROUPS

In this section, we develop Hida theory for modular forms on U(r, 1) following
Hida’s approach for cusp forms ([Hid02|, [Hid04b|). Suppose that s = 1 and G
is the group of unitary similitudes associated to (V,9,1). Let S = Sg(K))o,
be the associated unitary Shimura variety over O,. Let §* = S§ (K)o, and
S = 5¢(K)o, be the minimal and toroidal compactifications with the struc-
ture morphism 7 : S — S*. Let n > m be two positive integers and write
Om = 0p/p™0,. Let T = Ig(KT))0, be the Igusa scheme of level Ki' over S.
Let S = S[1/E] (resp. Zs = IZ[1/E]) and Sy, = S)0,, (resp. I, = I)0,,), where E
is a lifting of a power of Hasse invariant chosen in

4.1. A base change property. As observed by Hida, the base change property
(Hp1) for wy, in [Hid04bl page 335] is a key ingredient in his theory. For the cuspdial
part wg of wy, this property is proved by Hida as a consequence of the description
the formal completion of T,wy, at cusps. In the case of U (r,1), the base change
property does not hold for wﬁiunless F = Q. Nonetheless, the base change holds
for a subsheaf cu,bc which we describe as follows.

Let D = S — S. The semi-abelian scheme G over S degenerates to the Ray-
naud extension § over D, and the restriction w|p = Qg of w to D has the de-
creasing filtration {Fﬂigb}i:w,q defined by Fil' wlp = {0}, Fi10g|p = wgp
and Fil ™' w|p = wp with graded pieces gr'w|p = wy and grlw|p = Q.
Let k = (a1,as9,...,a,;b1) be a dominant weight and let k" := (a1 — a,,as —
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Qpy..yQp_q — ay) € Z[X]"L. Let wg v be the automorphic sheave of weight k"
associated to B. Define an Op-submodule .%p of wi|p by

Fp = det(eqw|p) ™" ® W o @ (e_g|p)_b1.
Let wi = {s €w | s|p € Fp} be a subsheaf of wy. By definition, WZ fits into the
exact sequence:

O—)wg—ﬂdh—%wﬂp)/ﬁp—)o.
Recall that the cuspidal subsheaf of wy, is given by wp = {s € wy, | slp =0} C w}.

Lemma 4.1. Let ¢ € {0,b}. Suppose that a, + by is parallel, i.e. a,. + by = k1 X
for some ki € Z. Then we have an isomorphism

Tawi ® Oy = T (Wi @ Oy ).

PrOOF.  This is proved by Hida for the cuspidal subsheaf w). We treat the sheaf
wp following Hida’s argument. Let r : mw) ® O, = m(wl ® O,,) be the reduction
m?)rphism. Since 7 : S — S* is an isornor})hism outside S — S , it suffices to show
7 induces an isomorphism between the completion (7.w?)2 ® O, = (W) ® Op,)2
at any geometric point Z € S* — S = 9SE(K). Then 7 lies in the stratum Siq) for
some cusp [g]. By the definition of w,bc, we have a non-canonical identification

i

Dh =3 Y aB) | al0) € Ay © Fp and a(B) € HO(Z5,, Z(B)) © Ly(R)
peFY

9]

The constant term a(0) € Fp is fixed by I'|;) and thus satisfies the relation:
pi(€)a(0) = e~ (@0 (0) = a(0), € € Ty

Since a, + by is parallel, we find that e* ™" = Nz q(€)* = 1, and hence

m(wi@R)i =< a(0) + Z a(B) | pe(e)a(B) = a(Be?) for all e € I'y) and B € ST
Besy

Since Ty acts freely on ;7 and Hl(Z[‘;],/J(ﬁ)) = 0 for the ample line bundle
L(B), the formation of (wbﬁ ® R)z commutes with base change. Therefore r :

T (wz ®O0p) — w*wz ® Oy, is an isomorphism. O

Lemma 4.2. Let g € {0,b} and let V' (KT, Orn) := H (T, )N C Vi(KT, Or).
If a, + by is parallel, then we have

H(Zs,w]) ®0, Om =V (KT, 0m).

PROOF.  Since n > m > 0, the lifting E of a power of Hasse invariant is nowhere
vanishing on 7,9, = Ig(KY)0,,. Therefore, Zs o, = Z;0,,, and HO(IS,ui@
Om) = HY(Z,wl ® 0,,) = VI(K},0,,). The lemma is equivalent to H%(Zg,w}) ®
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O = H(Zs,w}} ® Op,). Consider the following diagram:

IS$>f

N
N A

where Z is the normalization of Zg above S and Z* = Spec (moa),Oz. Since S is
smooth over Z,, it is normal. Since Zg is étale over S, by [SGATI, Prop.10.1], i
is an open immersion and «a is a finite étale covering. In addition, o’ is also finite
étale since m,0g = Og+. The morphism 7’ factors through S x g+ 7* and induces

be-SXS*i*

1"
l a

S

The morphism b is also finite and étale since a and a” are finite and étale . We
claim that b in fact is an isomorphism. To prove the claim, it suffices to check
if d := dega and d’' := dega” = degad’ are equal. Take a geometric point y in
S*. Since 7 has geometrically connected fibres, the map (7 o a)~!(y) is a degree d
étale cover of m~!(y), and each connected component is isomorphic to 7=*(y). On
the other hand, 7’ is the Stein factorization of 7 o a, so 7’ also has geometrically
connected fibres. It follows that (w0 a)~!(y) = (a’ o ')~!(y) has d’ components.
Hence d = d’. This proves the claim.

Since o’ is étale and b is an isomorphism, we conclude that (a')*m..% = wla*F
for any quasi-coherent sheaf .# of S and also that this formation commutes with
base change. In particular, we have (a')*w*wz = W;a*wz and (a')*m.(wi ® Om) =
ma*(wl ® O,,). Now we consider the following diagram:

H(Z, wi) ® O, - Ho(iwg@) Om)

lras lTGSm

HO(Zs,w]) ® O — = H(Is,wi @ O,).
Then we have
H(Z, wi) ® O, = Ho(f*,wia*wg) ®0,, = H(I*, (a')*mewi @ Orn) (Z* is affine.)
= H(Z*, (a')* . (Wi ®0p))  (by Lemmad.1)
= H(Z*, la" (w] ® Op) = H(Z,w] © Opr).
This shows that 7 is an isomorphism. Since Z,, = Zg ® O,, is finite étale over

S, im is a closed immersion and hence Z,, is a connected component of Z,,. This
implies that res,, is surjective and then 7 is an isomorphism. ([l
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Let V7., be the cuspidal part of V;, . Let V3, =lim V7 and V)(G,K) =

Jm VY m- Let ¢ = 0 or (. Applying Lemma H to the special case k = 0 (so

u},"C = wy,), we obtain the following exact sequence

)N p_m> (Vq

oco,m—+1

0 —+ (V2 )N 5 (V2

N
oco,m—+1 )

We thus proved the following proposition.

Proposition 4.3. Let
V= lm(VE )N = VG, K) @ Qu/Zy.

Then V1 is a discrete p-divisible Zy-module.

4.2. Elementary properties of the U,-operator. In this subsection, we review
some important properties of the Up-operator that are established by Hida. For
the sake of completeness, we reproduce some details.

Recall that T = T(Z,) = (O,)"xO. Let X := Homcons (T, C);). Throughout
this section, let k = (a1, ..., a,; b1) be a dominant weight and let ¢ = (¢1,...,(r5Gr41) €
X1 be a finite character. Suppose that ¢ has level p”, i.e. n € Z; and ( fac-
tors through T(Z/p"Z). We further assume that O, = 0,[(]. Regarding k as a

p-adic character on T'(Z,) by the composition k : T(Z,) — AR 257 we denote
by k. € X the locally algebraic character k. (t) = k(t)((t). We put

Vi (KG, Om) o= {f € Vi(KT,0m) | [t]-f = C()f}
Proposition 4.4 (Contraction). We have
UpVie, (K7, 00) C Vi (K5, Or).

PROOF.  Since aN (p"Z,)a~! C Ni (p"T1Z,) for every a € A, the proposition
follows from the following commutative diagram:

Vi (K8, Om) —=> Vi (K§H, 0,)

Up(c) Up(c)
l m&] l

Vi (K§, 0) —=> Vi (K3, 0,).
0

Proposition 4.5 (Commutativity with the Hasse invariant). Let E be a lifting of
the t-th power of the Hasse invariant H; fized in . For each f € Vi,(K7,0,,),
we have
Uy (E'f)=E"U,.f

for a sufficiently large p-power .
PROOF.  We may assume n > m and identify (V,,m ® L(0m))N =~ Vi (KT, 0,,).
Let E be the p-adic avatar of E. For a test object (4, j) in Z,,, we have

= = = . —t = .

E(A,7) = E(A,5,w(j) = H, 1(4,),@(j)) = 1 (mod p)

as the p-th operation has trivial action on Lie p,,.. It follows that there exists a
sufficiently large p-power [ such that for each f € (V;,;m ® Li(0,,))N with n > m,
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we have fE'l = f ® v_y,, where k; = lkg is the weight of E'. Since E is of scalar
weight, we find that

Uy (E'f) =U,.f @ v_y, = E'U,.f. g
The following lemma is based on an observation of Hida in [Hid04b, page 360].

Lemma 4.6. There is a nonnegative integer a(k) dependent on the weight k such
that if f € Vi(K§,Om) and B(f) = 0, then f = 0(mod p™~*®). Furthermore,
there exists B(a) € Z depending on a = (a1,...,ay) such that if by > B(a)X and
m > a(k), then for every f € HY(S,wy ® Op,) and a sufficiently large p-power | we
have

Tzl).f = U[l,.f (mod p).

PROOF.  The first assertion is similar to the proof of [Hid04b, Prop. 8.2]. We leave
the details to the reader. The second one follows from the observation that there
exists B(a) such that if by > B(a)X, then we have B, (T}.f) = B, (U}.f) (mod p)
for a sufficiently large p-power [. O

Proposition 4.7. If n > m > 0, then the morphism
By, : Ve(KY, Om) = Vv,
defined in (3.3) is U,-equivariant, and there exists a T-equivariant homomorphism

s 2 Vi = Vi(KT, 0p) such that 8y 0 s, = UJ" and sy o By, = U In particular,
the kernel and cokernel of By, are annihilated by U,".

PrOOF. Let f € (Vim @ Li(O0))N = Vi(K},0,,). According to the decom-
position in (3.I)), we write f = 2 x>k Ix ® vy with g, € V. By definition,
By (f) = g_k. Recall that for each a € A, and pu € X.(T); such that u(p) = a,
the twisted action on vy is given by

pr(a vy, = p~ k0,

We shall use the notation from §3.8.11 We define the linear map si(a) : VN, —
Vn,m & LE(Om) by the rule

se(0)()(AJ) = >

ueNg Xr,1
for a test object (A,j) over an O,,-algebra R. In view of (3.16)), we find that
By o si(a) = Up(a) on V) and that
(4.1) B B
Up(@).f(A, ) = xr1 (@)1 f [ Ul@)(4, )

=2 2 ﬁﬂRgu/R(gx(ijw))®pﬁ(u)ﬁﬁ(a—1)vx

X>—kueNg X7t

=sp(@)(g-)(A )+ Y, p k.
x>—kueNF

This shows that B;(Up(a).f) = Uy(@).B(f). Let @ == [[,2} o; and let s =

sp(a®) for z € Zy. Then Uy(a®) = U;, and B o s = Uy. If 2 > m, then

sz(Vrfm) C Vi(KT, Op) and sjoB;, = Uy from (4.1). In addition, it is to verify that

1

(a) . TTRS/R(f(Aauvjau))pﬁ(u)v—ﬁ

Xr,1 (a)

TTRSU/R(QX(Aaua jocu)) & pE(U)UX.
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s, is T-equivariant in the sense that sy ([t].f) = t&[t].sx(f). Therefore, sy = sy is
the desired homomorphism. O

4.3. Construction of the ordinary projector. We shall follow the definition of
the ordinary projector in [Mau04, §5.3.1]. Let R be an Op-algebra and let 7 be the
set of ideals I in R such that R/I is finite over O,. Then it is clear that 7 forms a
fundamental system of neighborhood of 0 in R and makes R a topological ring. Let
R' be the completion of R with respect to 7. Then R' is a product of local rings
(possibly infinitely many). To each u € R we can associate a unique idempotent e,
in Rt such that e,u is invertible in e, RT while (1 — e, )u is topologically nilpotent
in (1 —e,)R". Then by definition a discrete Rf-module is nothing but a R-module
in which every element is annihilated by some I € 7. Now we consider the case
R = 0,[X] and T = {(p, X)"}

meZy*

Definition 4.8. A complete p-adic X-admissible module is an O,[X]-module M
such that

(1) M=1lim M/p"M,
(2) M/pmM = h_r)nj My, ;, where M., ; are discrete Op[ij]T—modules.

Let e,,i be the idempotent in O,[X?']" attached to X?’. Note that e, is equal
to the holomorphic image of ey ,;+1 under the natural map (‘)p[Xle]T — O0p[X7']F.
Therefore, we obtain a well-defined idempotent ex € End M for each X-admissible
complete p-adic module M. We shall call ex the ordinary projector attached to X
(Hida’s idempotent).

We sketch the existence of the ordinary projectors on the various spaces of modu-
lar forms under consideration. The O,[T},]-module H%(S,wy,) (resp. H*(S o, ,wk))
is finitely generated over O, (resp. O,,) and hence is a discrete O[T}, -module.
From (3.2), Proposition and Lemma we deduce that Vi, (K, Oy,) for m > 0
are discrete O, [TIEJ]T = O, [U{;J]T-modules for j > 0. Since the cuspidal part
(V2 )N of VN is a Up-admissible module ([Hid02, Thm. 7.1 (2)]) and the quotient

, 1M

VN (V2N is a finitely generated Oy-module, we find that V,N, is U,-admissible.
This in turn shows that Vi (K7, O,,) are U,-admissible for all n > m > 0 by Propo-
sition and Proposition [1.7 We thus obtain the ordinary projectors e := ey,

and e° := e, attached to U, and T}, on these modules.
Proposition 4.9. If n > m > 0, then
By : eV (K, 0m) & eV, [ke].
Proor. This follows from Proposition combined with immediately. O
Lemma 4.10 (¢f. Lemma 6.8 [SU14]). Ifn > m, then e.Vg(K{l, Om) = e Vi (KT, Op).

PrROOF.  We give a proof of the lemma for r = 2 (i.e. G = GU(2,1)), which is
the only case we need in the later application. The general case can be treated in
the same way. Let f € e. Vi (K7, Or,). We need to show the restriction f(M, ja)|p
to D =S — S belongs to Fp ® On/J+. Here (M, ja) is the Mumford quintuple
introduced in §2.7.40 Let wy = (((1) é) ;1) € H = GL2(0,)xO,’ be the longest
Weyl element. The level p-structure jy gives rise to an isomorphism w(jnr) :
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M~ ® On =~ wy, and the restriction w(jy)|p identifies Fp ®o, On/T+ C
Wi ®0p On/ T+ with Oni /T4 - v_w,ke C Li(On/J4), the rank one module of the
highest weight —wqk = (—ag, —a1). Therefore, it suffices to show that the constant
term a[ (0, f) is of highest weight for all h € H and g € C(K). We will prove this by
1nduct10n on the p-depth of h ([TU99 Def. 4.1]). Using [TU99, Lemma4.2] and the
induction hypothesis, we find that af, ](O f) is a sum of py(u )pﬁ(a_l) wt (O f) for
(u,a) € Nu(Zy)xAp, gi € C(K), w a Weyl element and ¢ € T . Since the highest
weight vector is an eigenfunction of py(a™!) and is fixed by Ny (Z,,), we are reduced
to showing that a (O f) are of highest weight for all Weyl elements w in H and

teT. If w# wy, then there exists v € S, such that aﬁ(O Uz.f) = pu-aygl0, f)

for some u € Zp, and hence afy (O )= ap) Y0,e.f) = 0. If w = ws, then we can
deduce from ) that

aﬁ;ﬁ%o, Us.f) =t *a E‘;ﬁ*m Uy -Bi()v-unp for z = m.

We thus conclude that a (O f) = th(O By (f))v—w,k- This completes the
proof for r = 2. (]

Proposition 4.11. Let e.V,(K7') := lim e. Vi(K7,O0r,). Suppose that a, + by is
parallel. Then the discrete Zy-module e Vi, (KT) is p-divisible and

eVi(KD)[p™] =e.Vi(KT, 0p) = e.H(Zs, wg) @ Oy,

PrOOF.  Recall that Tg = Ig(KT)[1/E] 0, with E a scalar-valued modular form
of weight kr obtained by lifitng of a power of the Hasse invariant. By either Re-

mark or Lemma 2| H(Zs)c,,wp) = lim HO(I6(K})/c, Wiy o, ) [1/E?] =
HO(Is/cp,wﬁ), and by the flatness of C, over O,, H (Is,wﬁ) = H(Zs,wi) N

H(Zg,c,, wz) = HY(Zs,wy). Hence, from Lemma and Lemma , we deduce
that e. H*(Zs, wy) ® O = V2 (KT, Op) = €.V (K}, 0p,) and the exact sequence
0 — e.Va(KT, 0) 2 e Vi(KT, Omst) 2 e Vi(KT, Omsr).

It is clear that the proposition follows. (]

Definition 4.12. Let ¢ = 0 or §. Put M} (K}, 0,) := H°(Z,w]). For a base ring
R flat over Oy, define B B

e M{(KT, R) := e M{(K],0,) ®o, R.

Then e. M (KT, R) has a natural T'(Z,)-action. Put

e M (K3, R) = { € e MK, R) | 1] f = C(Of }-

Recall that we have fixed an isomorphism ¢ : C 5 C,. If f € My (K7, C), then
we say f is an ordinary eigenform if f is an eigenvector of Uy,-operator and

Up.f = ap(f) - [ with (a,(f)) € Z, .

Then e. My (KT, C) = e. My (KT, 0p) ®,-1(0,) C is the C-vector space spanned by
ordinary eigenforms of weight k.
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4.4. A topological control theorem. In this subsection, we prove a weak control
theorem for ordinary modular forms over C. Thanks to the control theorem of Hida
for ordinary cusp forms, the remaining task is to study the control of the constant
terms of ordinary modular forms.

4.4.1. Control theorems for definite unitary groups. We begin with a brief account
of control theorems for the totally definite unitary group Gp = GU(W). We
retain the notation for GU(W) in §3.5[ and §3.6.11 Let k' = (ai,...,a,_1) be
the dominant weight of Tp associated to k. Suppose that ||k'|| is parallel. Let R
be a p-adic Op-algebra. Let j € {1,...,r — 1} and let a; = <1T01j » 01 > €
]
GL,_1(Fp) = Gp(Fp). For each a = o, we fix N a set of representatives of

N;-1(0p)/a™tN,—_1(0,)a, and for 1\//\IE/(R) = lichGP(Af B ﬁE/(U, R), we define
Up(a) € End ﬁ@(R) by the rule
(4.2)

Up(@)-flg1) = Y pw(pr(a” ) f(grua™) (f € Mp(R), g1 € Gp(Ax ).

ueEN

The fact that U,(a).f € i\/IE/(R) follows from the p-integrality of the twisted ac-
tion pp(a™!) = E'(a™Mpw(a™t). Let U, := HZ;% Up(aj) and U9 = KF| =
gK7g ' NGp(Ary) for g € C(K). Then we have U, € Endﬁkl(ug,R). Using
the isomorphism ([3.8)), we obtain an operator U, € End M/ (U9, C), and this U,
agrees with the one in Proposition for the special case s = 0.

Proposition 4.13. Let e := lim UZ’}!. Then
n—oo

(1) dime.M, (U9, C) is uniformly bounded independent of the weight k'.
(2) e My (KE,,0,) = .V [K].

Proor. For each m < n, consider the Up,-equivariant morphism
Birm : My (U7, 0,/ (™)) = Aty @ Oy /(™). | = By (F)g1) =l ((91)).
We define sy, Al ® Op/(p™) — ﬁ&' (U9,0,/(p™)) by

sw)@) = Y Sgma) @ ey (2= [[ay)

ueN«
From the definition of U,-operator, one verifies that
ﬂ&’,m o8y =Up; sy O/BE’,m =U,.
Therefore 8y ,,, induces an isomorphism:
e My (U7, 05/ (™) 5 €. Afyy © Op/ (7).
In particular, by the base change (Proposition we have
dimg e. My (U7, C) = dimg, /() €-AJy ® Oy /(p) < HGp(FI\Gp(AFf)/U),
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and part (1) follows. Moreover, we obtain the isomorphism

@ﬂ@,m re. My (Kzg-‘”,g)’ 0p) = @e.ME/ (Kzgv’,gna O0p/(@™))
m

m

- lim e. Afy (K] © O0p/(p™) = e.Vig [K].

Here the first and last equalities are due to the contraction properties of U,-
operators (cf. Proposition [4.4). This proves part (2). O

4.4.2. To study the constant terms of ordinary modular forms, we need to in-
troduce some notation. Let v € S, be a place above p and let F' = F,. For
n € Zy, let W, be the Weyl group with respect to the diagonal torus T, (F)
in GL,,(F) generated by permutations of the standard basis of F™. Denote by
{(w) the length of w € W,41. Recall that we have UW)(F) = GL,_1(F) in
UV)F) = GL,41(F) with respect to the standard basis {ej,...,e 11} fixed
in and regard U(W)(F) as a subgroup of U(V)(F) via ¢ — diag(1,z,1).

We embed W,. in W,y; € U(V)(F) by & — (x For z € Z,, let I, :=

1
{g € GL,11(F) | g (mod p) € By11(Op/p*OF)}. For w € W11 and g € G(Agf-)’)f),
put

09(2) = wl. - P(AY))g c G(Az ).
Recall that

wr = | 1,1 € GL,41(F dqQ Qp) =U(V)(F ®q Qp)
1

Lemma 4.14. Let f € e My (K¢, R) and R C C. For each g € G(A(Jf’?f), we have

(1) ®puwe(f) =0 if we W, and ew # e,.
(2) U5 (f) € e My, (K%, R) is an ordinary modular form on Gp.

PrROOF. We may assume R is a p-adic ring in C,,. Let W := {w € W, | e,w = e, }.
To show part (1), it suffices to show ®p,,(f) = 0 for all w € W/. A direct com-
putation shows that for w € W/,

@pgu(Up(az).f) = up™ =4 Up(a1).@p,gu(f)

for some u € Z; and ¢ € G(Agg)f). Here Up(a1) on the right hand side is the
p-integral operator in (4.2)). This implies that ®p g, (f) =0 as f is p-ordinary and
Ar_—1 Z Q.

We proceed to prove part (2). Note that ®p,u, 4(f) € My (K%5, R) as w, ' KEjw, C
K. Let U, be the operator defined in Proposition Using [TU99, Lemma 4.2],
the strong approximation theorem (for Gp) and part (1), for each y € C9(z) we
can write

Pry(Uuf) =Dy prlBr)®p4(f) ey € Q). By € P(Q)),

where y runs over a finite set in C?,(2’), w’ € W}, such that either v’ = w and 2’ > z
or {(w') < £(w). Applying U, successively, for a sufficiently large m we find that
Op,(U.f) is a linear combination of ®p g (f) for w' € W, and ¢’ € G(Agf-)’)f).
By part (1), we conclude that ®p,(f) = 0 for all y € CY(z) and w € W,. From
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the explicit formulas of the normalized Up-operators for G and G'p we can deduce
that for j=1,...,r —2

D p g (Up(tjra).f) =Up(aj). @ pu,.q(f) + Z (constant terms at y € C?,(1) for w' € W)
vES)y

=Up()-®p v, g(f)-

This shows that @fg]r( f) is ordinary in virtue of (3.14]). O

In fact, the use of [TU99, Lemma 4.2] in the proof of the above lemma yields
the following consequence:

Lemma 4.15 (Lemma 4.3 [TU99]). Let g € G(Agg)f). If f € e Mg (Kg,C) and
Ppyg(f) =0 for all w' such that w' = w or £(w') < l(w), then ®p,(f) =0 for
ally € C9(1).

Theorem 4.16. Suppose that a, > rX (i.e. a, —rX € Z[X]). Then we have the
following exact sequence

P=0Pp wpg

0= eM} (K§,C) — eMy (K§,C) — —"" &k e. My, (K5, C).
geC(K)

Proor.  Let f € e.My (K{,C) such that ®py,4(f) = 0 for all g € C(K). Let

ge C(K)C G(A(p ). To prove f is a cusp form, by Bruhat decomposition, we
need to show that <I>p7y(f) =0 for all y € CY(1) and w € W,41. By Lemma [4.15] it
suffices to prove that ®p ,4(f) = 0 for all w in a set of representatives of W, _1\W, 41
in W,41. By Lemma (1) and Lemma we have ®p,(f) = 0 for all
y € C9(1) and w € W,. Let w € W,41 — W,. such that e,w # e;. We further
assume e,w = e,4+1, replacing w with a suitable element in W,_jw. Applying
[TU99, Lemma 4.2], a direct computation shows that up to the multiplication by a
p-adic unit, we have the equality

par_1
P pwg(Up(ar).f) ZW'U p(a1).@puwg(f +Zc - pe(BL)®py(f)

(v € CL/(1), w' € Wy, L(w ) <L(w), ¢, € Q((), B € P(Q))

pir1
= o  Up(01)-2pug(f).

Since a,—1 > a, > rX, taking into account the p-adic counterpart of the above
equation, we deduce that ®p,4(f) = 0 from the p-ordinary property of f. By
Lemma we thus proved that ®p,(f) = 0 for all y € CY(1) and w € W,y
whenever e;w # €,41.

Now suppose that e;w = e,41. Then up to a p-adic unit, we have
P

@ g (Upler)-f) =5 - P (f +Z B)®p(f)

(¢ € C(K), v € wa( ), L(w") < (w), ¢ € Q(C), BY € P(Q)).

By the induction on the length of w, we find that ®p.,(f) =0 as a, > rX. This
completes the proof. O
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Proposition 4.17. Let B(a) be as in Lemma . If by > B(a)X, then we have
the isomorphism:

e.: > My(K,C) 5 e My (Kj,C).
Moreover, for g € C(K) we have the following commutative diagram

[yi

[
e. M (K}, C) —— e.My (K5, C)

| e. 2Te.

(o]
¢°.My(K, C) —> > My (K, C).

PrROOF. Note that Lemmaimplies that we have the inclusion e. : e My (K, C) —
e My (K}, C). Let f € eMg(K},C) and let m = 7 be the automorphic rep-
resentation generated by f. By the multiplicity one theorem of ordinary vectors
[Hid04b, Thm.5.3|, we can decompose 7 ~ (@) ®ylp Tv as a representation of
G(A(Fp))x Hv|p G(Fy). In addition, since f is ordinary and k is dominant, 7, must
be a unramified and regular (i.e. the p-adic valuations of Satake parameters of ,
are distinct) principal series for each v|p (¢f. [Hid98| §5]). It follows that f = e.f°
for some f° unramified at p. This proves the first assertion.

The second assertion follows from Lemma (2) and the commutativity be-
tween Up-operators and the ®pgj-operator (cf. ) O

Define the space of admissible weights X4™ C Xt by
X3 — (k= (ay,...,a,;b1) | ||k| and a, + by are parallel and a,_; > a,} .

Proposition 4.18. The dimension of e My (K7, C) is uniformly bounded for all
k € xgim.

PRrROOF. Let E be a lifting of the ¢-th power of the Hasse invariant for a sufficiently
large integer ¢ (cf. §3.3). Then E is a modular form of weight kg = t(p — 1)(I* +
I7) and level K. Using Proposition we can show that the map f — e.(fE)
induces an injection e. My (K7, C) — e M1, (KT, C), so it suffices to show the
uniform boundedness of dimge.My(K?,C) for k € X3™ with a, > r¥X. By
the injectivity of a generalized Eichler-Shimura map (cf. [Hid04bl §5.3]) and the
topological control theorem [Hid95| (¢f. [Mau04, Lemma 6.4.1]), the dimension of
the space e.M{(K7, C) of ordinary cusp forms is uniformly bounded for k € xgdm,
The proposition thus follows immediately from Proposition and Theorem [4.16}

O

4.5. Control theorem for ordinary modular forms.

Theorem 4.19 (Classicity). For each weight k = (ay,...,a,;b1) € X34™  there is
a positive integer A(a,n) > B(a) depending on a = (a1, ...,a,) and the p-level n
such that if by > A(a,n)X, then the natural restriction map:

res : e. My (KT, 0p) ® Qp/Zy = e Vi (KT)
is an isomorphism. In particular, if by > A(a,1)X, then

e® My (K,0p) ® Qp/Zp ~ e Vi(Kg) == @e.VE(Ké, Om)-
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PRrROOF. Let E be the modular form of weight kg = t(p—1)(IT +1~) in Proposi-
tion[I.18] We may further assume that ¢ is large enough such that there exists a un-
ramified everywhere Hecke character y of K* with infinity type t(p—1)X. Then the
function Y : XTxG(Ax ) — C defined by X(7,9¢) := x *(det gf) |V(gf)|:§f71)
gives rise to a nowhere-vanishing modular form of weight ¢(p —1)(—I" +17). Thus
E, := E - X is a modular form of weight ky :=2t(p — 1)1~ = (0,...,0;2t(p — 1)X)
such that the multiplication by E; commutes with Hida’s idempotent e.

Since a,. + by is parallel, by Lemma [£.2] and Proposition the restriction map
res gives rise to the morphism for m € Z,:

res: e. HY(Z,wy,) ® O, — . HY(Zs,wy) @ Oy = . Vi (KT, 0,) = e Vi (KT)[p™].

We need to show res is actually an isomorphism. It is injective because Zg ¢, is
open dense in Z,¢, . We shall show the surjectivity by a standard argument. Given
feeHYTs,w)) ® O, for alift f € e.H(Zs,ws), there exists a sufficiently large
p-power [ such that E!f € H%(Z,wgyir,). Thus e.(ELf) € e.H*(Z,wyr,) and
e.(BL f) = Elf = (ELf) (mod p™). Let X, be the fractional field of O,. It follows
from Proposition that there exists A depending on (aq,...,a,) such that if
by > AX, the multiplication E; : e. H*(Z,wy) ® K, — e.H(Z, wi11,) ® K, by Ey
is an isomorphism. Therefore, there exist g € e.H(Z,wy,) and u € Z such that
ple.(ELf) = Elg. Note that p*(ELf) = pe.(ELf) = Elg(mod p™T), so pf =
g (mod p™**). We thus conclude that g € p*-e.H’(Z,wy) and f = p~*g (mod p™).
This completes the proof of the first assertion.

To show the second assertion, note that Ig(K{),0, is a étale covering over
IG(K&)/OF, with the Galois group of prime-to-p order. Hence, we can take the
Galois invariant part of the isomorphism for V;(K{) and obtain

V&(Kol) = e.ME(Ké, 0p) ® Qp/Zy = €° My (K, Oy) ® Qp/Zy.

Here the last equality follows from Proposition .17} O

The above theorem leads us to the following definition of classical weights. Put

OF n, = {u€OF [u=1(mod No)}.
We define an embedding:
j: (OF ) — T =(0;) % 0}
(z,y) = j(z,y) = diag(z, ..., z,y,y).

Let T9' be the p-adic closure of the image j((O;-’NO)Q) in T and let Xy pq =
Homeont (T /T, C;) C X7. Define the space of classical weights }Cflf‘;,rgl by
(4.3)
f{&l‘jw = {Eg € Xpypot | k= (a1,...,a,;b1) € f{“Tdm, ¢ has level p", by > A(a, n)E}
It is clear that %Ej_fj,rg, is Zariski-dense in X o Let A := 0,[T/T9] be a quotient
ring of A = Op[T]. For k. € XCleTgl C Spec K(Cp)7 let Py be the corresponding
prime ideal of A.

!4 = Homeont (e V9, Qp/Zy) @nr A and
M (K, A) :=Homz (VI,, A).

Definition 4.20. For ¢ = 0 or (), we let V!
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Theorem 4.21 (The control theorem). Let ¢ =0 or §. Then
(1) VL, is a free A-module of finite rank.
(2) For every k € .’{T/TQZ, we have
(K, A) ®A/Pk 5 e° Mq(K 0y).
Proor. This theorem is proved by Hida for ¢ = 0 (J[Hid04b, Thm.8.13]). We
reproduce the argument of Hida to prove the case ¢ = (). It follows from Proposi-

tion 4.4 Proposition and Theorem that for every k € %T /Tot> We have
VK = glge V(K Om) = lim Vi (K3, O0)
= GVE(KO) =e° ME(K, Op) ® Q,,/Zp.
Taking Pontryagin dual on both sides, we find that

Vord
P Vora

(4.4) = Hom(e® My (K, 0y) ® Qp/Zp, Qp/Zp) = Hom(e® My (K, Oy), Op).
Now V.q is a compact A-module such that Vi,q /PiVora is a free A / PET\—module of
finite rank for all k € %,lejTgl Then V,,.q is a free A-module of finite rank in virtue
of the following well-known lemma.

Lemma 4.22. Let R be a complete Noetherian local ring and I; are ideals of R
such that N;I; = 0. Suppose M is a compact R-module such that M/I;M are free
R/I;-module of finite rank, then M is a free R-module of finite rank.

This completes the proof of part (1). The specialization property in part (2)
follows from (4.4]) and the A-freeness of Vjq. |

We also have the control theorem for modular forms of higher levels at p.

Corollary 4.23. Let KC = A ®o, 0p[C] and let p™< be the minimal level of . If

ke € %TjTgl, then we have

Mewa(K,R) ® Ac /Py =5 e My (K, 0,[C]).
PrOOF.  Let R = Op[(]. Put M = .M, (Ko, R) and
My, =lime, Vi (K¢, R® Op) = €.V, (Ky¢,R®0O,,) (by Proposition [£4).

Let C,, be the cokernel of the embedding i, : M ® O,, — M,, and let C :=
ligm C,. Here the transition map C,, — C,,41 is the multiplication by p. We
have the exact sequence:

0—M ® X —>1§M —C—0.

Zy
Let C* be the Pontryagin dual of C. Taking Pontryagin dual of the above exact
sequence, by Proposition [£.9 we obtain

0—C* —)‘/Ord/Pk Ord—)HomR(M R)—)O
We are going to show C* = 0. By Theorem 4.21, Mo.q(K,A) is a free A-module,

so Vora /P;c ord 18 a free R-module, and C’* is a free Z,-module. On the other
hand, we clalm that C' is killed by #(T(Z/p"Z)). Indeed, let f,, € M,,[(] C M,,.
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There exists g € M such that g = f,, (mod p™) by Theorem (and flat base
change). Let z¢ := ZtET(Z/an) ¢~1(#)[t] be the (-isotypic projector. Then we have
$(T(Z/p"Z)) - frn = z¢c.g (mod p™) € M[C]® R,,. In particular, this shows that the
C* of C is a torsion Zy,-module, and hence C* = 0. This finishes the proof. O

4.6. A-adic modular forms.

4.6.1. A-adic Fourier-Jacobi expansion. Let (g,h) € C(K)xH be a p-adic cusp
such that h='Up(Z,)h C N. We consider the Fourier-Jacobi expansion of e.V:

—~h
FJ[g] eV — :R[g],oo (29 Qp/Zp,

Let Rpg (1~\) = Rig,00 ®o0, A. Taking Pontryagin dual of the above equation, we
obtain a morphism

HOmK(fR[q] (A), A) = HOIHOp (:R[g]poa Op) — eV = Vord-
Taking /N\—dual, we obtain the A-adic Fourier-Jacobi expansion,
(4.5) FJly s Moa(K,A) — Rig (A).

The following the following commutative diagram is clear from the construction of
Mord (K ’ A)
=h

-~ FJg, ~ ~
(K, K) @ A/ Py, 2> Ry (R) @5 A/ Py,

h
FJig)

e'MEC (K(?a OP[CD :R[g],oo ®Op OP[C]

We consider the A-adic (ISEZ]T-operator. Let Vig],ora be the Pontryagin dual of the
p-divisible Ap-module e.Vjy ® Q,/Z, and let

Mord(Kg, AP) = HomAP (V[g],ordv Ap)

By Hida theory for the totally definite unitary group Gp (Proposition [4.13] (2)),
the Ap-module M,q(K9,Ap) is free of finite rank. We regard Ap as a subring of
At by the embedding Tp — T, z +— diag(z,1,1) so that then the bottom map

ZI\>E‘Q’]~VO§m = Vig] ® Oy, in (3.10) is a Ap-module morphism. By Lemma (2),

the A-adic Fourier-Jacobi expansion (4.5) gives rise to the A-adic constant term
map:

M

ord

61[:% : Mord(K’ 7\) — Mord(K%,K) = MOrd(Kg,AP) ®AP /N\
4.6.2. Fundamental exact sequence.

Definition 4.24 (A-adic modular forms). Let RE(A) = RE@o, A. Let MEF (K, T)

be the space consisting of elements F' € RE(A) such that there exists a Zariski-dense
subspace Xr C %frl‘;Tgl and for all k. € Xp

F(mod Py ) = FJ(fx,) for some fi € e. Mg (Kg, Oy[C]).

The space MP2U¢ (K T) is called the space of A-adic modular forms. The ¢-

ord N
expansion principle allows us to regard Mg;zdlc (K, T) as the space of p-adic measures

of T with values in p-adic ordinary modular forms.
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The following theorem enables us to construct A-adic modular forms by means
of the p-adic interpolation of Fourier-Jacobi coefficients of modular forms.

Theorem 4.25. We have an A-module isomorphism

Mg (K, R) = MESHE (K, T).

ord
PrOOF. We follow the argument in [Hid93, Thm. 7.2]. By choosing a O,-basis of
Vgl ®o HO(Z[‘;’]/OP,ﬁ(ﬁ)) for all g € C(K) and g € :5”[2], we get an identification:
Rig) (A ST ved /N\eq, for some index set J. Hence we can regard the Fourier-Jacobi
map as a collection of A;lineaifunctionals on M4 (K,A) via {ly} ;, the y-th
projection map £ : Rg(A) — A.

Let f1,...,f1 € g;zdic (K, T) be linearly independent elements over A. Let K
be the fraction field of A and let V be the K-vector space spanned by fi,..., fi.
Then there exist ¢; = ¢,, for some v; € J, ¢ = 1,2,...,1 such that {éi}ézl is a
basis of the K-dual space of V. In particular, det(¢;(f;)) is a nonzero element in
A. Tt follows that there exists k. € %Cleql such that det(£;(f;))(Px.) € K*, and
hence the specializations f1(Pg,), - - -, fi(Pg,) are linearly mdependent over 0,[¢] in
e. My, (K, 0,[¢]). By the control theorem Corollary . we thus conclude that

ord

dimg MZAY (K, T) @3 K < ranko, ] .My (K, 0p[¢]) = dimg M,q(K, A) @5 K

(K, A) =
MP2dC (T given by the Fourier-Jacobi expansion is injective, so we have

padic (K7 T) ®K K= Mord(K7 K) ®]{ K

On the other hand, the g-expansion principle implies that the map M

ord

ord

Let FY, ..., F, be a A-basis of M4 (K, A) and {¢; = Egi}t be a K-basis of the
dual space of M (K, A) ® K. For each F € MPAAC (T we have det(£;(Fy)) -

F e M, (K,A). Tt follows that MP 24 (K, T) is also a free A-module of finite
type and that

M= MEET (K, T) /My (K A)
is /N\—tqrsion. Let m be a maximal ideal of A and let k = /N\/ m. By the A-freeness of
M’;;Zdlc (K, T), we deduce the exact sequence sequence

FJ®k

0 — Tor(M", k) — e. M (K, k) ——= MP24 (K T) 9 k —> M” @ k — 0.

ord

The Fourier-Jacbobi map F'J @ k is injective by the g-expansion principle, so we
conclude that Tor(M”, A/m) = 0 for every maximal ideal m of A. This implies that
M" is A-flat. On the other hand M” is A-torsion, so we conclude that M” = 0. O

The following theorem is a key ingredient in the proof of Theorem [T.18

Theorem 4.26 (Fundamental exact sequence).

~ B =edr ~
0— Mo (K, A)— Mg (KA — " D Mora(Eh, A)—0
geC(K)
ProoOF.  In virtue of Theorem [£.16] and the control theorem, it remains to show

the Siegel operator ® := = o is surJectlve Note that A is a semi-local ring with
maximal ideals parametrized by the characters of T'(F,,). For a character £ of T'(F),),
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let m¢ be the corresponding maximal ideal with the residue field k. By Nakayama’s
lemma, it suffices to show that ® (mod m¢) = ® ® k is surjective for all £. For each
&, we can choose an algebraic character k € %Elijgl such that k& = £ (mod p). From
Theorem and Theorem we deduce that

Meq(K,A) @ Afme = e° HO(S,wi) ©k = e. H(S[1/E],wp ®k) (e = ¢° (mod p))
=e. H(S*, me(w, ® k))

and

P Mora(KE,A) @ Ajme = e. HO(OS* 7. (wi) @k = e. HO(9S™, . (w, @ k).
geC(K)

From the fact that the ®-operator is simply the restriction map f — f|ss+ and S*
is an affine scheme, it follows that the map

e HO(S*, 7, (wp @ k) 225 e HO(9S*, 7, (wy, ® k)

is surjective. O

5. ORDINARY p-ADIC EISENSTEIN SERIES ON U(2,1)

In this section, we construct a special A-adic Eisenstein series £°¢(¥ | 1,n) on
U(2,1). Following the method in [Hsill], we first construct a p-adic Eisenstein
series €99 for GU(2,2) via the p-adic interpolation of Fourier coefficients (Theo-
rem , and the desired A-adic Eisenstein series is obtained by applying the pull
back formula and the ordinary projector to €5 2. The main result is Corollary

5.1. Notation and conventions.

5.1.1. Throughout we let W = (W,9, L, L' & L°), V. = (V, 921, M, M~ & M")
and W = (W, n,, L, L' & L°) be the quadruples introduced in for r = 2 and
s = 1. Here L = Oxw! is the standard Ox-lattice in W and 9 := 9(w!, w!) is an
element in C such that

(h1) 9 = -9,

(h2) v/—10(¥) > 0 and ¢,(0(¥9)) is a p-adic unit for each o € X,
Fix a prime-to-p integral ideal ¢ of Ox. We introduce an auxiliary prime-to-p proper
ideal n of O of the form

(al) n=(sccDx, 7)™, mo > 4[F : Q],

where s is a product of primes split in K. Let by := Oz N 197),;}f. In addition to
(h1) and (h2), we further assume 9 satisfies

(h3) by = O, for each v|n.

The lattice M = Oxy' ®Oxw! @’DE}}.ﬁxl is a Or-maximal Ox-lattice with respect
to the Hermitian form 9951 (¢f. [Shi97, Lemma 4.9 (2)]). In the remainder of
this article, we shall write A = Ar and Ay = Az ; for brevity.
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5.1.2. Measures. Let F be alocal field. If F' is non-archimedean, the Haar measure
dx (resp. d*x) on F (resp. F*) is normalized so that vol(Op,dz) = 1 (resp.
vol(Of,d*z) = 1). If F = R, then dx is the Lebesgue measure on R. If F' = C,
then dz is twice the Lebesgue measure. The absolute value || on F' is normalized
so that d(ax) = |a|p dx for a € F. We often drop the subscript F from the notation
when it is clear from the context.

For a place v of F, Ha(F,) is the set of the 2x 2 Hermitian matrices in M (/C,) de-

fined in The Haar measure dX, on Hz(F,) is normalized so that vol(Hz2(0,), dX,) =

1, and the Haar measure dX on Hs(A) = Ha(Ax) is normalized so that the quo-
tient measure vol(Hz(A)/Ho(F),dX) = 1. Tt is well known that

dX = c3(K) - ®,dX,, where ¢3(K) = 27 Dz |5! [Dic|g">
(cf. [Shi9T, page 153 (18.9.3)]).
5.1.3. Let g = [[, be the standard additive character of Aq/Q such that

Yoo (Too) = exp(2TiTs) (T € R). Define the additive character ¢ = [[ 4, of
A/F by

’l/} = ’(/)Q ] TI‘]:/Q .
For B € Ha(F), define the additive character ¥4 : Ha(A) — C by 9g(X) =
P(Tr(BX)). If £ is a lattice in Hy(F,), define the dual lattice LY by

(5.1) LY = {z € Ho(F,) | ¥, (Tr(zy)) =1 for all y € L}.

5.1.4. In this section, we also write v for Ox and 9 for Dx 7 especially when
they appear in the entry of matrices. If R is a ring and a is a subset in R, for
x € Myxm(R), we write

(5.2) rT<a <= z; €a,Vij.

d
and d, = d.
We use the notation I to denote the characteristic function of a set T

Ifz = (Z b) € My(R) with a,b,c,d € M>(R), we write a, = a, by, = b, ¢, = ¢

5.2. Siegel-Eisenstein series on GU(2,2).

5.2.1. Let G = GU(W) denote the groups of unitary F-similitude associated to
W. The matrix of n, = ¥2,1 ® (—1) with respect to the basis {y’, xi}i=1 , in (2.13)

is (1 _12>' For a F-algebra R, we identify G(R) with the matrix group
2

am = {semirer) oy, ) =va(y, )}

Thus G is the standard quasi-split group of unitary F-similitude of degree two. Let
Q@ be the stbalizer of the flag {0} C >°,_, , Kx* C W in G. The unipotent radical
Ng of @ and the standard Levi subgroup Mg are given by

No=(x)i= (1) 1x <50
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and

Mg = {m(A,u) - (”A* A) | A€ GLy(K), v e }"X} .

The Hermitian symmetric domain associated to G is X5 o defined in @ We
choose a distinguished point i = (iy)sex in X2 2, where

b= (7 ),

K., ={9€ G(F@qR)|gi=g}.
Let L** be the Ok-lattice }-,_; , Oxy’ @ D,g}fﬁxi. For v € h, let K (resp. K2t)
be the stabilizer of L, (resp. L') in G(F,) and put

Put

X

Dw|n,] = {m € GL4(K,) | detw € v, 2 < <; t‘;)}

and Dw(n,) = Dw|n,] N G(F,). Define an open compact subgroup K of G(Ay)
by
(5.3) K =[] Dw(n)x [ K.

vn vin

5.2.2. Let x : Ag — C* be a Hecke character of £* of infinity type kX and let
X+ = X|ax be the restriction of x to A*. We suppose that k£ > 4 and c is divisible
by the prime-to-p conductor ¢(x) of x. For each place v of F and s € C, let I,,(x, s)
denote the space of smooth and K'-finite functions ¢ : G(F,) — C such that

$(n(X)m(A,v)g) = x; " (det A)[r ™" det(A"A)|"*¢(g).

Let I(x,s) = ®,1,(x,s). Conventionally, functions in I(x,s) are called sections.
The adelic Siegel-Eisenstein series Fa (g, ¢) associated to a section ¢ € I(x,s) is
defined by

Ealg,0)= Y.  ¢(v9).
YEQIFN\G(F)
It is known that the series Fa (g, ¢) converges absolutely if Re s is large enough.

5.2.3. Fourier coefficients. Then Siegel-Eisenstein series Ea = Ea(g,¢) has the
Fourier expansion

EA(9?¢>: Z Wﬁ(g?EA)a
BG?‘CQ(]‘-)

where Wg(g, Ea) is the 8-th Fourier coefficient of Ea given by

Woa.Ba) = [ Ealn(X)g)$ s(X)ax.
Ho(F)\Ha(A)
Let w; = (1 12). It is well known that if ¢ = ®,¢, and supp¢,, C
2

Q(F oy )W1Q(F,) for some vy, the S-th Fourier coefficient Wy (g, Ea) for g € G(A ()
is decomposed into a product of local Whittaker integrals Wgz(gy, ¢») (For example,
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see the proof of [Shi97, (18.10.3)] based on Lemma 18.8 loc.cit. ). In other words,
we have

W,B(ga EA) - 02(’(:) : HWﬂ(gva ¢U>7 Where

Wialg, b0) = /ﬂ )0 (X)X

5.3. The choice of local sections. To define the desired Eisentein series with
nice p-adic properties, we need to make a special choice of local sections in I, (x, $)
at each place v. In this subsection, we give the recipe of choices of these local
sections. Let

S={veh|v|n} bea non-empty set.
Then x and K/F are unramified outside S U S,,.
5.3.1. The local sections at archimedean places. For ¢ = (¢o)oca € G(F @@ R) =

[[,ca G(R) and Z = (Z,)sea € X22, we define two standard automorphy factors
J(g,Z) and J'(g, Z) by

3(9,7) = [[ 3o(9,2) and J'(g, 2) = [ ] det(95) "I (g, Z2)v(90)*,

oca oca
where J; (g, Z) = det(cy, Z5 + dg,). Denote by J(,, 1)(g, Z) the automorphy factor
of weight (u,\) € Z? given by
J(;L,A)(gv Z) = J/(gv Z)“J(g, Z))\
We define the section ¢y oo of minimal Koo-type (0, k) in I (x,0) by

Dr,0(9) = Jo.0)(9,Z) = I(g,1) 7"

and set

hsoe(9) = droo(9)  [3g DI @ D] et gl° € Loo(x. 5).

5.3.2. The local sections at unramifid places. Fix & = (§,) € U(W)(Ay ) such that
L&, =L ifv¢gSand & =1if v €S Since the lattices L, and LS are
Oz,-maximal Oy, -lattice with respect to ¥ ~1n, for each finite place v ¢ Dy 7, the
existence of £ follows from [Shi97, Lemma 5.9]. If v € S is a finite place where X,
is unramified, we let f5', , be the section in I, (x, s) such that f, ,(K;') =1 and
let

)?’S»U (g) = f)ifs,v (ggu)

5.3.3. The local sections at v € S. For v € S, we let f,, be the unique section in
L,(x, s) such that

(54) supp fn,v = Q(FU)DW(nv) and fn,v(u) = X;l(du)a u € DW(nv)~

-1
Let u= ( 19>. Put

2

L@ = halawowi= (oY) cGlR),
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Define £, = Ha(F,) N (uMa(n,)u*) to be a lattice in Ho(F,). One checks imme-
diately that f]},v is the unique section such that

supp fi,v :Q(]:v)wln('cv) C Q(-FU)WZNQ(;U),

(5.5) 1 —S
fao(wWin(X,)) =x, (det u) [det(um)| ™" for all X, € £,.

In particular, f,},v is supported in the big cell.

5.3.4. The local sections at v € S,. We begin with some notation. Write v = ww
with w € X, and x» = (Xw, Xw) = (X1, X2). Let F' = F,. With the identification
G(F) & GLy(F)xF* in (I.2), we obtain an isomorphism I,(x,s) ~ I(x2,x7")
sending f to its restriction to U(W)(F) =~ GL4(F), where I(x1,x5 ") consists of
smooth functions f : GL4(F) — C such that

ﬂ(g lB)) 9) = x2(det A)x; *(det D) |det Adet D™'|" f(g).

Fix a uniformizer w = w, of O = Op. If u : F* — C* is a character of F* we
let ¢, be the Bruhat-Schwartz function on F' given by ¢, (x) = p(x)lox (z) and let
P, be the Fourier transform of ¢,. Let () be the conductor of u. A direct
computation shows that

B(z) = Io(z) — |w|lg-10(x)  if p is unramified,
T N @) Lmiox () - g(p) if g is ramified,

where g(p) is the Gauss sum defined by

) = [l o i

wa(l’«) wa(l‘)

Definition 5.1 (Modified p-Euler factor). Put
Eul(s, p) :==Z(s, pbs pp) = / w(x) x| @pu(z)d* z.
F
By Tate’s local functional equation, we find that
L(s, p)
L(1 = s, u=)e(s, )’
where €(s, u) is Tate’s epsilon factor with respect to the additive character z +—
1/%(*95)-

We introduce two special Bruhat-Schwartz functions @z and ®,, on My(F) as
follows. Put

(5.6) Eul(s,p) =

fi2 = X3, V1 = X1X2, V2 = X1
and define two subsets Py , and Pa,, of My(F) by

O @ ox* me ()
Prw= (;OX OX> and Po, = ( o WOX ) , my, = max{1,a(x1),a(x2)}.
We set
_ X X
Ba(X) <o, (Npsa@ ) (X = (3 32

Dy (X) :HTz,v (X)(plfl (Xl)(pllz (X4)
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Define the Bruhat-Schwartz function @, on Max4(F') by
(5.7) 0,(X,Y) = 05(X) @ (V) (XY € My(F)),

where </I5w is the Fourier transformation of ®,, defined by

2= [ @u(2), (T2 )z
M3 (F)

We let GL4(F) act on @, by g.9,(X,Y) = ®,((X,Y)g).
Lemma 5.2. The functions ®,,, ®,, and Pz enjoy the following properties:

(1) For t = <t1 tz) € T2(0), dx(Xt) = x5 ' (t1)Pm(X) and D, (Xt) =

e ()X (1) B (X).
(2) @, is Ny(O)-invariant.

PrROOF. Part (1) immediately follows from the definitions of &z and ®,,. Part
(2) can be deduced easily from the following observations:

(i) For A € No(O), P1yA=P1,, B(XA) = B(X) and By (YA?) = o (Y).

~

(i) Bu (Y + Ma(0)) = B, (V). O

We define the local section at v|p to be the Godement-Jacquet section fg, 4
associated to ®,. Namely

(5.8) fa,0(9) == x2(det g) |det g|* 0,((0,Z)g)x1x2(det Z) |det Z|** d* Z,
GL2(F)

where d*Z is the Haar measure with vol(GL2(0),d*Z) = 1. It is easy to verify
that fs, ., converges absolutely for Res > % and fo, ., € I(x2,x7Y) = L(x, 5).
For t = diag(t1,ta,t3,t4) € T4(O) and f € I,(x, s), we define

(5.9) [1]-£(9) = f(g - diag(t1, t2,t5 " 85 1))
Lemma 5.3. We have

(1) [t]-fo,0 = (1, X2, X1, X1X2 )(8) - fo,0 fort € Ty(O).
(2) fo,. is Tight invariant by the open compact subgroup

L(p")y = {(g,a) € GL4(0)xO* | g € N4(O) (mod p"), a =1 (mod p")}
for sufficiently large n > max {a(x1),a(x2)}

ProoF. This is a consequence of the observation fs, ., (hg) = x2(det g)|det g|” -
fg.®,,0(R) combined with Lemma O

5.3.5. Local Whittaker integrals. In the following proposition, we summarize the
formulas of local Whittaker integrals of our sections.

Proposition 5.4. Let § € Ha(F).
(1) If o € X be an archimedean place, put

Aoo(s,x) =271 (=) "Tc(s + k)Tc(s +k—1) (Ta(s) = 2(2m)°T(s)),
and we have
Jo(gcrvia)kWﬁ(gaa¢X,s,a)|s:O

_ J R0 (0,) 7 (deta(B)F 2 - 2 TEBZ)(Z, = gois) , 0(B) 20,
o , otherwise.
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(2) If v ¢ SU S, is a finite place and det 8 # 0, put

Ao (8, x) = L(25, X +,0)L(25 = 1, X4 0Tk, /7, )5
and we have

Ws(€, " [y an) = Wall, [l )

X8,V XS,V
2s+4 — 2s
= |bi9|v A2,v(57X) 1R5,U(X+,v(wv) |z | )Hj’fz(bg’v)v(ﬂ)ﬂ

where Rg (T) € Z[T] is a polynomial which only depends on B and equals
to 1 for all but finitely many v.
(3) If v e S, then

Ws(1, fo,) = x " (detu) [det ua|, > Iy (8) vol(£L,, dX,),
where LY is the dual lattice defined in (5.1)).
(4) If v e S,, then

VOl(Pa.) X 1.0 (det B) |det 82572 B (), det B # 0,

Ws(1, fo,0) = {0 , det 8 = 0.

(5) If ve S,, det B # 0 and x, is unramified, then

Wo(L, fyle) = Aou(5,0 7" - Rp 0Ol (@) sy 0, (B):

where Ry (T) € Z[T] is a polynomial of degree mo greater than v(det j3)
and only depends on the coset GLa(Ogx, )3 GLa(Ox,).

PrOOF.  The formulas (1) and (2) of local Whittaker integrals at archimedean and
unramified places are due to Shimura. For (2), it is proved in [Shi97, Prop. 18.14,
Prop. 19.2]. For (1), we recall that if Z, = X +4Y’, then

Jo (9o 10)* W5(gos by s.0) = (det Y)27F75 det(—iv/2)* exp(— Tr(o(B8)X))-£(1, Y B, k+s, 5),

where £ is the four variable function defined in [Shi83| (3.18) page 432] (¢f. [Hsill,
page 1016]). Then (1) follows from the evaluation formulas of ¢ in [Shi83| page
457 (7.11), (7.12)]. The equation (3) follows from and a straightforward
computation

Wa(l, fL,) = /% o P wn (X (X)X,

=x"*(detu) |det uﬁ|;28/ Ig(Xo)Y_5(X,)dX,
Ha(Fov)

=x"!(detu) |det ua|, > Iev () vol(£L,,dX,).

We proceed to prove (4). Let v € S,. Let F = F,, O = O, and w = w,. By
definition,

0 -1 )
W6(17f<1>1,,v):/ / ®,((0,2) <1 X))X+,U(det2) |det Z|** d* Zap_4(X)dX
Ms(F) JGLo (F)
i

_ / 2B (12 B) x40 (det Z) |det 2|2 d* Z.
GL2(F)
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Recall that x4+, = XwXw. Since ®, is supported in non-degenerate matrices,
Ws(1, fo,») = 01if det 8 = 0. Suppose that det 8 # 0. Making a change of variable
Z — Z 3, we find that

Ws(1, fo, o) =X4.0(det B)|det 5]*°72 / D(ZB)Dy (" Z7 ) x40 (det Z)| det Z|?°d* Z
GL2(F)

oo (det B) |det B[22 / B (Z8) B (2 )xs 0 (det Z)d* Z

=vol(Pa.0) X4.0(det B) |det3 372 (B).

This completes the proof of (4). To prove (5), we introduce the spherical Godement
section

Ja0.5(9) := x2(det g) |det g|° ®° @ °((0, Z)g)x1x2(det Z) |det Z|2S d*Z,
GL2(F)

where ®° is the characteristic function of M>(O). Then fgo , is a spherical vector,
and it is known that

fq)o,v = L(237X+,U)L(2S - 11X+,v) . ;?s,v = A2,v(57X) : ;fs,'u'

It suffices to compute Ws(1, fgo,). Let K = GLy(O). For (a1,as) € Z?, define the
coset

w

w™
C’(al,ag) = Uye(’)/(w‘LZ)K < 0 2{12> .
We have ®° = ®° and

W,B(l, f‘bo,v) :/ (I)O(Z)(/I;O(tzfltﬁ)x_hv(det Z) |detZ|23—2 d* 7z
GL2(F)

S xgol P @) / oV (Bz1)d* Z.

(a1,a2)€Z2 C(ay,a2)
Hence W3(1, fpo,) = 0 unless 5 ¢ M>(O). Suppose that 5 € C(by,b2). Note that

. Ty . w0 .
it Ze K (70 V) with Z € My(©) and (7 ) 771 € My(0), then
2

w1,02,y € 05 frayt way ey whayt € O,
We find that
b1
/ o (pz 1d*zZ = / <1>0(<w0 Ob> ZYYad*Z =4 (@™t 0N 0/w™0).
C(al,ag) C(a17a2) w
Therefore, Wg(1, foo ,,) = RE,U(X+,U|'|28_2(W))7 where
Ry (T) = > § (w2t ON0/w™0) T2,
0<a1<b1,0<a2<b>
This completes the proof of (5). O

Remark 5.5. Note that Shimura considers Eisenstein series constructed by sec-
tions attached to unitary Hecke characters (See [Shi97, (18.4.6)]). At archimedean
and unramified places, our local sections restricted to U(2,2) are indeed Shimura’s

_k
sections attached to x* := x|-|5; [Shi97, (18.6.3)] multiplied by the function e 2
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defined in [Shi97, §18.4], and Shimura’s section evaluated at k/2 is the same with
ours evaluated at 0.

5.4. Normalized Siegel-Eisenstein series.

Definition 5.6. Define the section ¢, s = @y, € I(X,$) by

1
st,s = ¢k,s,o<> ® f;?,s,u ®f{171) ® m . f@vw.

vgSUS, veS vES,

Define the normalized section ¢} , 1= ASUSP (X, 8) - Py,s, Where

SUS,
Ay 06s) = [ Aawlsix) = L5950 (25, x4) - L9997 (25 — 1, x4 7/ 7).
vgSUS,

The adelic Siegel-Eisenstein series Fa (g, ¢y,s) converges absolutely for Res >
2 — £ Since k > 4, we can define the C-valued function E(x,n) on Xs2xG(Ay)
by
(5.10) E(Gn)(Z,95) = X (w(95)) I 0.0) (900, D EA((9o0» 97): 85 5)|s=0

' (9 € G(FRqR)*,  gui = 2).

Then E(x,n) is a holomorphic Siegel-Eisenstein series on GU(2,2) of weight k

(¢f. [Shi97, Thm. 19.7]). We claim that E(x, n) is right invariant by K7 = K® [T, L (p").

for some n. Indeed, it suffices to verify the right invariance by K7 of the local sec-
tion ¢y . at all finite places. If v € Sy, it is clear by the definition of local sections
at these places. If v € S, it follows from Lemma (2).

Now we calculate the Fourier expansion of E(x,n) at special cusps. For each
B € Ha(Ay) with det 8 # 0, we put

ag(x,n) = xp(det B) [det B [ ] xv(detu™)

vES
11
(5.11) x I Bowlx(@) es(K. L) I=(8),
vgSUS,,
v(det 8)>0

where ¢s(K, L) € Z(Xp) is a p-adic unit given by

cs(K, L) = ea(K) - [by|n, - [] vol(£u, dXo),
veES

and = is the compact subset in Ho (A, ) given by

== HLZ x H P14 ¥ H Ha(by,)"

veS vES, vg@SUS,,
Note that = is independent of x.

Proposition 5.7. Let A € GLy(A7"*")x GLy(Ox®22,) and ga = m(A,1)€ " €

G(A?). Then E(x,n)(Z,ga) has the Fourier expansion

> ag(ga, E(x,n))d”,

BEH(F),
o(B)>0 for all c€X
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where ¢° = exp(27i Y. Tr(o(B8)Z,)) and

ag(ga, E(x,n)) = x *(det A) |det A\i’c ~ag+34(x,n)(det B)(k_2)2.

Proor.  Since the local sections ¢, s, for v € S are supported in the big cell, we
have

ag(g, E(x,n)) = HW57U(¢X7S,U,gv) for each g € G(A®).

The proposition follows from the above factorization and Proposition O

5.5. A p-adic measure of Siegel-Eisenstein series. Let K.,» be the ray-class
field of K of conductor ¢p™ (n = 1,2,...) and let Kepoo = Uppn. Let &, =
Gal(Kp /K). Let C(6.,Z,) be the space of continuous Z,-valued functions on

&,. Henceforth, functions in C(®.,Z,) will be implicitly regarded as continuous

functions on A /K* by the geometrically normalized reciprocity map as in §1.3

Define a subset ch of locally algebraic p-adic Galois characters by
.'fgc = {5{ € Homcont(ﬁc,z;) | x has infinity type of kX, k > 4} .

Note that X§ is Zariski-dense in C(&,Z,).

Theorem 5.8. There exists a unique p-adic measure 9 o with value in V,(G, K)
such that for ¥ € f{gc, we have

/fé\dgm = E(X’ﬂ),
(o
where E(x,n) is the p-adic avatar of E(x,n).

PrOOF. Let ¥ € %gt and let x be the corresponding Hecke character of infinity
type kX. Let g =m(A;,1) ¢ e G(A?US”) and

(a1,a2) € Auto, (L%)x Auto, (LE.) = GLo (0O ®7 Z,).

At the p-adic cusp ([g1], (a1, az2)), the p-adic Eisenstein series E(X, n) has the Fourier
expansion

(5.12) S ap™(B E(on)d’.
BeEH2(F),
o(B)>0 for all c€X

Set A := A;x(a1,a2) € GL2(Ay) and
To(A,R) = tp [aa-pax, ) det B2 det(araz) .
Then we find that af;lll]’w)(ﬁ, E(x,n)) equals

det ab™ -1, (ag(m(4,1) €71, E(x,n)))
= det agzp “lp [XE:, (det al)XEE (det az) |det azay |;2) aa-ga(x,n)(det 5)(1672)2}

=T5(A,X) - Xy, (det al)ygé (det az).
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By E10).

T5(A,X) = X(det A~ det B3) - H Rg o (X+v(wy)) H Xv(detu™
vgSUS,, vES
v(det A*BA)>0

x |det B, (det ) 7> - T=(A"BA) - [det Ay - es(K., £),

so we find by inspection that there exist some b; € O C Z(,,) and ¢; € A,é f only
depending on A and (3 such that

aig" (8. E(x,n Zb R(er)-

Therefore, it follows from the Zariski density of .’{@c in C(®,Z,) and the abstract
Kummer congruences ([Kat78| (4.0.6)]) that gives rise to a p-adic measure
€22 on &, with value in the space of formal g-expansions. Moreover, by the g-
expansion principle for p-adic modular forms on unitary Shimura varieties, we con-
clude that €, 9 descends to the desired V, (G, K)-valued Eisenstein measure. O

5.6. Pull-backs of Siegel Eisenstein series.

5.6.1. Let G = GU(V) and let P be the stabilizer of the flag {0} C Kz! C V in
G. The group Gp := GU(W) of unitary F-similitudes is the algebraic group K£*
over F such that K*(F) = KX and the unitary U(W) is the norm-one subgroup
K! of K*. The unipotent radical Np and the standard levi subgroup Mp of P are
given by

1wt x—i—%wﬁ_lw*

Np =< n(w,z) := 1 w lwek,zeF
1
and
v(h)a™*
Mp =< m(a,h) := h lae KX, heGp
a

The Hermitian symmetric domain associated to G is X5 ;. Put
. . . -1
KL= {9 € GFEQR) [gia=ia} (o= ([ e € o)
Recall that K? is the stabilizer of M ®o, Ok, if v € h.

We introduce some special open compact subgroups. For an integral ideal a of
Ok, put

a) = H U(a),, where U(a), := (1+ a,)*

vEh
and define a subgroup Dy (a) of U(W)(Ay) by
(5.13) Dw(a) =U(a) NU(W)(Ay) :U(a)ﬁlC}&f.

Set
Kp(t'l) = Dw(bn).
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Let X (n) be a set of representatives of the finite set U(W)(F)\U(W)(As)/Kp(n)
inU (W)(Agcp )). In addition to (al), we further assume the auxiliary ideal n is
sufficient small such that
(a2) hKp(m)h™ PN U(W)(F) = {1} for all h € Xy (n).
For v € S, define an open compact monoid D{,(n,) of U(V)(F,) by
1+n, v, Tty

(5.14) Di(n,) =g e KONUWV)F,)|ge | dony 1t 0ty
N, n, 14+n,

It will be verified in Lemma that D{,(n,) is indeed a subgroup of U(V)(F,).
Let Dy (n,) be the open compact subgroup of G(F,) given by
-1
Dy (n,) = w; 'U(n), D (n,)wy, wy = —1
1

Here U(n), = (1 +n,)* is regarded as a subgroup of the center of G(F,). Define
an open compact subgroup K in G(Ay) by

(5.15) K= ][ Kox [ Dv(m).
vgS vES

5.6.2. Pull-back formula. Let x be the Hecke character of K* as in the previous
section. Assume that x has infinity type kX, k& > 4. For each place v of F
and s € C, let I,(x,1,s) denote the space of smooth and K?-finite functions
f: G(Fy) — C such that

f(m(a,h)ng) = x; " (a) [v(h)"'aa| " f(g) (n € Np(F))
and let I(x,1,s) = ®,I,(x,1,s) be the restrict tensor product with respect to the
spherical sections [, ., € I,(x,1,s) with f2, _ ,(K7) = 1. Consider the diagonal
embedding

1:UV)xUW)=—UW), i(g,h):=(g,h) € GL(V® W) =GL(W).
As an embedding between matrix groups, ¢ can be written as
1

(5.16) i(g,h) = A1 (9 h) A, A= 1 € GL4(K).
—1

—
SIS

(V]IS

For each place v of F and ¢, € I,(x,s), define the local pull-back section ¢£’ €
I,(x,1,5) by

@) = [ il B )
UW)(Fo)
where h! € KX such that hlh/, = v(g,). For a decomposable global section ¢ =

®y¢y € I(x, 5), we denote by ¢P* := ®,¢P" € I(x, 1, s) the global pull-back section
of ¢.
Lemma 5.9. Let ¢ = ®¢, € I(x,s). Then

(i) The local section ¢P° at each place v converges absolutely for Res > 7%_
(ii) The global section ¢P* converges absolutely for Res > 1 — g
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In particular, ¢P° converges absolutely at s = 0.

PrOOF. To prove part (i), it suffices to show that ¢P°(1) converges absolutely for
every ¢, € I,(x,s). If v is non-split, this is clear. Suppose that v = ww is split.
With the identifications U(W)(F,) = F,© and U(W)(F,) = GL4(F,) in (1.2), we

can write "
or0(1) = / 60 (i(1,2)) XX (@)d" .
i

The argument of the proof in [Yan97, Prop.1.7] shows that there exist complex
functions aq(s), az2(s) and a sufficiently large positive integer n such that

$u(i(1,2)) = ar(s) X' (@) ||~ if Jo > p",  ¢u(i(1,2)) = az(s) xw(z) |2]* if |2 <p~".

Therefore,

o70(1) = / 60 (i(1,2)) vz (2)d*
p~n<|z|<pn

+ai(s) - / e Xw(x) |z|* d*x + ag(s)/ X () |2|” d* 2.

z|<p—™
The last two integrals converges absolutely for Re s > —g since |xw (0y)| = |xw(wy)| =

\wvé-v (Note that the first two |-| mean the usual absolute value on complex num-
bers), from which the split case follows.

Part (ii) is a consequence of part (i), Proposition (2) and the absolute
convergence of the Euler products of L-functions L(s,x) and L(2s, x+) for Res >
1- % 0

The adelic Eisenstein series Fa (g, f) associated to f € I(x,1,s) is defined by
BEalg./)= Y,  [flvg) (9€G(A)).
YEP(FI\G(F)

The series Fa (g, f) converges absolutely for Re s large enough by the general theory
of Eisenstein series [Lan76]. Moreover, if f is a pull-back section ¢*’ for some
¢ € I(x, s), then we have the following pull-back formula.

Theorem 5.10 (The pull-back formula).
Ealg.”) = [ Ea(i(g, h'), 0)x(hi' )b,
UW)(FI\U(W)(A)
where b € AY such that hh' = v(g).
PrOOF. Since U(W) is a totally definite unitary group, by [Shi97, Prop. 2.4] the

embedding (g,h) — i(g,h) gives rises to a bijection P(F)\G(F)xU(W)(F) =
Q(F)\G(F). The theorem follows. O

5.6.3. The pull-back sections. Let ¢y s = @@y .0 be the section in I(x, s) defined
in Definition Put

6T () = bulgT), T= | 2 |2 a a0, < UW)(E).

XS
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We will need to calculate the pull-back section (¢3 ,)P” = @up¢, , @l (Px.6.0)7°
First we compute the local pull-back section ¢g)<l,)s7'u |s=0 at archimedean or unramified
places v and postpone the calculations of ¢2°,  for v € S and (¢

the next section. Let e e
Tk (oo 7) 1= PP (I (900, 7)), (9o0s T) € G(F ®q R) X Xa,1

be the automorphy factor of weight kI_ = (0,0; kX)) defined in

Proposition 5.11. Let fi 00(goo) = Jk(goos10) F € Ino(x, 0).

(1) (¢x,8,00)pb|s:0 = fk,oo~
(2) If v € SU S, is a finite place, then

)b for w|p to

L(s, xv)

pb _ pb _ » Av 0

d)x,s,v ( X,s,v) L(237X+,v) x,1,s,v°

PrROOF. Part (1) is straightforward. Part (2) follows from a classical integral in
the doubling method for U(1)xU(1) — U(1,1) (JGPSR&T] and [Li92]). O

We remark that using Lemma [5.3] and Proposition [6.3] combined with the def-
initions of ¢y s, it is not difficult to show that (¢) )P" is invariant by the open
compact subgroup K} for some large n (K is as (5.15)).

Lemma 5.12. The function (g, h) — ¢3 ,(i(g,h))x(h) on U(V)(Ay) x U(W)(Ay)
is invariant by the right translation of K x Kp(n) for some large n.

PROOF.  The only non-trivial point is to show the right invariance by I (p™), x Kp(n),
for v|p. Recall that with the identifications in (1.2): GL4(F,) = U(W)(F,) and

(5.17) Fr=UW)F,)={(h,h ") |heF}}, h—(hh").

Then OF = O¢ NK, = Kp(n),. By (5.16), we have i(u,t)T =T (g (2), and

for u € I (p"), and t € OF% ,

¥ o (ilgu, RO)X(B(E 7)) = by (i(g, b)Y (g 2)>x<h>xwx;1<t> (w € Zy, wlo).

By Lemma [5.3] for n large the last term in the above equation equals

x5 (1(g, YD) X () Xw Xz (4™ XXy (w) = By, (i(g, W) T)x(h) = &Y ,(i(g, b)) x(R).
This completes the proof. (I

5.6.4. Normalized Eisenstein series. Define the normalized adelic Eisenstein series
Ea(g,x |1,n) associated to the pull-back section ( §7S)pb by

1
Ea(g,x |1,0n) = ————— - Ea(g7, (¢% )P e GA
a9 x |1,m) oK p()) A(9T,(93,6)") (9 € G(A))
6.19) AUy )
2 YA T ypby
vol(Kp(w)) DA (9xs)")
The series Ea(g,x | 1,n) converges absolutely for Res > 2 — % We define the

C-valued function E(x |1,n) on X9 1xG(Ay) by
E(x |1,0)(7,9) = x(¥(9))Jk(9oe, 10) EA (900, 9): X |1,1)]s=0

5.19
19 (goo € G(F ©Q R)™, goolo = 7).
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Then E(x |1, n) is a holomorphic Eisenstein series on G of weight kI~ = (0,0; kX).
By the pull-back formula Theorem [5.10] and Lemma [5.12] we have
(5.20)

E(x [L0)(rg) = ——

vol(Kp(n)) /U(W)(J:)\U(W)(Af)

Y BEem)(Zrilg,m)T) - x(h) (g€ UV)(Ay)).
heXw (n)

E(x,n)(Z-,i(g,h)T) - x(h)dh

Regarding E(x,n) and E(x | 1,n) as geometric modular forms over C, by the
discussion in §2.6, we find that
E(x,n)(ivaw ([T, 9], [X0, h]) , (2idzy, 2midz())) = E(x,n) ([Zr,i(g, h) Y], 2midzy) .
Combining (5.20), we thus obtain
(5.21)
E(x|1,0)([rg),2midzy) = Y E(x,n)(ivw (7. 9], [0, h]) , (2midzy, 2midzy, )X (h).
hEXW(n)

5.6.5. The p-adic Eisenstein series. Let E(x,n) € Vo (G, K) be the p-adic avatar
of the Eisenstein series E(x,n). Recall that W, is the p-adic completion of the
ring of integers of the maximal unramified extension of Q, in C,. We define the

p-adic Eisenstein series £ (x |1,n) over W, by the formulae
E(x|Ln)(4) = > E(,n)(AxB,y,) - X(uh),
heXw (n)
where A € Ig(v)(K{l,c) with ¢ = wu € ClE(K) is a test quintuple and B is the
universal family over IB(W)(Kp(n)", c)/w,-
Definition 5.13. Let e be the Hida idempotent for G = GU (V) as in §4.3] Define
the ordinary p-adic Eisenstein series £°¢(x |1,n) on G by
E(x |1,n) = e.E(x |1,n).

Let wg, d*t and dzy;, be the differential forms on B introduced in For each

Ojc-basis w of Q4, by the relation (2.23]) we find that

E(Xan)(Axﬁuh’(w’wB)) -E(X,I’L)(AXﬁuh,(w,dXﬂ)

:@
(5:22) (2mi)H7Q .
:QT : E(X7 n)(éxﬁuhv (w? QWZdEW))a
where
QI:Z = H Q]oc,av e € {o0, p}.
oeX
Put
or 27 )kl Q]
(5.23) E"(x |1,n) = % ~e.BE(x |1,n).
Combining (5.21) and (5.22)), we find that
(5.24) . E"(x |1,n) is the p-adic avatar of E”¢(x |1,n).

kX
QP
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Proposition 5.14. There exists a unique p-adic measure €' with values in V,(G, K)®g,
W, such that for every X € %gc,

[ v =i 1)
ProOOF. For ¢ € C(6,W,) and h € U(W)(Ay), we put p|h(z) = ¢(zh). We
define a p-adic measure €57 with values in V,(G, K) ®z, W), by the rule:

/ pdegi(A) = 3 e / olh dEsa(AxB,).
C ) C

heXw (n

The evaluation property immediately follows from the constructions of €59 and
E°md(x |1,n). O

5.7. The A-adic Eisenstein series. Let A, be the torsion subgroup of &, =
Gal(Kepoo /K). Let ¢ : Ay » Q> CJ be a branch character and let A := 1(A,).
We will have to work over a large base ring O, defined as follows. Let Ng = Nx/q(n)
and let X := K"°(A, e2™/No) be a finite extension of K"¢. Thus K is unramified
at p if §(A) is prime to p. Let p be the prime ideal of X induced by ¢, : Q — C,,
and let O = Oy (p) be the localization at p. Henceforth, we fix O, D W, to be
the p-adic closure of the ring generated by O over the ring W, of integers of the
maximal unramified extension of Q,, in C,,.

Let Ko be the compositum of the cyclotomic Z,-extension and the anticyclo-
tomic Z¢-extension of K. Let I'x = Gal(Koo /K) and let A = 0,[Gal(K/K)] be a
(d41)-variable Iwasawa algebra over O,. Let g be the maximal algebraic extension
of K unramified outside places above S U S,. Denote by e, : Gal(Ks/K) = I'x —
A the tautological character and let ¥ = ey : Gal(Kg/K) — A be the A-valued
Galois character attached to . Denote by ¥, = ¥ o V' the composition of ¥ and
the Verschiebung map V : G¥ — G¢. We shall regard ¥ (resp. ¥ ) as a A-valued
Hecke character of K* (resp. F*) by the geometrically normalized reciprocity map.
By definition we have ¥, = ¥|5x. Let Xp := Homeont (I'cc, C}) C Homeont (A, Cyp).
Note that for € € X, the composition €0 ¥ : Gal(Ks/K) — C factors through
&.. We set

X ={cex\|ecoveixy },

where %;gt is a subset of locally algebraic p-adic Galois characters on &, defined
in 11 By definition, for each € € XX, the p-adic Galois character € o ¥ is the
p-adic avatar of a Hecke character ve of infinity type kX', k > 4, and the conductor
of e is a factor of ¢p™.

Let mp : T/T9! = (05)3/j(((9;7N0)2) — 'k be the homomorphism defined by

(5.25) 7 (t1, ta, t3) = recxe (t2)|k . recs, (t3)] Ko -

Denote by m_dE A= Op[T/T9] — A the associated O,-algebra homomorphism
given by 7rff_~(t1, ta,t3) = Use(l2)¥s, (t3) (Px, 1= Porecy,). Recall that Mosa (K, A)

is the space of A-adic ordinary modular forms. We set

Mepa(K,A) = Mo (K, A) ®F pu A
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In virtue of Theorem|[4.25] we can identify Moyq(K, A) with the subspace of p-adic measures
on ['x with values in the space of p-adic ordinary modular forms such that for

F € Mua(K,A), the eigencharacter of T under the action [-] defined in Defini-

tion is given by (1,¥x; ng)ﬂ

Corollary 5.15. There exists a A-adic form E74(¥ |1,n) € Mowa(K, A) such that
at every € € X the specialization €(E°T(¥ |1,n)) is given by

(e (W |1,n)) = E(ge | 1,m).

PROOF. Define the morphism C(I'k,0,) — C(&,0;), ¢ — @y by pu(9) =
o(gli.. )9 (g). We let €54 be the p-adic Eisenstein measure on T'x obtained by
the pull-back of £§'{" along the above morphism. In other words, we have

[ ezt [ vodest
Tk [

By Proposition Eq‘l'd interpolates E°m(ve | 1,n) for € € X%. On the other

n

hand, it follows from Lemma (1) that
[t]- B2 (x |1,m) = (1, R, X Jwe z, () - B (x [1,m)  (x = tbe, t € T = 03).
Therefore, Sz’d gives rise to a A-adic modular form E°7¢(¥ | 1,n) € Mq(K,A)

n

with the desired specialization property. (I

6. CONSTANT TERMS OF THE p-ADIC EISENSTEIN SERIES

This section is devoted to the calculation of the constant term of the A-adic
Eisenstein series £°74(¥ |1,n). The main formula is Proposition

6.1. The constant term and Siegel ®-operator. Let Ea(g) := Ea(g, (61 ,)"")
be the adelic Eisenstein series attached to the pull-back section ( ;S)pb. The
(adelic) constant term function of EFa along the parabolic subgroup P is given

by

61  (Eaelo) = [ Ealng)dn = (67,)" () + M((6.)") (o),
Np(F)\Np(A)

where

M((6F,)")(g) = /N e g

The constant term of holomorphic modular forms indeed is computed by the ana-
lytic Siegel ®-operator. Let Ep, be the holomorphic Eisenstein series associated to
Ea asin (5.19). Let g € G(Ay). We consider the image ®p 4(Eho) of Epo under

the analytic Siegel ®p j-operator defined in §3.6.6, By Lemma [3.12) ®p (Ehq) is
a modular form of weight zero on Gp, i.e. a locally constant function on Gp(Ay).

Recall that Gp = GU(W) — GU(V), g1 — m(v(g1),91). Recall that

Enot(1,9) = x(v(9)) - Jk(goos10) EA((goos 9))s=0  (gooio = 7).

In particular, Epe(io,nrg) = Ea(ng)x(v(g)) for n = (ne,ny) € Np(A). Using
(3.13)), it is easy to show that

Ppg(Enot)(91) = (Ba)p(919)]s=0 - x(v(919)) (91 € Gp(Ay)).

2This may be regarded as the A-adic weight of F.
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Lemma 6.1. If k > 2, then M((¢y.s,00)"")|s=0 = 0. In particular,

By (B [ m)(or) = 228 (0 b oo ()
g ) 1 Vol (K p(n)) 05 91 s=0 .
PrROOF.  This is essentially [Hsilll, Prop. 5.3]. The proof is omitted. O

6.2. The local pull-back section at v € S. We determine qﬁbsw for v € S by
computing the local pull-back section f,’fbu of fn, defined in

Lemma 6.2. Let v € S and let « € U(V)(F,) and v € U(W)(F,). Then we have
(1) i(1,7) € Q(F)Dw(n,) <= v € Dw(d,n,). In this case, fno(i(1,7)) = 1.
(2) o € supp f2* = a € P(F)DL(n,).
(3) If a € DY, (n,), then f&%(g) = vol(Dw (2,1n,)).
ProOOF. The proof is a slight refinement of [Shi97, Lemma 21.4]. Write t = t,,
n=n,, 0, =0 and let ' = F,. By the assumption (h3), ¥t = 9, so M, is the
standard lattice and KO = GL3(x) N U(V)(F). We put
b
e
l

Q

I
> 9
SRS

Since a~! = 193’104*19?:% € K9, we find that
_d* f*ﬁ_l _c*
(6.2) at = [ -0 e Ib*
_h* 9*19_1 a*
In particular, a=! € D{,(n) if & € D{,(n), and D{,(n) is a group. Now we prove
part (1). First the assumption implies that

87 'n Cc,.
Using (5.16)), we have
1
N & S A s(1+7) A=)
i(l,y) =A (0 - A= 1
971 (1 —7) 3(1+7)

By [Shi97, Lemma 9.2], we find that
i(1,7) € Q(F)Dw(n) < 2(1+~) "W ' (1—-v)en
, 142" ton v
= i) < ( n 1+ 21011)
< y—1=<dand f,,((1,7)) =1

This completes the proof of part (1).

We proceed to prove part (2) and part (3). By Iwasawa decomposition we may
assume o € K9 and i(a,71) € Q(F)Dw (n) for some y; € U(W)(F). Thena™! <,
and by we have

(6.3) l0.7) <0; 510f = 07 (G0 € 27,
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Put
1 —fr9t %f*i?’lf d 0 0 a b ¢ ag b
oy = 1 —f 1 0 g e fl=1g1 e1 O
1 d—1 h 1 d hy I3 1

Then a; € U(V)(F). Since i(m (1,77 ") a, 1) € Q(F)Dw (n), by [Shid7, (21.4.4)],

we have

( hy I ) B ( d-'h a1 ) L
Iy tgr 9N ter = 1)) T \W T g = fd7h) 97 (v e — fdT) — 1) '

In addition, from we deduce that
[a1,b1] <t, c; € 27 .
The equation a1V21a] = ¥2,1 implies that
erde] =1, c1g97 + bive] =0, crh] + 019l —ay = —1
Putting these together, we find that

’}/1_161 el+4+on, b € 2711‘17 a—1e2n.

Put
1 0 —%(Cl + CT) a9 bQ C2
as = 7t 0 ar= (g2 ea 0] ecUW)F).
1 hi 11 1

Then we have c5 +c2 =0, a3 € 1 +47n, by € 47, g € 00, e € ™ and
CQ(CLQ + a§) = b219b2, a9 = Cghik + bgl%i + 1.

It follows that as + a} € 2t ¢ € 327 % C v, ag € 1 +n. Hence ay € Di.(n), and
part (2) follows.

If o € Di;(n), the computation in the proof of (2) shows that there exists 3 €
Np(471t) such that

1+4n n ¢
a2:ﬂ-m(d71,l)a€ om t* 0),del+n
n n 1

We thus find that i(asg,es) € Dw(n) and
70 () = / Fao iz ) x(R)dh
U(W)(F)
- / Fa(i(1, hez D)X (e2)x(h)dh
U(W)(F)

- / Fani(1, 1)) x(R)dh = vol(Dw-(on))  (By (1)).
U(W)(F)

This completes the proof of part (3). O

Proposition 6.3. If v € S, then ¢8°, , = vol(Dw (0,1,)) - f2 4 . ,, where f2 4 .,

X8,V

is the unique section supported in P(F)w; Dy (n,) such that

f;yl)sﬁv(wlu) =1 for every u € Dy (n,).
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PRrROOF. Note that i(w;, 1) = wj. By the definition of ¢, s ,, we have

B = [ fulilgwn ) (W = £ (gu).
UW)(F)
The assertion follows from Lemma O

6.3. The ordinary projection of the local sections at p.

6.3.1. The ordinary linear functional. Let v be a place of above p and let d, =
[Fu : Qp] be the degree of v over Q. Let F' = F, and O = Op. In this subsection,
we shall retain the notation in Let w be the place in X, lying above v
and let (x1,x2) = (Xw, Xw) be characters on F*. Let ®, be the Bruhat-Schwartz
function on May4(F) in (5.7), and let ® (z) := ®,(2Y). Then the section @) _  is
the Godement-Jacquet section fgr , associated to @Y defined in . Write fer
for fpx ,. We shall calculate the ordinary projection e,.( ;071})7”’ of the pull-back
section ﬁbf:o,y = vol(Py,) L~ fg;\s:o, using the technique of the ordinary linear
functional in [Hsill §6].
For a triple (A1, A2, A3) of characters of F'*, let I(\1, A2, A3) denote the unitarily
induced representation of GL3(F') from the the character A of B3(F') given by
*
A b ) = Ai(a) A2 (b)As(c).

o ¥ %

We say (A1, A2, A3) is regular if the p-adic valuations of {A;(p)},_; 5 are distinct.
Via the identification G(F') = GL3(F)xF* in (1.2)), we have an isomorphism:

I,(x,1,0) = I(xo|-| LX) Rxg

In other words, I, (x, 1, 0) is identified with the space consisting of smooth functions
f: GL3(F) — C such that

fltng) = (x2, l,xl_l)(t)f(g) for t € T3(F), n € N3(F),

on which GL3(F)xF* acts by ((g,v)f)(h) = f(hg)x3 " (v). We have v,(x1(p)) =
—kd, and v,(x2(p)) = 0 since the infinity type of x is kX. Thus the representation
I(xa2]-|75 1, 7)) is regular (k > 2). Introduce Weyl elements

1 1 1
and wsz = 1 S GL3(F)
1 1 1

Il
—_
®
I

Il
—

w2

Let f1 e I(x7*| ], xz2]-|7",1) K x5! be the unique function such that
supp fT = Bs(F)wsN3(0) and fT(wsn) = 1 for all n € N3(0).

Let a = (diag(p™,p®,p*),p*) € GL3(F)xF* = G(F) with integers a1 < as <
az. The normalized U, («)-operators on I,(x,1,0) with respect to the weight k =
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(0,0; kX)) is given by

Vo) f(g) = 22 >

p2a37a17a2
y1€0/(p*27 " ),y2€0/(p*371)

(6.4) W3€0/(p"372)
1Ty g2\ [p="
flglo 1 s prTe )-
0 0 1 1

A straightforward computation shows that U, («).f1 is right invariant by N3(©O) and
is supported in the big cell B3(F)wsN3(O) (use a~'N3(O)a C N3(0)). It follows
that fT is an eigenvector of the operator U, () with the eigenvalue U, (a).fT(w3) =
x2(p~92), which is a p-adic unit. In other words, f is ordinary. We define

ford = My, fT e Il 71 1,xg - )Y@,

where My, is the intertwining operator attached to the Weyl element s;. Then for¢
is the ordinary section such that fo"¥(wy) = 1. For x € F, we set

u(z) = 1 € N3(F).
1

Define the functional Ly, : I(x2|-|~", 1, x7 - )N*(©@) — C by

(6.5) F 5 ln () o= M (F)(1) = /F f(wyu(a))da.

The integral l,,, (f) converges absolutely if k£ > 1, and l,,, is the ordinary functional
on the regular representation in the sense of [Hsilll §6.2.1|. Let U, := U,(«) with
(a1,az,a3) = (1,2,3) and e, := lim,,_,, U™

Lemma 6.4. For f € I(XgH_l,1,X1_1|~|)N3(O), the ordinary projection e,.f is
given by
eo-f = luy ().

PrOOF.  This follows from the same argument in [Hsilll Lemma 6.4]. O

By Lemma fgl; is N3(O)-invariant, and hence by Lemma we find that

1 b 1

T pb -~ . P =0 = T = <
(66) 61).( ) VO](:PQ,U) €v-f<1>T s=0 VOI(CPQ"U)

b
X,0,v : lwg (f£T)|s:0 ' fgrd'

6.3.2. The calculation of the ordinary projection ev.fgl;. We proceed to compute
L, (fgg). By the definition (6.5]) of I,,, we have

Lo (785 = [ do [ dhfa.o(ilweu(e) D) V)G " (B),
F X
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where we have used the identification F* = U(W)(F) in (5.17). By a direct
computation, we find that

(0, 2) - i(wou(z), h))Y = (0,2) - A~ (wzl(t)(x) 2) AT

1 0 1
1 =z

/I-\
=
N
S~—"
L N
—
[l
> O

We thus have
(6.7) lw2(fgl§) :/dx/dh d*ZPh)Q(Z2)P,(Z ((1) 2) ,Z (é 2)),

F F GL2(F)

where P(h) = x1(h)|h|® and Q(Z) = x1x2(det Z)| det Z|?*. We make change of

variable
1

Zr—>Z<O

);hr—mvh,

so the integral (6.7) equals

/Xgl(x) |x|*5dx/P(h)dh

F

/ Qz ( o ?))iw(z(é 2))dXZ.

GLo(F)

(6.8)

Zy s
Zs 7

oo aute (0 Q)i (5 D=oni(Z 2)ia(s )

In particular, Z, € O*, so we can write
7 — Z1 Z2 o 1 Yy a 0
" \Zs Zy) N0 1)\Z3 Zy)°

X7 =|det 2|2 dZ = |a|”" d*adydZsd* Z,

and vol(Py,) = |w™v|. Taking into account the supports of &z and ®,, in ,
we find that

Consider the last integral against Z and write Z = ( > Then we have

We then decompose

Z3€0,ye0.
By (5.6 . the last integral in equals

/dX /dy/dXZ4/dZ3X+ )a* '@ (( ?))@l(a)@uz(h)wm“l

. _ 0 0
= o] Bul(2s - Lulmz(m%((x_l O
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where we adopted the notation in Definition [5.1] m so the integral . equals

(6.10) |wm'”|Eul(23—1,V1)P/ (@) 2] B (( ) /P \dh.

A straightforward computation shows that

(6.11) /P(h) .(h)dh = Eul(s,vs) (by (5.6))
F
and

[oat @il a2 ])de = xale) 21" vol( 0% o

= x2(®) @] (|| — 1).

Combining the above equations with and rearranging terms, finally we obtain
(612) Ly, (fh) =vOl(Po,,)(p™ = 1) - xo|-|*(w) - Bul(2s — 1,x4) - Bul(s, x1).

6.4. Constant terms of e.F(y |1,n). Now we are ready to give the precise for-
mula for the pull back section and calculate the constant term of the ordinary
projection e.E(x | 1,n) of the Eisenstein series E(y |1,n). Comparing with
Proposition (k(a) = 1), we find that e = [],, e,. By (5.18), the ordinary
Eisenstein series e.E(x | 1,n) is associated to the normalized p-ordinary section
(foih* € I(x, 1,0) given by

ord\ AgUS ( ) {p}\pb T b
( X,l) -‘m (¢ Pr)P ® ev-(¢x,s,u)p ls=0

vES)y
By Proposition [5.11] and Proposition [6.3] we find that

ey =f0it (27 (=D Te(k)Tok — 1) LSUSh (<1, x 7 7) - LS50, x)
X VOl(TZv)_llwz (fgl';r”s:o’
where d = [F : Q] and

Ord =00 ® f£10v®f,10v®fgrd~

vZSU{p} ves veS,
From and the formula (6.12]) for 1, ( fg}) we deduce that

. L TRk —1)\*
ety =p- (i TORGET ) LS L S 0,

< JI  Eul(=1 x4.0)Bul(0, xu)xw(p) (p* — 1).

weX,,wlv

Define the (oo, p)-modified L-values by

O : OF]  T(k)* suUs
o Eul(0, xw) - L7-77(0, X);

ko e T

L(k—1)? 11 sus

L(oo p)( 1)X+TIC/.7-') - (27ri)(k—1)d : te EUZ(f]-aX—&-,v) L p(f]-vX—Q—TIC/]:)'

vEop

(6.13)

L(oo p) (Oa X) =
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Here L5Y5»(—) denotes the imprimitive L-value obtained by removing Euler factors
at places dividing those in S'U S,. Summarizing our calculations of local pull-back
sections, we obtain the following formulas of constant terms in view of Lemmal[6.1]

Proposition 6.5. The ordinary Eisenstein series e.E(x |1,n) is associated to the
section
( )(()T]fl)* = f;z?‘fl : L?oo,p)(oﬂ X)Lfm,p)(_lﬂ X+TK/.7:) : XE; (p)CK:(p)a
where cxc(p) is the constant
. 1 _ =X
cx(p) = (—20)% - |Dr|g [OF - OF] H (p™ —1) € Zy,.
vESy

Therefore, we have
Opg(e.E(x |1,0) = fI5H9) - L ) (0,X) L oy (=1 X4 Tic/7) - Xg (P)exc (p).-

6.5. Constant terms of E°!(y |1,n) and p-adic L-functions. We retain the
notation in §5.7} Let ¢(+) and ¢, be the prime-to-p conductors of 1 and ¥ 7/
respectively. It follows from [Kat78| and [HT93, page 193 Thm.II| (c¢f. [Hsildl
Prop. 4.9]) that to (¢, X) we can associate a (d+ 1)-variable primitive p-adic Hecke
L-function L(¥,X) € A such that for every € € X} with x = e of infinity type
kX, we have

X, X 5o

we X,

On the other hand, by [DR80] there exists a p-adic L-function Ly,(—1,¥ 7c,7) €
Frac A such that for every € € %X with x = e, we have

e(Ly(—1, ¥ 7/ 7)) =L (2, x5 7/ 7)

Tk — 1)
T (2mi)(k-Dd H Bul(=1, x+0) - L% (=1, x4 7c/ 7).
vES)y

Here the second equality follows from the functional equation of the complex L-
function L(s, x4 7k/7). Define the S-imprimitive p-adic L-functions by
LYW, %) =L,7,%)- ][] (1-%(Froby,)) € A.
wln, wie(y)
L (=10 mics7) =Lp(—1, W47/ 7) - H (1 — @y i) (Frob,) |w,| ).
v|n, vicq
Note that Lg (=1,%, 75, ) has no pole since S is not empty. In other words,
Lg(fl7 W, 7xc,r) € A. By definition, the p-adic L-functions L;?(W, XY) and Lﬁ(fl, V, Tx)F)
are characterized by the specialization property at € € .’{X:
(27i)kd
(6.14) Q> Qb
ALy (—1, 947k 7)) = Lisg py (=L e 7).
The following proposition shows the constant term of the A-adic Eisenstein series

€o7d(¥ | 1,n) in Corollary is essentially a product of Deligne-Ribet and Katz
p-adic L-functions.

- LE ) (0,7)€),

(c0,p)

(L7, D)) =
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Proposition 6.6. Let ¢° = (¢°) € G(A}g’)) defined by ¢° = w; at all v € S and
g0 =1ifvgS. Then we have

(I)[g%]

where ¢(A) = W (reck(p))exc(p) € A*. Moreover, we have the following equality
between ideals of A

(67[“;]2(80Td(!p |1,ﬂ)))g€C(K) = (Lg(—LWJrTK/]_-) . LZ'(W7 2))

(€W [1,n)) = Ly (=1, ¥y7x/5) - Ly (¥, ) - c(A),

PrOOF. Let &, := E‘”'d(x |1,n) for x = 1be with € € X}. From the discussion in
and Proposition we deduce that

W ) (I)[go](gx) = lploo W ' L(Oo,p)(_l’ X+TK/F) - L p (0, x) S Xz (p)ex(p),

and the Op-ideal ((/I;E;T (€x))gec(k) is generated by (/I;EZ%](&X). The proposition thus

follows from the interpolation property of £°7¢(¥ |1,n). O

7. EISENSTEIN IDEAL AND p-ADIC L-FUNCTIONS

The aim of this section is to show the non-vanishing modulo my, of some Fourier-
Jacobi coefficient of our A-adic ordinary Eisenstein series £77¢(¥ |1, n) associated to
a branch character ¥ and an auxiliary ideal n satisfying and . We will use
the explicit calculation of Fourier-Jacobi coefficients of Eisenstein series on U(2,1)
due to Murase and Sugano [MS02]. This non-vanishing result enables us to show
the Eisenstein ideal on U(2,1) indeed is divisible by a product of Deligne-Ribet
p-adic L-function and Katz p-adic L-function (Corollary .

7.1.  We recall some notation from [MS02] §3.5]. Let m € F be a totally positive
element in F and let a be a fractional ideal of K. Let D# be the absolute different
of F. Put

f(a,m) = FnN me(ﬂ*ID,g}f)N,C/f(a).
For v € h, set
6’61;/-7:@ = v(D/C/]:) 5 :U'U(aa m) = U(f(av m))

For a character &, of K, we let a(k,) be the smallest nonnegative integer n such
that #, is trivial on (1+B73) N O , where

P, = w, Ok, if v is split,
! the maximal ideal of Ok, if v is inert or ramified.

Let €(s, kv, P, ) be Tate’s epsilon factor, where v,  := 1, 0 Tric, 7 (Recall that
P, : Ar/F — C* is the additive character x — ¥ (mz)) and let
6(%7 Ry, 17bm,)C)

|6(%7 va¢m,K)|

be the local root number of x,. If k is a unitary Hecke character of K*, we denote
by W () the global root number of . It is well known that W (x) =[], Wi (k).

Wi (ky) =
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We shall consider a set of special Hecke characters of K*. Let X be the set of
Hecke characters of C* such that

Zo
Klax = Tic/ 73 Fool(Ze0) = [ ] |7‘ (200 = (25) € KX).
cex 77

If f(a,m) is an integral ideal, we define a subset Xp(a,m) of X which consists of
characters k € X such that
o Wi (ky) = kyp(V) for all v € h,
[
oy (a,m) if v is unramified in I,
a(ky) = € 2(po(a,m) + dx, /7,) if 6xc, /7, > 0 and g, (a,m) > 0,
20, /F, or 26k, 7, —1 if 6k, /7, > 0 and p,(a,m) = 0.

(cf. the definition of X(fprim(a, m) in [MS02, (3.10) page 380]). Note that the global

root number W (k) of k is +1 for k € Xp(a, m).

Remark 7.1. Let ¢ > 2 be a rational prime which is split completely in K and
let k € Xy(a,m). Suppose that £ is prime to the conductor of &, the places in S
and 9. Let £ be a prime of K lying above £ and let [ = £ N F. Let Koo be the
maximal [-ramified anticyclotomic pro-£ extension of K and let X;” be the set of
characters of Gal(K=. /K) of finite order. Note that if v € X, has conductor [*(*),
then W, (kv) = Wy, (k) and kv € Xy (aL?™) m).

7.2. Theta functions with complex multiplication.

7.2.1. Adelic theta functions. We identify K' = U(W) with a subgroup of U(V)
via t — diag(1,¢,1). Define the algebraic subgroup R of U(V') by

R:{tn|n€N,t€&1}.
Define the function e,, : C¥ — C* by
em(w) = exp(2mi ¥ o(m)wy) (w= (wy)sex)-
oeX

Let T}, be the space of smooth functions © : R(F)\R(A) — C which satisfy the
following properties:
e O(n(0,2)1ts) = 1, (2)O(r) for z € A, r € R(A) and to, € KL,.
e For every ry € R(Ay), the function we > € (— 55 WeoWoo) O (N(wee, 0) 77)
is holomorphic on K.

We call T}, the holomorphic theta functions of index m. We equip T}, with the
inner product defined by

(e,@f):/ o(r& (rdr (0,0 €T,
R(F)\R(A)

We let K = £'(A) and K= K'(Ay) be the groups of norm one for brevity. For
t € Ky and © € T?,, denote by p'(t)O(r) := O(rt) the right translation. For an
ideal a and a finite place v, we put

1
N(a,) = {n(w,x) € Np(F,) |w€a, x+ iwﬂﬂ@ € ﬁlDE}fN,C/f(a,,)}
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and N(a) = [],cn N(ay). Let Ok = 0% N KL be units group of norm one. Define
the space T}, (a) of holomorphic theta functions of index m and level a by

(@) :={© € Tjt, | ©(rnt) = O(r), nt € N(@)Of | .

(IMS02, §1.13 and (1.14)]). By definition, T}*,(a) = {0} if f(a,m) is not integral.
Henceforth, we assume
f(a, m) is an integral ideal
until the end of this section.
Define the endomorphism P, of T}, by

PaO(r) = O(rn)dqn,
N(a)

where dqn is the Haar measure on N(a) normalized so that vol(N(a),dsn) = 1
(IMS02, §3.1 (3.1)]). Then Pq is a self-adjoint projector (c¢f. [MS00, Lemma5.4]),
and
Tiy(a) = {© € Pu(Tiiy) | /()0 = O, t € Ok }.
The space of primitive theta functions T}, ;. (a) is defined by
T} prim (@) = {© € T} (@) | Po® = 0 for all b > a,b # a} .

Let (p, V™) be the smooth lattice model of the Heisenberg group N(A) with central
character 1p,, defined in [MS02, §2.7]. For x € Xy(a,m), let M, be the Weil
presentation of K4 on V™ defined in [MS02, page 365|. We note that M, (z/2) =
k~H2)M(z) for z € AY, where M is the universal Weil representatiorﬁ of Ag
defined in [MS00| §4.3]. Then M, can be extended to R(A) by setting M (nt) =

p(n)M,(t), n € N(A),t € K4. Let V™, C S(Ax) be the subspace of V™ defined
in [MS02, §2.25]. Define the intertwining operator 7, : V;, — T}, by

TI(@)(r) == Y Mu(r)®(a).
aell
‘We put

T;znol,prim(a7 H) = {9 € T%l,prim(a) | 0= ﬁm(@) for some ¢ € Vh"oll} .

Then T}, i, (a, %) is the space of primitive theta functions attached to (a, x) de-
fined in [MS02| (3.3) page 377]. The following multiplicity one theorem for primitive
theta functions is proved in [MS02, Thm. 3.8].

Theorem 7.2. For each r € Xy(a,m), dimc T} (a,k) = 1.

hol,prim
7.2.2. Shintani operators. We recall that the unitary (adelic) Shintani operator
F*(z) € End(T},, i (a)) for 2 € K and a finite place v { f(a, m)Dx,r is defined
by
L-%/2lt, Pop (2900 i 2/Z ¢ OF,.
Tic, )7, (T) - © if 2 =axu, z € F),u e OF .

F*(2)0 = {

Then .7*(z) = L*(2) |Z|I%va where L*(z) is the classical Shintani operator introduced
in [Fin06, page 775|. The following proposition is proved in [Fin06, Prop.2.1] with
a key ingredient [MS00, Prop. 7.3].

3The definition of M does not depend on a particular choice of models of the Heisenberg group
representation.
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Proposition 7.3. The Shintani operator #* can be extended to a unique morphism
F*KN\AL = End(Ty, i (a) such that F*|px = T/ 5 and 9’*|K§05é =M.
Furthermore, eigenfunctions of F#* in Thot prim
primitive theta functions attached to (a, k).

(a) with the eigencharacter x are

We define the projector P : Tt . (a) = Ti, . (a, k) by
P.O = k1 (2).F*(2)0d* 2z, O = KXAT\AL 4,
Cx

where the Haar measure d*z is normalized so that vol(C)c,d*z) = 1. Note that
Py is self-adjoint since .#* and r are unitary. Let f, := f(a,m)Dx 7. By [MS00,
Lemma 7.4|, we have .7 *|;,;,) = 1. Fixing a system of representatives C~ for the
relative ray class group C (fa) := Cc /U(fa) modulo f, in (A,(gff“))x, we can write

1
PO=——-- Z k1 2)F*(2)0 (©c Tl prim (@), £ € Xo(a,m)).
(Ol 2 '
On the other hand, for each finite place v, let Py prim, o be the self-adjoint projector
onto the space of local primitive theta functions introduced in [MS00, §5.7]. Define
the a-primitive projector Pa prim = [[, Pa,primw * They = Thorprim(@). Finally,
we define the self-adjoint projector

- . mm m
Pa,li = Pli © Fprim,a: Thol — Thol,pm'm(a’ "{)’

7.2.3. Classical theta functions and their integral structures. We review the analytic
theory of theta functions. A standard reference is [Mum?70, ChaperI] (See also
[Fin06, §2]). Define a positive-definite Hermitian form H™ on C¥ by

H™(w,w') = (=20) Y woo(md™ Y], (w= (w5)ses, 0’ = (Wy)sex)-
ceXr

Define a cocycle e : C¥xK — C* by
l
e(w,l) = exp(rH™(w + 3 1)).

Here K is embeded in C* by [ — (c(I))secx. Choose a finite idele u = (u,) € A ¢
such that Ox, = Or, ® Of, u, for each v € h. For w € Ak, let x4,y be the
unique elements in Ay such that %w@ﬁ’l = Ty + ypu. For l € K, put a,(l) =
djm(_xl)'

Let b be a prime-to-p ideal of K such that f(b,m) is an integral ideal. Thus
Qp := ay|p 1S a semi-character on b which takes value 1 and is independent of the
choice of u. It is straightforward to verify the following equation:

ab(ll)ab(ZQ)e(w -+ lQ, ll)e(w, lg) = ab(ll + lg)e(w, l1+ 12), ll, lo €b.
We define a line bundle L7 on C* /b by C* xC/b with the action of [ € b given
by
l(w,z) = (w+ 1, ap(De(w, ).
The canonical rigidification of L7* along the zero section is given by e: C =

L7 (0), z — [(0,z)]. The space of global sections I'(C* /b, L") consists of all
holomorphic functions 8 on C* satisfying the equation

O(w+1) =ap(De(w,)8(w), l € b.
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The line bundle L is ample and dimc I'(C*/b, L{*) = Nz/q(f(b,m))Dx. For
I € K and a complex-valued function f on C*, define

A(f)(w) = e(w, )™ fw +1).

The operators A; satisfy the commutation relation

1 - -
(71) A11A12 = em(@(lllg — lll2))Al1+12~
Ifl € b¥:=f(b, m)_lDE}}-b, then A; is an endomorphism of I'(C* /b, L") and acts

by multiplication by a (1) if I € b. In addition, {A;},.,v are elements in Mumford’s
theta group ¢(L(H™, ap)) [Mum?70, page 235]. For © € T}?,(b) and ¢ € K, we
define a classical theta function 6. € I'(C* /be, L) by
1
20
Fixing a set of representatives I- of the ideal class group K'\K} /OL in ICl(Agcp ),
the map O +— (0¢). gives rise to an identification T}, (b) = HCEI}C I(C* /bc, L.
We discuss briefly the integral structures of theta functions via their geomet-
ric interpretation. A more detailed account can be found in [Fin06, §3] and the
references therein. By the standard theory of abelian varieties with complex multi-
plication, the pair (C* /b, L") descends to (Bp, L") over a discrete valuation ring
Ry := Z, NN for some number field N so that (B, L") ®p, C ~ (C¥/b, LT").
Here we are making use of the fixed isomorphism C ~ C,. We fix a rigidification
ec: Ajp = LY /Ry so that ¢, oeg(z) =z for every z € C = A'(C). Define the
Z,-submodule T, (b) of T (b) by

int
T3 (b) == H I(Boc, Loe) @Ry Zp-

celp

0. (w) := e (——ww)O(n(w,0)c).

We call T?,(b) the space of p-integral theta functions. By the ampleness of the

line bundles L7%, we have T7,(b) ®z, C = Tiy, (b). The complex theta group
G (L(H™, ay)) is the set of C-points of the theta group scheme ¥(Ly") /g, [Mum70,
page 221]. The operators {A;},.,. are torsion points in ¢ (Ly*)(C) in view of (7.1)).

In particular, this implies that {4;},.,. belong to ¢(£{")(Z) and preserve T (b).

7.2.4. Integral projectors onto primitive theta functions. Let Ay (resp. As) be the
set of unramified (resp. split) places of F where x is ramified. Let hc = hx/hr be
the relative class number of . Put

Bi(w)= [T 0+a¢), Baw)= [T (1 —a;h),

vEA, vEA2
B*(k) =hg - [OF : OF] 7' B1(k)Ba(k).

Here g, is the cardinality of the residue field of Ox, . Suppose that b C a are prime-
to-p ideals. We note that a C bY as f(a,m) is integral. From the equation P,0 =
(#(a/b)~1 Yicase Yall)Aifc)c for © = (Oc)c € Tj, (b), it follows immediately that

the operator P, is indeed a p-integral self-adjoint projector preserving T?",(b) and
Po (T, (b)) C T, (a). By [MS00, Lemma 5.9], the normalized primitive projector
wprim = B2(K)Pa prim is a Z)-linear combination of {Py }, for prime-to-p ideals

a’ D a, so we find that P prim is also a p-integral self-adjoint projector.
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On the other hand, we claim that B*(x)/#(Cy (fa)) € Z(p). Indeed, by definition
Cx (fa) = KXAF\AL ;/U(fa), so we find that

#(Cr (fa)) | hic - [T #(OF, /(1 +§.0x,)OF, ) -

v[fa

Since p > 2 is unramified in K and the conductor ¢(x) of k and f, share the same
support (k € Xy(a,m)),

p-part of §(C (fa)) | p-part of hy - H (1 =7/ 7(@v)qv) | p-part of B*(k).
vEA;

This proves the claim. It follows that the operator Py := B*(x) - Py is a Z,)-linear
combination of p-integral Shintani operators {.#*(2)} ..~ by the choice of C~. In
particular, P} also preserves the space T, (a).

We have thus constructed a p-integral self-adjoint operator

,P:,n = P: 0 P:,prim = B" (H)B2(H) : ,Pﬂ:"i
such that Py T, (a) C T}, i (e, ) N T, (a), and Py, acts T, .0 (a, k) via

the multiplication map by B*(x)Ba(k) € Z(y).

7.3. Fourier-Jacobi coefficients. Let a = (a,) € (A,(é’,)f)X and let a := aOx fNK
be a prime-to-p fractional ideal. Let F' € My,;- (K, C) be a modular form of weight
kI= = (0,0;kX). Put F,(g) := F(g9d(a)), where d(a) = diag(a@, 1,a"1). Define a
function F* on R(A) by

F'(r)= / P, (—2)Fy(n(0,2) r)dx, r € R(Ax).
A/F

Then F" is a holomorphic theta function of index m and is called the m-th Fourier-
Jacobi coefficient of F,. For & € Xp(a,m) and a non-zero © € Ty, ... (a, k), define
the period integral I(©) by

1(0) = /}CIW o) t,

where d*t is normalized so that vol(KC'\KY,d*¢) = 1.
Define a linear functional lg ., . M- (K, C) — C, by
* . F;n, @ —
(7.2) lam.(F) = 1(B*(k)Ba(k)em(—ix) - Fe",0) -1(©) - hy).
(©,0)

Note that lq m,«(F) does not depend on the choice of © in view of the multiplicity
one theorem for primitive theta functions (Theorem [7.2). Now we examine the
p-integrality of the linear functional I, ,,, .. Suppose F' is a p-integral modular form
in My;- (K,:71(Z,)). The Fourier-Jacobi expansion of F, is given by

F,=F)+ Y FEr-qm,
meF
where F/™ := F™ - e,,(—ix) is a p-integral theta function in T?,(an) with n

the prime-to-p ideal defined in (al). Let Of« = (Bakc)cer. be an element in

Thot prim (8, £) N T, (a) such that 64 # 0(mod m) for some c. Then we can
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write Py ,, ;" = Aqm,x Oy, for some Aq o € L7 1(Z,) by Theorem It is clear
that

(Py 2, 07) = B (k) Ba(k)em(=is) (Fy", OF,) = Aamx(OF,, OF,)-
In the first equality, we used the self-adjointness of Pg .. On the other hand, it is
well known that he = Q- #(Cc (Ok)) = Q- vol(@}c, d*t)~1, Q@ =1 or 2, and hence
the period integral
L(Og) hie = Q- Y 00
cell

is a sum of the evaluation of p-integral theta functions at the zero section. Therefore,
we have the following properties for g, ,:

lamw(F) = t(Aam,x - 1(OF) - hic) € Zy,

7.3
(7:3) lami(F) = lamx(G) (mod my,) if F'= G (mod my).

7.4. Non-vanishing of Eisenstein series modulo p (I). Let x be a Hecke

character of infinity type kX, k > 4. Suppose that ¢ is the conductor ¢(x) of x. In

particular, x is unramified at every place above p. We will show the non-vanishing

modulo p of the ordinary Eisenstein series £°"%(x | 1,n) defined in under

suitable hypotheses. We first introduce an auxiliary Eisenstein series E°(y |1,n).
Consider the following sections in I(x, s):

9)(75 = ® x50 ® fg,syua
vE Sy vESy
_@mi)* AF(s,x)
TOOEY  vol(Kp(n)) X
where A5 (s,x) = [Togs A2.0(s, x) (Proposition . We note that 0, , differs from

¢y,s defined in Definition only by the choice of the local section at p. Let
E°(x,n) be the holomorphlc Siegel-Eisenstein series on G associated to 67 .|s=o

defined as in .

Proposition 7.4. The Eisenstein series E°(x,n) is defined over 2(p).

*
0X7

Proor. It suffices to show E°(x,n) has Fourier expansions with coefficients in
Z(p) by g-expansion principle. With the notation of for each § € Ha(Ay) with
det B # 0, define ag(x,n)® (the prime-to-p part of az(x,n)) by

) = H Xo(det uil) : H R o(X+.0(m0)) - cs(K, L) - Izw) (B),

ves vgSUS,,
v(det 8)>0

where Z®) is the compact subset in %2(A§é’7)f) given by
2 = T] Ly x ] Helbyw)”
ves vgSUS,

By Proposition [5.4]and Proposition[5.7, E°(x,n)(Z, ga) (in the notation of loc.cit. )
has the Fourier expansion

> ag(ga, E°(x,n))q”,

BEH2(OF, i),
o(B8)>0 for all ceX
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where A € GLQ(AZUSP) x GL2(Ok,) and

aB(QA, E(X7n)) :X_l(det A) |detA|i,c ’ aA*ﬁA(X7n)(p) ) a%(an)p?
ag(x;)p = (det B) ¥ T Rp, (x4.0l1 (@)

vESy
Since X(A%)XO,EP) C Z(Xp), it is clear that az(x,n)® belongs to Z ;). To see the

p-integrality of ag(x,n),, we note that vp(X+7U|~|_2(wU)) = vp(|wv\k_2). On the
other hand, by Proposition REW(T) € Z[T] is a polynomial with degree less
than or equal to v(det j3), it follows that

aj(x,n)p = (det )27 |det 85 T] RpoOcrol1 (@) - |det I7 "
vESy

belongs to Z(p) . O

Let E°(x |1,n) be the classical Eisenstein series on G associated to the pull back

section (0% ,)P"|s—o. By definition, we have
0 (2mi)~ 0 ,
E (X |17n)(7—ag) = QkZ : Z E (X?n) (Z7-7Z(g,h))X(h), (Tag) EXQ,IXG(Af)'
o0 heXw (n)

Then E°(x |1,n) is an p-integral modular form of weight k7~ in light of Proposi-
tion Next we show the ordinary projection e.F°(x |1,n) and E°"%(y |1,n) are
the same up to a p-adic unit.

Lemma 7.5. We have
E°md(x |1,n) = uy - e.E°(x |1,n),
where 1p(u1) s a p-adic unit.

Proor.  We first claim that for every w € X, and v the place of F lying below
w’
L(=1,X®) ,ora
7.4 SO 1 0w = s for
( ) €q fx,l,O,u L(&XU) v

Indeed, by Lemma [6.4]

0 0 "d
eL"f)(,l,O,v = lwz (fx,l,O,v)fz())T .

Since f;?,Ls,v is the standard spherical section, by Gindikin-Karpelevi¢ formula
([Cas80, Thm. 3.1]) we have
L(=1, xw)
0 _ 0 _ s Xw
le( X,LO,U) - sz( X,LO,U)(I) - L(()aXE) .

This verifies (7.4). Using the calculations for the local pull-back sections in Propo-
sition and Proposition we find that the ordinary Eisenstein series e.E°( |
1,n) is associated to the section

(k)40 (k — 1)
* b _ SuUS,
e(03.s)"|s=0 = ORE () @10 L

< [T Z(-1.xtwmc, /7)) L0, xw)L(—1, Xm)-

weX,, wlv

(=1 x47ic)7) L5952 (0, x) - £
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Comparing e.(0} ,)P*|—o with the section (f¢"{")* in (6.13), we find that
E”(x |1,0) = uy - e.E°(x |1, ),

where u; = Huezp(l —pd“) L' (dy = [Fy : Qp)) and

L'=xze)- [ LZ@xihme,7) ' Llxg")  L(=1,x@) ™

weX,,wlv

= H (1- X—T—,lv(wv) |wv|2)(1 - X;l(wv) | |)(1 = xw(wy) ‘wvrl) Xw (o).

weXy,, wlv

Note that ¢,(L’) is indeed a p-adic unit if & > 2, since v,(xw(wy)) = —kd, and
vp(xw(wy)) = 0 for every w € X,. It follows that ¢,(uq) is also a p-adic unit. O

Let E := E°(x |1,n). The Eisenstein series E is unramified at p and hence is an
eigenform of the normalized Hecke operators {T),(a;)};_ o 5 for v € S, defined in

Proposition 3.15}

Lemma 7.6. The eigenvalues {\; v}, o5 of {To(i)},—q o 5 are given by

Mo =1+ Xl_ul(wv) |y | + XJ_r,lv(wv) |zvv|2 )
Aaw = X%l(wv) =+ |wv|_1 + X-_i-,lv(wv) |y ] s
)\3,1) = X%l(wv)o

It is clear that {tp(Niv)} 5 are p-adic units.

i=1,2

Proor. This is a standard local computation. For the convenience of the reader,
we provide the detail for the eigenvalue of T; (). We shall borrow the notation
from Then F' = F,, w = w, and (x1,x2) = (Xw, Xxw) With w € X, w|v.
Let fO be the spherical function in I,(x,1,0) = I(xa|-|"",1,x7 ) K x3 ' with
f°(1) = 1. Then it suffices to show T}, (a1).f* = A [0 <= T,(a1).fO(1) = Ay 0.
With the identification G(F) = GLy(F)x F*, we have

oY = ar'v(ar) = (ding(w, @, 1), ).

According to (3.21)), we find that f° | T}, (a1)(g) equals

1 X w
ool 1w @ | xt(@)
z1,22€0/ (w) 1 1
1 z3 w 1
+ Y 1 1 Xz (@) + g @ )Xz (@)
z3€0/(w) 1 w w

Therefore, by the normalization in Proposition [3.15]
Mo = To(an).f2(1) = [@*- 0| To(a1)(1) = 14x7 (@) [@]+x7 "X (@) |2 O

Lemma 7.7. Let© € TP (a,k) and let co(E) := (EI",0). Putrk = ﬁ’lHiK,

hol,prim

Let v € S, and w € X, with w|v. If (p,f(a,m)) = 1, then we have
Ca(Tv(al)'E) = ca<Uv(a1)'E) + |wv| X;lgw(wv) : ca(E)>
ca(Ty(a2).E) = ca(Uy(az2).E) + X%I%U(wv) - ca(E).
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PrOOF. Let II; and Il be uniformizers of IC,, and K respectively. Using the

formulas Proposition and (3:2I) (¢f. Lemma[7.6), we obtain that
ca(To(0n)-E) =ca(Us(0n)-E) + X~ () [ €yppgg, ()X (I H2) + X7 () [T €0 (E),
alT(02) ) =Ca(Uy (02) B) + X (1 )y, 1 (E) + X () [T g1 (B)x ™ (115 o).

Since f(a,m) is prime to p, p,(a,m) = 0, and hence according to the formulas
of primitive Fourier-Jacobi coefficients in [MS07, Lemma 5.2 (iii), (iv)] (note that
(Q, x) loc.cit. is (x, k)), we have CaHII(E) = cangl(E) =0 and

Carrrn, (B) = [T|? &I x (T ') - eq(E),

l —_ p—
Cal_Ile_l(E) :|1_[1‘2 K I(HQ)X(HIHQ 1) 'Ca(]E)~
The lemma follows immediately. (Il

Suppose that m € O% ) Then we have (p,f(a,m)) = 1 by our choice of ¥

and a. Since v, (xy Fuw(@,)) = (k — 1)d, and v,(x5 Fw(w,)) = 0, it follows from
Lemma [7.7 to E := E°(x |1,n) that

tp(Mw) lams(E) = lamx(Us(ar).E) (mod my,),

7.5 -
(75 tp(A2w — X' R (@0)) ~ laym s (B) = lam.n (Uy(a2).E) (mod my,).
Let \; := Hvesp i for i =1,3 and let
Ao(k) = [ Mo — X' Fas(@0).-
vES,
Note that U,(ag) = T, (a3). It follows from (7.5) that
tp(MA2(K)A3)  lam.k(B) = lamx(Up.E) (mod my,) (U, = Uy(ay)).

i=1,2,3,0€5,

Therefore, by Lemma and the definition e = lim,, o, UI?I we have proved the
following key proposition:

Proposition 7.8. Ifm € O% (p) @nd tp(A2(K)) is a p-adic unit, then
lamn (B (x |1,1)) # 0 (mod my) <= Lo, (E°(x |1,1)) # 0 (mod my).

7.5. Results of Murase and Sugano. Let wyx be the cardinality of the torsion
subgroup of OF. Define the subset 7" of prime ideals of Ox by

T ={q|Nz/q(q) # £1 (mod p), (q,2pDicc) =1, Nr/q(q) — 1 > wx } .

Let £ denote the set consisting of triples (a,m,x), m € Ox (p),4+ & prime-to-p

Or-fractional ideal a and k € Xy(a, m) such that f(a,m) = ap [[; q;, where q; are
distinct primes in 7" and ap is only divisible by prime factors of Dy, r. Note that
if (a,m,k) € £, then p 1 aaB;(k)Ba(x). Suppose that we are given a specific triple
(a,m, k) € £, which will be determined in Proposition In addition to and
(a2), we assume the auxiliary ideal n is chosen to be sufficiently small such that for
every v € S,

(a3) O (rn(b,x)) = O, (r) for every z,b € a,n, and r € R(A).

It is obvious that n only depends on m and (a,, ky)ves-
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Let | = £¢€ be a prime in Remark and wge be a uniformizer of Ka. Let
v € X{ be an anticyclotomic character of conductor [". Let by = (byw) € A;f such

that (0~ D,C/f) NF =byOr ;s NF. Put

|DJ-'|R Ni/q(m HX by ) |f(al™, m) bﬂ%}

vgS

T

The following result is essentially due to Murase and Sugano.

Theorem 7.9. Let E := E°(x [1,n). If © € T}, .,,,(aL", Kkv), then we have

(dm)* Tk — 1)

em(—ig‘) ’ (EZ’J’,@) = QkZ

L5 (=5, ) - T(O),

— n e o/ —cC . . .
where a = awy and us == u) X “(a) |O‘|A;c,f is a p-adic unit.

PrROOF.  This theorem was proved in [MS02, Thm. 4.4] for the special case where
X is unramified everywhere and n = Ox. Following the computations of Murase
and Sugano, we sketch the proof of the general case. The starting point is the
following integral expression of Fourier-Jacobi coefficients of Eisenstein series.

Lemma 7.10 (Lemma 6.6 [MS02]). Let E = Ea(—, f) be the adelic Fisenstein se-
ries associated to a decomposable section f = ®, f, € 1(x,1,0) and© € Ty, . (aL™, kv).
Then we have

(E2.0) = X" @)ala - [ TEWea )00
KK

where & = @@, € V7, such that T2(®) = © and Wy o5 = @uWy,.0,.7, 15 a
decomposable function on Ax. For each place v of F, we have

W g (20) = / T2 (b)p(a(a 0)) By (z0)db,

v

and

I3 p (by / fo(Lon(ay by, )8, (—Ni 7)) w0 )day, To = 1 1 = —wy.

Define the section f := foo  ®veh,vgs f070,v Ques fy1,0,0- 1f v is archimedean,
then by [MS02, Lemma 6.8] we have

(?(”)) D7l Ni/q(m)* ey (is) - @,.

For each finite v € S, f, is the spherical section and v is unramified in . By
[MS02), Prop. 10.2], we have

(76) WXv’q:'uafv =

—1 . LS(_%7XUH"UVU)L(_1aX-‘r,UTK:U/]:v) 6
L(0, xo) U'

(77) Wvaq>U7fu = X(bﬂ,'u) |b19,v

Suppose that v € S. Note that

Ton(ay, by, z0) € P(F)w Dy (n,) <= a;'b, € ny9,z, € n,.
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As the prime ¢ is prime to each place in S, by the multiplicity one for (local)
primitive theta functions and (a3), we have 30, = La,n,0 and p(n(by, 0)) @, = @,
for b, € a,n,. Hence,

(7.8) Wy, a0.p, = |n°0?] - @,
Combining the these formulae, we find that
(27i)kd LS (=%, xkv) —

(7.9) T (Wyag) =t - em(iz) - T(k)d  LS(—1,x47c/7)L5(0, x)

Note that the Eisenstein series E is associated to the section (6% ,)’|s—o and that

* \pb _ (27.”')](:(1 A LS _ LS
(Gx,s) |S:0 Ok ’ 2,00(07X)' ( 177-’C/J:X+) (07X)'f-

Therefore, the theorem follows from (7.9) and Lemma O
We recall the following result due to Tonghai Yang [Yan97] (¢f. [MS02, Thm. 4.5]).
Theorem 7.11. If© € T} (al™, kv), then

hol,prim

_;. lm/ . kv) I Bo(kr) 7!
= QL(LT}C/]-') L(27 )(@79) Bl( ) B( ) :

By Theorem[7.9] Theorem[7.11]and the well-known analytic class number formula

1(8)”

1 _1 _
2L(1,7x/7) = (2m) [DF|& | Dlg” [OF : OF] hy,

we find that
(7.10)
o I'(k—1)?L5(0,xk tv) T(1)4L(0,Fv—! _
la[",m,m/(E (X |1,‘I‘l)) =ip ( ) k,1( b ’ ( (1.2 ) : LP(BQ(’%V)}LIC) ’
oY 0%
for some p-adic unit uz. Here kK = /-leiK, and we have used the identity

L(i,kv) =L kv = L(L, s~1v71).

2 27 2
7.6. Non-vanishing of Eisenstein series modulo p (II). To study the non-
vanishing of £°7%(x |1,n) modulo p, we make the following hypothesis for y:

Hypothesis 7.12. There exist (a,m,x) € £ and [ € T such that
e [ has degree one over Q, splits in K and [ ¢(k).
e The local L-factor L(0, xok, ')~ # 0 (mod m) for every v| Dy x.
e There are infinitely many anticyclotomic finite order characters v € X,
such that
(k- 1)?L(0, xf'v) T(1)?L(0,Fv1)
Q{(}léq)z ' QL>

# 0 (mod m).

Proposition 7.13. Suppose further that p 1 hy and x satisfies Hypothesis .
Then there exist (a,m, k) € € and an auziliary ideal n satisfying (a1-3) such that

la,m’,{(EO"d(X |1,n)) # 0(mod my,).

PrROOF. Let (a,m, ) and [ be as in Hypothesis Write [ = £€ in K. Choose
an integral ideal n of O such that n satisfies (al]), and according to this
triple (a,m, x) € £. We claim that there exists some v € X, of conductor [ such
that
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(1) ¢p(A2(kr)) # 0 (mod my,), and
(11) Aaﬁ",m,nu = la}:",m,/ﬂ/(Eo (X |].7 n)) ié 0 (mod mp).
Then it follows from Proposition that (aL™,m,kv) € € and n enjoy the desired
properties in the proposition.
Now we prove the claim. Note that p{ B (kv) for all v € X[ since (a,m,r) € £
and [ € T. By the formula and Hypothesis there are infinitely many
v € X[ such that

Ls(0, x5 ') - Aggr e Z 0 (mod my)  (Ls(0, x5 ') = [[ L0, x07, 1))
vln
Since ¢ = ¢() is prime to ¢(x) and n satisfies (al]), Ls(0, x<~'v) is a product of local
Euler factors at ramified or split primes. Since L(0, x,k, *v5,) "t = 1 —x& " v(d,) =
1 — xk!(dy) # 0(mod m) for v|Dy,# by the choice of , and Frobenius elements
at split primes in S U S, generate a non-trivial subgroup in Gal(IC;OJ/IC) 5 Zy,
there are only finitely many v such that Lg(0, xA'v)~! = 0 (mod m) and \y(kv) =
[Toes, (A2w — Xo Fovw(wy)) = 0 (mod m). Hence there exists some v € X[ such
that (i) and (ii) hold. This completes the proof. O

After preparing some elementary lemmas on the construction of triples (a,m, k) €
& with prescribed properties at ramified places, we verify Hypothesis for cer-
tain class of x using the main result in [Hsil2] on the non-vanishing modulo p of
Hecke L-values for CM fields.

Lemma 7.14. For k € X and m € F,, we have
(1) Wm(ﬁv) = :I:Kv(ﬂ)'
(2) If v is split, Wi, (ky) = Ky (0).
(3) If v is inert, Wy, (k,) = (—1)@l=e)trolam)) g (9),
(4) If 0 € X is archimedean, Wy, (ky) = ko (9).
Proor. If v is a finite place, this is proved in [MS00, Prop.3.7]. If 0 € X' is

archimedean, then W, (k,) = i = k() since io () > 0 for 0 € X by our choice of
9. O

Lemma 7.15. Suppose pt6-Dp. Let Kp = HleK/f Ky and Fp = H'UlD}C/]: Fo.
For each character 7% : K5 — C* such that Tu|]_-7§ = Tx,F, there exists a triple
(a,m, k) € € such that /<;|,C1x) =Tt

PRrOOF. Let ap be the conductor of 7% and let aj, be the integral ideal of Ok
such that for each finite place w of I,

,\_ Jw(ep) —w(Dx,r) if w(ap) > w(Dg,x) >0,
w(aD) = .
0 otherwise.

Since p > 3 is unramified in K, by Chebotarev density theorem there exist mg € F
and ag such that f(ag,mo) = qi1920p for some ¢1,q92 € T with g2 split, and
if Dy # (1) we can choose q; to be split or inert. Note that Xp(a,m) =
Xo(aNi;7(a), Nic)r(a)"tm) for @ € K* and p satisfies the ordinary condition,
so we can further choose mg € O ]X_. ()t by the weak approximation theorem.

We claim that there exists x € X such that k| K5 = 7, the global root number
W(k) = [, Wi, (kv) = 1 and the conductor ¢(x) = qiq2ap. Suppose the claim
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is true. We choose u = (u,) € A such that u, = 1 if v[oo, u, € Of ifv €h
and Wy, (ko) = ko(uod) = i/ 7 (o) k(D) at all v|Dx . Thus by Lemma |7 -
(4) and W(x) = 1, we find that 7xc/z(u) = 1. Thus there exist m; € F; and
a1 € AY such that miNx,r(a1) = u. Since v|p splits in K, we may further
assume mj € O]_. (D)t Put m = mem; and a = ayap for a; = XN a1Ox . Then
f(a,m) = f(ag,mp) = q1920’5. By Lemma and the definition of af,, we find
that k € Xy(a, m).
Now we prove the claim. Let

2
T= AT KOS X H O,éuxH(l—i—qi)
vtq1q2Dx /7 =1

Define a character € on U’ by

o exo(2) =Ilex 22 2 = (20)oex € (KOQ R)*.

_ d .

e €, = 1 for finite v { D, r, and €|Ké =7k,

® €lxx =1and €[ax =T/ F.
One can show that € is a well-defined character using the assumption that (q1 42, wi) =
1. Also, from the assumption that Ny ,q(q:) — 1 > w, it is not difficult to deduce
that that the image of O,éq_ is a non-trivial subgroup in Ag /U;, U; := U’O,éq_ and
{i,7} = {1,2}. Therefore, there exists a Hecke character x of * such that x|y =€
and ¢(k) = qiq2ap. If Dx,r = (1), then W(x) = 1 in virtue of Lemma Sup-

pose Dy, 7 # (1). Put aq, = 1if q; is inert and aq, = 0 if q; is split. It follows
from [Roh82 Prop. 6, Prop. 11] and Lemma that

H mo ’%
Wine

(Txc,/7,)

T W&, 7)-

v|Di )7
:(_1)aq1 A(Tﬁa 19)7

where

Wmo (TB)
Wino (Txc, /7.,

K’ql (19)

—— ~ " Rqo ?9 w 7'3,7' - ) =
T)qu/]:ql(mo) q ( ) ( ( /Cv/]'-u)

H W(Tngle/fv)' H €, (071) H 7'5(1971)-

v|Di /7 vtDx /7 ,v[9 v|Dk /7

To deduce the last equality, we have used the fact that ¢ € O,év}"vx for all v
unramified in K, (q1q2,9Dx) = 1 and vq, (mo) = 1 (mod 2). A key observation
is that A(7%,19) does not depend on the choice of q; € T. Since W (k) must be
+1, the number A(7# 9) = £1, and we can manage q; to be inert or split so that
W(k) = 1. O

We introduce an invariant p,(A) for a Hecke character A of K*. Write the
conductor ¢(A\) = ¢(A\)Te¢(A)~, where ¢(A)™ (resp. ¢(A\)T) is a product of non-split
prime factors (resp. split prime factors) over 7. We put

(7.11) p(A) == inf v,(Ay(x) —1).
. w|§>\:) TEKY

Proposition 7.16. If u,(x) =0, then x satisfies Hypothesis ,
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PrOOF. By Lemma there exists (a,m, ) € & such that L(0,x,r, )"t #
0 (mod m) for every v|Dx ;7. By the choice of «, k is self-dual with the global root
number W (k) = 1. On the other hand, the p-adic avatar of Y% ~! is not residually
self-dual since x is unramified at p > 3. We note that u,(%) = p,(XE™1) = pp(x) =
0 since the conductors of k and x only have common divisor at ramified primes and
p > 2. Let [ € T be a prime of F such that [{ ¢(k) has degree one over Q. We apply
[Hsi12, Cor.6.5] to (x&x ', 1) and [Hsil2, Thm. 6.8] together with [Hsil4, Remark
6.4] to (k,[) respectively, and the proposition follows. O

7.7. A-adic Hecke algebra for U(2,1). Suppose that we are given a triple (a, m, k) €
€ and an auxiliary ideal n satisfying (al-3). Let S be the set of places of F divid-
ing n and let K be the open compact subgroup defined in ([5.15). We retain the
notations in Recall that ¥ : A, - A — QX is a branch character, ¥ is the
A-valued Galois character associated to 1) and M.q(K,A) is the space of A-adic
ordinary cusp form. Extending the coeflicient ring O, of A, the linear functional
lamx yields a A-module map lq i Mora(K,A) — A compatible with special-
izations. The global Hecke algebra H° (G, K) defined in commutes with the
Up-operators, thereby acting on Mg,q(K, A) naturally. We introduce some Hecke
operators as follows. For each v € SU S, let w be a place of K above v and let @w
be a unifomizer of F,,. If v is split, we identify G(F,) with GL3(F,)xF,* according
to the choice of w and let

Qi = ((1‘“ o 1) 1),i=1,2,3.

Write T; ,, for the characteristic function of K,a; ., K,. Put

M= +e " +we?)(Froby),
Mg = (W4 we? 4+ W7 1) (Froby,),
A = ¥ ¢(Froby,).

If v is inert, let Ew := diag(ew ™!, 1, @) and write Q,, for the characteristic function
of KyB; wK,. Put

A9 = ¢, — 1+ (e720° 4 ¥~ 1)(Frob,,).

w

Let Ho™ be the A-algebra generated by the image of {Tiw}izy 95 if v is split
(resp. Q,, if v is inert) in Endp(Moa(K,A)). Let ho'd (K, A) (resp. H"¢(K,A))
be the A-algebra generated by the image of HY™ in Enda (M (K, A)) (resp.
Endp (Mo (K, A)) for all v ¢ SUS,. Then h*'d(K,A) is a reduced and finite
A-algebra. In particular h°'d(K, A) is henselian. Let X§* be a Zariski-dense subset
in X given by

x4 = {Ee X |€omr e x;ﬁjw},

where :{%;Tgl is the space of classical weights (4.3]) and 7 is defined in ([5.25)). For
ke € X§2, let hzid(K, 0,[¢]) be the image of h°*4 (K, A) in Endg, (¢ e.Mz( (K, 0,[¢]).
The following proposition is a standard consequence of the control theorems The-

orem and Corollary (¢f. [SU14, Thm.6.16]).
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Proposition 7.17. For each k, € %f\ls, the natural homomorphism
W (K, A) @a A/ Py, — B (K, 04[C))
has nilpotent kernel.

7.8. Eisenstein ideal. Let Z,(¥) be the ideal of H,(G, K) generated by (T}, —
AL, if vis split (resp. (Qu—AQ) if v is inert) and let Z°(¥) be the ideal of H°(G, K)
generated by Z,(¥) for all v € SUS,. Let I°(¥) be the ideal generated by the
image of Z°(¥) in h°"d(K,A). We call I°(¥) the Eisenstein ideal of h°*d(K,A).
Put

L5W) = LY (=1, W 7/ 7) L5 (W, X) € A.
We now prove the main result in this section.

Theorem 7.18. Suppose that the branch character v is primitive outside p, i.e. ¢
is the prime-to-p conductor ¢(v). We further suppose that the following hypotheses
hold:

(1) pt3-hyg - Dr,
(2) ¢ is unramfied at Xy, and Ywi® is unramified at X, for some integer a,
(3) np(¥) = 0.
If L5(W) is not a unit in A, then there exists an ordinary p-adic Eisenstei series
& = &ord(W |1,n) inducing a A-algebra homomorphism
~ho (K, A) A
W sy

PROOF. The assumption (2) assures that there exists a point € € X} such that
1€ is the p-adic avatar of the Hecke character y = e which is unramified at all
places above p (so the infinity type of x is X and &k = a(mod p — 1)). By the
choice of x and the primitiveness of ¢, the conductor ¢(x) of x is ¢ and p,(x) =
pp(¥) = 0. Thus x satisfies Hypothesis by Proposition It follows from
Proposition and that there exists a triple (a,m, k) € £ and a sufficiently
deep auxiliary ideal n such that

lam.m(E7H W |1,1)) = g (E7(x |1,n)) # 0 (mod m,).

Now we apply Hida theory for U(2,1),7 developed in Specializing the fun-
damental exact sequence in Theorem via 74 : A — A defined in (5.25), we
obtain the exact sequence

0—>Mgrd(K7 A)—>M0rd(Ka A)q)—wi @ Mord(Klgg, K) ®7\ A—0.
9eC(K)

Combining the calculation of the constant terms of £°7¢(¥ |1,n) in Proposition
we deduce that there exists a A-adic modular form &’ such that

F.=emw|1,n) - & - L5W) e M° (K, A)
is a A-adic cusp form. Since £(¥) is not a unit, we have

lam.n(F) = lam < (E74W |1,n)) # 0 (mod my),
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and hence lq , (F) is a A-adic unit. Define a A-linear functional Ag : h°™4(K, A) —
A by

lam(R.F)

La,m, i (F)
A direct computation shows that Z(¥) annihilates €°7¢(¥ | 1,n) (cf. [MSO7,
Lemma 3.1]). Hence, A\¢ induces a surjective A-algebra homomorphism
' hord (K, A) A
T TEsS@)
This completes the proof. (I

Ae (h) = e A.

Definition 7.19 (The ideal of Eisenstein congruence). Suppose that (£ (%)) # A.
Let mg be the maximal ideal of h°*d(K, A) which contains I°(¥) in ho"d (K, A).
Let h¢'d := h°"(K, A)y, be the local component of h°™(K, A) through which \¢
factors. Then h‘;fd is a local A-algebra which is finite, reduced and A-torsion free.
We still denote by I°(¥) the ideal generated by the image of I°(¥) in h¢'d. Let
i: A — h@d be the structure morphism. Define the ideal of Eisenstein congruence
Eis(¥,S) in A by

FEis(¥,S) =i Y(I°(W)) = ANT°(P).
It follows by definition that
A/Eis(¥,8) = hed /15 (w).
The following corollary is an immediate consequence of Theorem [7.18]

Corollary 7.20. With the assumptions in Theorem [7.18, we have
Eis(¥,S) C (Ly (=1,Wy7c/7) - Ly (7, 5)).

8. APPLICATION TO THE MAIN CONJECTURE FOR CM FIELDS

8.1. F. Mainardi in [Mai08| proves a divisibility relation between the Eisenstein
ideal in the topological ordinary cuspidal Hecke algebra attached to the unitary
group U(2,1) and the characteristic power series of an Iwasawa module related to
the main conjecture for CM fields. The idea of using lattice construction in his
proof are due to Ribet, Wiles and Urban ([Rib76], [Wil90] and [Urb01]). In this
section, we deduce the second inequality (E|S) in the introduction following these
ideas. We will work with ordinary cuspidal Hecke algebras for the coherent coho-
mology. Indeed, since the coherent Hecke algebra is a quotient of the topological
Hecke algebra, the Eisenstein ideal defined by Mainardi (Definition 3.4.1 loc.cit. )
specializes to our Eisenstein ideal I° (). However, the divisibility result proved in
[Mai08] excludes several height one primes of the topological Hecke algebra, so it is
not clear to the author if a partial result for the divisibility (E|S) in our setting can
be obtained by taking the specialization of Mainardi’s divisibility. Therefore, in
§8.3) and §8.4] we elaborate the ideas of Mainardi’s work in our framework, making
use of theory of the deformation of pseudo characters developed in the book [BC09,
Chaper 1]. The main theorem is Theorem and some arithmetic applications
of the main theorem are given in

Throughout this section, we let n and S be as in Theorem and retain
the hypotheses (1-2) therein. Denote by K, the cyclotomic Z,-extension and by
K, the anticyclotomic Zg-extension of K. Let 'Y = Gal(KL/K) (resp. Ty =
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Gal(K/K)) and let Ay = Oy[Tf] (resp. A_ = O,[I'c]). We have a canonical
isomorphism Gal(K/K) = I'-xI'c. Thus A} and A_ can be regarded as subrings

of A = 0,[Gal(K/K)]. We fix a set of the generators {’y(i)}. .y (resp. v4+) of
=

[ (vesp. I')f). Then A = O, [Ty, S1,...,S4] = Ay ®o, A_ is thé“(7d + 1)-variable
formal power series ring over O, with the cyclotomic variable Ty = v4 — 1 and the

anticyclotomic variables {Si = 'y(f) — 1} N
i=1,...,

8.2. Selmer groups for CM fields.

8.2.1. Definitions. Let L/F be a finite extension. For a subset T' of places of F,
denote by T* the set of places of £ above T. Denote by Lg the maximal algebraic
extension of £ which is unramified outside S* USIf. Let A be a profinite Z,-algebra
and p : Gal(Lg/L) — A* be a A-valued character. For partitions Szf =YoU Xy
and S = Sy U S1, we define the Sp-primitive Selmer group for (p, Xp) by

el (p, Zo) = ker § H'(Ls/L,p@a A) =[] H'(L.poad") g,

vESEUX,

where A* = Homeont (4, Qp/Z,) is the Pontryagin dual of A and I, are respective
inertia subgroups. We denote by X‘go (p, Xo) the Pontryagin dual of Seli“ (p, X0o).
When Sy or Xy is the empty set (so S1 =S or X = Szf is the set of p-adic places
of £), we drop it from the notation.

We define Selmer groups for the A-valued character ¥ attached to the branch
character 1) and the p-ordinary CM-type X. Recall that X gives rise to a partition
Sl = X,uxe (§1.4). Let ¥ be the Cartier dual of ¥, namely ¥7 : Gal(Ks/K) —
A% is the character defined by WP (g) = W~'e(g). Let Seli’ (¥, X)) = Sel (¥, X,)
(resp. Sely® (TP, 2¢) = Sel* (I, X¢)) and let X;°(Z, X) (resp. X0 (¥P, ¥¢)) be
the respective Pontryagin dual.

8.2.2. Let R be a commutative Iwasawa algebra over O,. Suppose that R is a
quotient ring of A with the quotient map 7 : A — R. Define the R-adic Selmer
group for (¥, X)) by

Sello (W, 3, R) = Sell (g 0 W, 3,).

Note that Selx (¥, X, R) = Sel,‘zw(w, X, R). It is well known that Sel (¥, X, R) is

co-finitely generated discrete R-module. The Pontryagin dual of Sel,‘%(@, Y. R) is
denoted by X ;g (¥, ¥, R) which is a finitely generated compact R-module. We recall
the definition of characteristic ideal of a finitely generated R-module.

Definition 8.1. Let ht1(R) be the set of height one primes of R. If X is a finitely
generated compact R-module, then for each P € ht;(R) we define
KP(X) = lengthRP (X XR iRp)
If X is R-torsion, then we define the characteristic ideal charx X of X by
charg X := H ptrX)
Pecht; R

If X has positive R-rank, we put charg X = 0. Define the characteristic power
series F'p(X) € R to be a generator of charg X (unique up to a unit). Denote
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by FA(¥, X)) (resp. Fy(¥P, X)) the characteristic power series of Xy (¥, ) (resp.
Xk (WDv Ec))

If 8 is a co-finitely generated discrete R-module, we define £p(8) = ¢p(8*) and
charq8 = chary8*.

Lemma 8.2. Let X be a finitely generated R-module and L be a nonzero element
i R. The following statements are equivalent.

(1) Lp(X) > ordp(L) for all P € ht1(R).

(2) Fittx(X) C (L).

(8) charg X C (£).
Proor. Since R is isomorphic to a formal power series over O,, R is a unique
factorization domain. Thus, every each height one prime P € ht;(R) is principal
and Rp is a principle ideal domain. This implies (1) and (3) are equivalent. The

equivalence between (1) and (2) follows from the base change property of Fitting
ideals Fittg(X)p = Fittg, (Xp) = P»(X). 0O

For each place w of K, we fix a local decomposition group D,, of Gk and let I,
be the inertia subgroup of D,,. The following observation is useful in studying the
specialization of the characteristic ideal of the Selmer groups.

Lemma 8.3. Let f € R be a non-zero divisor. If the kernel and cokernel of the
restriction map

H(Ks/K, 0 anR)@R/(f) =[] (H(w, T erR)@R/(f)"
weSkuze
are pseudo-null R/ ( f)-modules, then we have a natural R/(f)-module pseudo-isomorphism
Selic (T, £, R/(f)) ~ Selx(, T, R[]
PrROOF. Put S(R) = Selc(¥,X,R) and B = ¥ ® R*. It follows from the

following long exact sequence together with the snake lemma

0

0 ——= SR®)f] ——— H'(Ks/K, B)[f] [I H'(L..B)"[f]

weXeusk

[ H'(L.,B[f)">
weXeusk

H°(Ks/K,B) @ R/(f) — EE]:IUSK(HO(IW B) @ R/(f))Pr
0

0——=5S(R/(/))

HY(Ks/K, B[f])
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Remark 8.4 (Specializations). Let t be a positive integer such that d+1—1¢ > 2.
Let 0 =Wy C Wy C Wy C --- C Wy C I'k be a filtration of Zp-submodules of I'x
so that for i = 1,...,t, the quotient W; /W1 ~ Z,, and ', /W, is a free Z,-module
of rank d + 1 —t. Let L; = K% and A; = A(L;). Then L; is a ZZ*i+1—extension
of K and the restriction map T'x/W;_1 — T'xc/W; induces a surjective morphism
A;—1 — A;. The kernel of the map A;_; — A; is generated by an element a; € A
such that pt a;.
For 1 <4 <t, we put

N = HY(Ks/K,¥ @ Af_)) ®a, , i,

(2

N = (H(I,, ¥ ® Af_y) @4, A)P», we 55U SK.

?

The Pontryagin dual of N* is O, /(1)(A.) — 1)), which is pseudo-null A;-module as
d+1—14>2 If we(), the A-ideal (¥(Iy) — 1) = (Y(Iw) — 1) = (p™) for some
m > 0. Since (A;_1/p™A;_1)* is a;-divisible, Ni = 0. For w € S’;ﬂ let J,, be the
ideal of A generated by {¥(g) — 1} p . Consider the following two cases:

(i) d>2,¢t=1and Wy =T} In this case, A; = A/(T%). Then it is shown
in [HT94, Prop.3.2.3] that the image of J,, in A/(T4) has height at least
two.

(ii) Wy ¢ T_: Since J,, contains (1 + T4 )?"°(1 + S;,) — 1 and ¥(Frob,,) =
P(wwy) H;l:1(1 +5;)b — 1 for some 1 < jo < d and mog,b; € Z, the image
of J,, in A; for all ¢ has height at least two.

In either of the above cases, by Lemma [8:3] we have a natural A;-module pseudo-
isomorphism:
Selic (P, X, Ay) ~ Selc(P, X, A)[ag, ..., a.

8.2.3. For a Galois extension L C Ko of IC, we let X5 (L) be the maximal X,-
ramified p-extension of L and X(Ew)(L) be its t-isotypic quotient. Let A(L) :=
Z,[¢][Gal(L/K)]. If p 1 H(A), it follows from the Serre-Hochschild exact sequence
that we have a natural A(L)-module isomorphism

(8.1) res : Xic(¥, ¥,M(L)) 5 X (L) @z, 0.

When L = Ko, let Fy s = Foe)(Xs(Ks)). In particular, we have Fy 5 - A =
(FA(, X)).

8.3. Pseudo representation and the lattice construction. We introduced in
the Eisenstein ideal I°(¥) and the associated local component (h%™d, mg) of
h°rd(K, A). For brevity, in what follows we write (R, Q) = (hgd, m¢), T = I9(¥),
G)C,S = Gal(ICS/IC) and

(82) 0 = W_CS, 0y = 1, (53 = !pE_l

(recall that € : Gx,g — Z; is the p-adic cyclotomic character). Let %%S be the
subset of arithmetic points in Xg := Homeoni (R, C,) C Spec R(C,) such that
to each = € .’{CR}S we can attach a p-ordinary cuspidal holomorphic automorphic
representation m, with the ring homomorphism A,, : R — C,. We shall call .’{%S
the space of classical weights. Thanks to the work of Rogawski [Rog92] and the
techniques in [BR93], it is known that there exits a continuous p-adic semi-simple
Galois representation R,(m;) : G — GL3(C,) attached to 7, for each z € X%* such
that p, := R,(m;)(1) is conjugate self-dual (i.e. pY =~ pS, where ¢ is the complex
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conjugation) and Tr R, (7, ) (Frob,,) = Ar, (T1,,) for each split place w ¢ S, where
T, ., are the Hecke operators defined in §7.7| (¢f. [Mai08, Thm.4.1.1] and [BC04,
§3.2]).

Let ig A : Spec R(C,) — Spec A(C,) be the structure morphism. It is clear that
x4* contains ig}A(%f\ls), and hence X%° is also Zariski dense in Xg. Therefore, by
a standard patching argument in the theory of pseudo-character, we can glue trace
functions Tr p, : G, = C,, for all x € %%5 and obtain a unique pseudo-character
T : Gk,s — R such that T(Frob,,) = 11 4, - e(Frob,,) for split places w ¢ Sk U SZ’)C

(cf. [SUL4, Prop. 7.3]). By the very definition of Z = I°(¥) in §7.8] we have
T(Froby,) = T - €(Froby,) = AT, = (e¥ ™ + 1 + We')(Frob,) (mod T)
for all but finitely Frob,, at primes w split in I/F, and hence by Chebotarev’s

density theorem,

T =61+ 2+ 03 (mod I)
We further assume the following hypothesis holds
(Dist) PITe £ Wi (mod m).

Thus T is a residually multiplicity free pseudo-character, i.e. the residual characters
J; (mod my) are pairwisely distinct.

We shall construct a R[Gx,s]-module . with certain good properties. This is the
so-called lattice construction due to E. Urban who generalizes Wiles’ construction
of cocycles in [Wil90]. (See [Urb99|, [Urb01] and [SU14| §4] ). Here we use the
language of generalized matriz algebra (GMA) in Bellaiche and Chenvier’s book
[BCOY, Chapter 1 |. Recall that a GMA datum D = {e;, 0;},_, , 5 for (T, d;) consists
of orthogonal idempotents e; together with isomorphisms g; : €;R[Gx sle; — R
such that g; ® R/Z = §; ([BCOY, Def.1.3.1]). Let F = FracR be the totally
fractional field of R. By [BC09, Thm.1.4.4], we can associate a generalized matrix
algebra with D. To be precise, there exists a three-dimensional F-vector space ¥
with a basis {v;},_, , 3 and a genuine representation p: R[Gx s] — Endr () such
that according to the basis {v;};_; , 3, p(R[Gk,s]) is isomorphic to the generalized
matrix algebra

R  Ri2 R
p(R[Gks])=|Ra R Ra|,
R31 Rz R

where R;; are fractional ideals in F' such that R;; R;; C Z for i # j. For g € R[Gx 5],
we write p(g) as

ari(g) ai2(g) aiz(g)
p(g) = | a21(g) a22(g) a2s(g) |, aij(9) € Rij.
azi(g) as2(9) ass(g)
Moreover, in virtue of the conjugate self-duality of Galois representations, we have
T(g)=T(9), g :=cg e,

According to [BCO9, Lemma 1.8.3] we can manage p such that

(8:3) pr(9) = plg~) = wp(g)w™", w= 1



IWASAWA MAIN CONJECTURES FOR CM FIELDS 97

Then implies
(8.4) a12(9™°) = az3(g) and Ry2 = Ras.
Let %5 := Rugz and let .£ = R[G s|vs be the R[Gk s]-module generated by Z5.
By definition, . has the following decomposition as R-modules
L =9 L5, P = Rizv1 & Rasva.

By the relation R;;R;; C Z, we have the following exact sequence as R[Gk sl-
modules

(8.5) 0—92 ® R/T—.% ® R/T—63 © R/T—0

Lemma 8.5. Bvery R[Gx s]-module quotient of £/Q.L @ 55" is a R/Q-module
with the trivial G-action.

PROOF.  Suppose .Z has a irreducible quotient .# /.4 = 7 with 7'651 % 1. Put
L =ZL/(N + P+ QY). Then we have §3 @ R/Q—»Z" and 7—»%’. This
implies .¢’ = 0 and thereby £ = A4 + 9 + Q.%. By the existence of idempotent
es € p(R[Gk,s]) such that egvz = v3 and egv; = 0 for ¢ # 3, we deduce that v3 € A"
Because ./ is a R[Gi s]-module and vs generates .Z ® k as a R/Q[Gk,s]-module,
N +Q¥ = %. Hence by Nakayama lemma 4" = %, which is a contradiction. [

We set

S = Rz, J1 = RioRaz + 1 Ry3;

Jo2 = Ro3, J2 = Ro1Riz + [ Ros.

For {i,j} = {1,2}, let #; = I.Z+ _Zv;+R;3v; be a sub-R-module in .Z. It can be
verified easily that .; is G-stable and £ /.#; fits in the following exact sequence
of R[Gk,s]-modules

(8.7) 0—) 1 @1—L ) M; @ 57— R|T @ 536, 1 —0,

where 1 is the trivial G g-action. The Pontryagin dual of (8.7)) induces the exact
sequence

(8.6)

HO(GIC,S7 (,,2”/%)* (39 (51) — HO(G;C,S, (eﬂl/fl)*)
= (S) 7)) 25 HY (Grs, (R)T)* @ 6516;).

The natural homomorphism ¢ : (R/Z)* = (A/Eis(¥,S))* < A* gives rise to a
homomorphism

(8.8)

C=q. 0 1 (Ji) F:)* 25 H (Gr.s, (R)T)* 65 '6;)
2y Hl(G)Cﬁs,A* ® 53_151)

Indeed, for each f € (F;/_#;)* = Homeont(#i/ _Zi, Qp/Zp) we define the 1-cocycle
Cl(f) : G}QS — A* ® 55151 by

ci(£)9)N) = (05 (9)ais(9)A) (9 € G5, A€ A).
Then €;(f) is the class [¢;(f)] in H'(Gx,s, A* @ 6515;).

(8.9)

Lemma 8.6. The homomorphisms €; are injective.
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PROOF. Because 03 Z §; (mod my) for ¢ = 1,2, the map g. is injective. Hence by
(8-8) it suffices to show H(Gx.,s, (L /4#;)* @ ;) = 0. By Lemma we have

Homg, . (£ ®6; ', Qp/Z,) = 0.

Therefore we have
(8.10)
HY(Gk.s, (L) M) © 6;)

=Homg, ((L/ M ®6;",Qp/Z,) — Home, (£ ®6;',Q,/Z,) =0. O

8.4. p-adic Galois representations. In this subsection, we study local p-adic Galois
representations associated to ordinary cohomological automorphic forms with sep-
arable weights and deduce that the maps ¢; in actually factor through the
corresponding Selmer groups. Let rec, : (K ®q Qp)* ~ Dgb := | D2 be
the geometrically normalized local reciprocity map. We say a p-adic character
X : Dy — CJ is separable if X(rec,(zp)) = z£2+g(1fc) for z, € (Ox ® Z,)*, where

k > 2 is an integer and @ = Y _ .5 6,0 € Z>o[X] is a d-tuple of non-negative
integers such that

ceX

k+a, —1>ay, +1>0 for every o,0’ € 1,,.

We put
X37 = {z € Homeont Tk, C,) | [ p,, is separable }

and X555 — iE}A(%f\ez’) NX%*. One can verify easily that X% is Zariski-dense
in x4l
R ’ .l c o

Let 2 € X357, Note that the Hecke character associated to = (the complex
avatar of x) is unramified at all places above p and is of infinity type kX +a(1 —c).
It follows that the corresponding automorphic representation 7, is unramified at
all places above p and the L-parameter ¢., , : We = C* — GL3(C) of the
holomorphic discrete series 7 , at an archimedean place o € X' is given by

O, , (2) = diag((2/2)%, (2/2) 1%, (2/Z) 7F ).

On the other hand, consider the Galois representation p, = R,(m,)(1) associated
to m,. Let w € Sl’f and let D,, be the decomposition group of w in Gx. From
the fact that the Galois representation R, (7,) is constructed out of the p-adic étale
cohomology groups of certain compact Picard modular surfaces with good reduction
at places above p, we can deduce that ps . = pz|p, is an ordinary p-adic Galois
representation since 7, is a p-ordinary cuspidal automorphic representation [Mai08],
Thm.4.1.1(3)] (¢f. [SUI4, Lemma 7.2]). Suppose that w € X,. Then the local
p-adic representation py ., (resp. pgw) is crystalline and has arithmetic Hodge-
Tate weights

0,1+ ap, k+ay — 1)per, (resp. (1 —a, —k,—ay —1,0)pc1,,)
(cf. |[BCO4L Prop 3.3]). The Newton and Hodge polygons of p, ., meet at
(dw,0), (2duw, Y 1+ a5), (3w, Y k+2a,), dy = [Ku : Q).

o€l o€l

By [TU99, Lemma 7.2] (¢f. [Mai08, Lemma 4.2.3]), the R-module .Z has a fil-
tration {0} C F3.4 C F1w C Fouw = £ of R-submodules, according to which
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Pw = P|p,, has the matrix representation

!
63’w * *
— !
Pw = 1w *
!
62,10

For each i = 1,2,3, the specialization §; ,(z) of d;,, at = is a locally algebraic
p-adic characters of D,, by a theorem of Serre [Ser68, Corollary, page III-50], and
93, () has the maximal Hodge-Tate weights k+a, —1 for each o € I,,. We remark
that %3, # 0asZ # R and . /7.7 has a quotient isomorphic to d3® R/Z, whereas
the quotients Fs .,/ F1 w and F1 ./ F 3, could be zero modules because £ need
not to be a lattice. Let &, be the p-adic character of I, induced by local class field
theory e, : I, — 1% = O. Because the Hodge-Tate weights of {0i(z)}iy o 3 are
distinct, by [Ser68, Thm. 2, page I11-44]| we find that

8 (@)1, = ] (oew) ™ = 83(2)1,

o€l

for every = € X5%**? and 05 |1, = 03l1,,-

Lemma 8.7. Let P € hty(A) such that Tp C PRp. Assume that
6;65 1, # 1 (mod P) for all i, j.

Then the natural map (Fs.u)p — (Ls)p is surjective.

PROOF.  The assumption implies that d; ,|r, = di|7, mod P are distinct, so we
can find ¢ in Rp[I,] such that p(t)| #,,p, is an idempotent, and according to the
filtration {0} C F3, C F14 C Fou = -2, we have

1

*
P()zp/ Pz = 0 (mod P).

S O *

For v € (Z3)p, we find that p(t)v € (F3,)p and p(t)v = v (mod P.Lp + Dp),
so the map (F3.,)p — (L3)p @ Rp /P is surjective. Therefore the map (%5 ,,)p —
(%) p is surjective by Nakayama lemma. O

Remark 8.8. We remark that the assumption in Lemma 8.7 is satisfied whenever
ordp (L (¥, X)) > 0. Indeed, if 6i(5;1|1w = 1(mod P) for some i,j and w € X,

then we can choose an integer ng large enough such that (F,‘E)pno CIyNn F,’g for all
w € Xp. Thus
LPHCE*Q(V??O) =1 (mod P)

and P = (T} — (Coe(y+) — 1)) for some (o € p,no. It follows that we can choose
a point y € X, such that y(P) = 0 and ¥, is a Hecke character of infinity type
(1+m)X + (1—m)X°, m > 1. The specialization of Lf(w, X)atyis L¥(m+1,0)
for some Hilbert modular form 6 of parallel weight (2m + 1), which is nonzero by
[Shi78, Prop.4.16]. This in particular implies that ordp(Lg(J/, X)) =0.

Corollary 8.9. If ordp (L3 (¥, X)) > 0, then there exists tp € A — P such that

T tp( 1) F1)" S Selg (B o)
Gy 1 tp(So/ Fo)" —Selg (WP, x°).
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PROOF. Injectivity of ¢; is proved in Lemma By (8.4), for every g € Gk,
we have

a13(9°)as3(g) + a23(g)azs(g) + aiz(g)ass(g®) = 0,
and thus

d3(9)ar3(9°) + ai2(g9)azs(g) + d3(9°)ai3(g) = 0 (mod ZRy3).
Let f € (fl//l)* Since f(R12R23 +IR13) =0, we find that

a(f)g) = f(fs;l(gc)als(gc)) = *f((;g_l(g)al:s(g)) = —c1(f)(9)-
This shows that ¢1(f)¢ = —c1(f)-

For every w € X),, by Lemma and Remark there exists u,, € (Ri3)p
and v, € (Ra3)p such that (uy,vy,1)" € F3,. Choose tp € A — P such that
ul, = tpuy, € Ry3z and v), = tpv, € Rgs for all w € ¥,. By the construction
of Foy ay, we have p(g) (1t vl tp)! = d3(g) (i, vl tp)! for g € I, from which we
deduce the relations:

55 (9)a12(g)vl, + tpds ' (9)ais(g) = 65 61(g)ul, — ul, (mod TRy3);
651 (9)a21 (g9)ul, + tpds ' (g)ass(g) = 65 02(g)vl, — v, (mod I Ra3).

It follows that for every f € (%/_#;)*, i € {1,2}, the class [¢c;(tpf)] is trivial in
H (I, 6:;151- ® A*). The morphisms ¢p¢; thus factor through the corresponding
Selmer groups. O

(
(

8.5. Proof of the main theorem.

8.5.1. After preparing some auxiliary results, we prove our main theorem (Theo-
rem [8.14]) in this subsection.

Lemma 8.10. The restriction map
ves : SelF (] ' re?) & Selg (¥ 1e?) =1
is an isomorphism.
PROOF.  Since Gal(K/F) =< ¢ > has order two and p > 2, the restriction map
ves : H'(F, W't pe® @ A*) = H (K, 0™ > @ A*)=7 (Wy|g, =¥'0)
is an isomorphism, and the lemma follows. (|

The following S-imprimitive version of the main conjecture for totally real fields
is a key ingredient in our proof.

Theorem 8.11 (A. Wiles). For every P € htq(A), we have
EP(X]S_—(WIIT}C/_FE%) S OrdP(Lg(—l,W+TK/]_-)>.

If ¥4 # 7xc)FwF or Leopoldt’s conjecture holds, then
Up(XZ (W ey re?)) = ordp(Ly (=1, 7ic/ 7).

PROOF. It is clear that the character W, ', ze? factors through A, = O, [I'f].
We identify A} with 0,[Gal(Fs/F)] via the restriction map I')t 5 Gal(Fuo /F).
Write ¥; for W;lT;C /]:62 when it is regarded as a Aj-valued character. Let F
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be the cyclotomic Z,-extension of F. Since A is flat over A, we have an A-
module isomorphism Sel$(¥1)* ®a, A ~ X3 (¥ ', 7e?). Therefore, the theorem
is equivalent to

(8.11) Cp(Selz(¥1)*) < ordp (L3 (—1,¥ 7/ 7))

for all P € ht;(A4). In view of the interpolation formula , we note that
the p-adic L-function L,(—1,%, 7k, x) is nothing but Gy,(e(v;")(1 + T4)? — 1),
where Gy, (T ) is the classical Deligne-Ribet p-adic L-function attached to the
even character ¢y 1= ¢ 7k, ].-w;-l. From the main conjecture for totally real fields
[Wil90] and the exact sequence

0= Selp(01) — Selz () > [[ H' (Fo, ta ® AY),
veS
the equation (8.11) follows immediately except for the case 1, = 7x,rwr and

P =P =Ty - (5(%%) — 1)), in which the Deligne-Ribet p-adic L-function
Ly(—1,¥, 7x,5) conjecturally has a simple pole at P.. Moreover, if 1, # 7/ rwr,
coker v is trivial by [GV0Q, Prop.2.1], and hence the inequality in is indeed
an equality. If ¢ = 7, 7w, using the global Poitou-Tate duality, one can show
that there is an injective map

Ay /(Ty = ((42) — 1)) = (coker )"

as Aj-modules, and this map is an isomorphism provided Leopoldt’s conjecture
holds for all 7/ in F C F' C Fu. Thus, the inequality (8.11)) also holds for P = P,
by the main conjecture for totally real fields. |

Proposition 8.12. For every P € ht1(A), we have
(1) Lp(Selc (¥, D)) = (p(Sel(¥P, £°)).
(2)

Cp(Selc (PP, 2)) > tp(Selg (WP, 5°) + Y Lp((1 - ¥(Froby))).
weSK wic(1)

PrOOF. Part (1) is the functional equation of Selmer groups proved in [Hsil0),
Thm. 1.1], and part (2) is [Hsil0, Lemma 2.10] |

Definition 8.13. A height one prime P € ht;(A) is said to be exceptional if
ordp(L,(¥, X)) >0 and ordp(L]f(—l,W+T;c/}-)) > 0.

Theorem 8.14. Let P € ht1(A) be a height one prime. Suppose that (Dist]) holds.
With the assumptions in Theorem [7.18

(i) Ifordp(Lg(W, X)) >0, then £p(Selg(¥P, X)) > 0.
(ii) If P is not exceptional, then we have

Cp(Selg (WP, X)) > ordp(L5 (¥, X))
Therefore, it follows from Proposition[8.13 that

fp(Sel)C(g/, E)) > Ordp(Lp(LT/, E))
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PROOF.  The theorem is trivial if ordp(Ly (¥, X)) = 0, so we may assume that
ordp (L5 (¥, X)) > 0 and hence Zp C PRp in view of Corollary [7.20l Suppose
further that P is not exceptional. Then since the set S consists of prime fac-
tors of the conductor of ¥ and primes split or ramified in K, one can check that
ordp (L5 (—1, ¥, 7xc/7)) = 0. It follows from Theorem together with Corol-
lary [8.9] and Lemma that

Cp(XRW e 7€)~ = Lp(XZ(W M1y e2)) = 05
(A)p=(AF1)p.

By and the relation Ri2R91 C Z, we deduce that (_%2)p = (Z.%2)p.

Next we show that % = Ras3 is a faithful R-module. Let C denote the set of
irreducible components of R. We decompose F' = Frac R = @ ccF} as a product
of fields. For a fractional ideal .# of R in F', denote by .#(g) the image of .#
in F, via the natural map F' — F,. Then .#(g) is a fractional ideal of R(g)
in F;,. We are going to show by contradiction that #5(g) # 0 for all g4 € C,
which implies .#; is a faithful R-module. Suppose that #5(g1) = Ro3(g1) = 0 at
some g4 € C. Then we have Ris(y1)p = 0 by and A (g1)p = ZA1(g1)p
by . By Nakayama lemma, % (g1)p = Ris(g1)p = 0, and hence Ri3(;1) =
0. It follows that the semi-simplification of the associated Galois representation
p;f : Gk,s — GL3(F},) is isomorphic to a sum of three Galois characters. Let
T € %%5 N g be a classical point. The L-parameter of the associated cuspidal
cohomological automorphic representation m, is a sum of three algebraic Hecke
characters (|[Ser68]). In addition, we can choose x to have sufficiently regular weight
such that 7, is not CAP by a result of M. Harris [Har84), Thm.2.5.6]. Thus,
according to the classification of discrete L-packets for U(2, 1), 7, must be tempered
endoscopic of type (1,1, 1), and the associated Galois representation p, ~ x1® x2®
X3 X; ¢ = Xi, which contradicts to the assumption (Dist] (c¢f. [Mai08, Lemma
5.0.7]).

The faithfulness of .% implies that Fittp(%5/Z.%2) C . Put X = XZ(¥P, x).
By Corollary [8:9] we have

FittA(X)RP = FittRP(X @A Rp) C FittRP(fg/Ifg) C Ip.
Because R is finite over A and A is integrally closed, Fitty(X)p C Zp N Ap =
Eis(¥,S)p. Therefore by Corollary
Cp(Selg (WP, X)) = ordp(Fitta (X)) > ordp(Eis(¥, S)) > ordp(LS (¥, X)).

(
This completes the proof of part (ii).
Now we proceed to show part (i). If £p(Sel (WP, X)) = 0, then by the same
argument as above, one can show that (_#1)p = Z(#)p and #; is a faithful R-
module. Hence,

EP(XJ“E(LZ/+T;</]:52)) > ordp(Lg(W, )+ ordp(Lg(—l, V. Tic)F))-
It follows from Theoremthat ord p(Lg (7, X)) = 0, which is a contradiction. [
8.5.2. Let m_ be the restriction map m—_: A — A/(Ty) = A_ = O,[I'c] and let
L, (¥, X) =n_(L,(¥, X)) € A_ be the projection of L, (¥, ¥) to the anticyclotomic
plane. We claim that there is no exceptional prime if the Iwasawa p-invariant p, 5
of the anticyclotomic p-adic L-function L, (¥, ¥) vanishes. Indeed, .5 = 0 if and
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only if L,(¥,X) # 0(mod mp, A), where mp, = (p,T}) is the maximal ideal of
Ay. If P is an exceptional prime, then P is generated by a prime element in A .
This in particular implies that ordp(L,(¥, X)) = 0, which is a contradiction. In
virtue of Theorem we have thus proved the corollary below:

Corollary 8.15. Assume that (Dist)) and the following hypotheses hold:

(1) pt3-hy - Dr,
(2)  is unramified at 37, and Yw® is unramified at X, for some integer a,
(8) pp() =0, where p,(Y) is the invariant defined in (7.11)),
(4) Either of the following two condition holds:
(a’) /“L;7E = O;
(b) ordp(L,(¥, X)) <1 for every exceptional prime P € ht1(A).
Then we have
(FA(#, 5)) C (L,(, 2).

The following theorem is an immediate consequence of the above corollary com-
bined with results on the vanishing of the p-invariants of anticyclotomic p-adic L-
functions in [Hsil4] and [Burld4].

Theorem 8.16. Assume that the following hypotheses hold:

(1) pt3-hg-Dr-4(A),
(2) ¢ is unramified at X5, and Ywi® is unramified at X, for some integer
a#z2(modp—1).
Then we have
(Fa(®, X)) C (Lp(¥, X)).

ProoF. It suffices to verify the hypotheses in Corollary Note that p 1 §(A)
and (2) imply p,(¢) = 0 and respectively. To verify the assumption (4) in
Corollary we note that if either ¢ # wrTik, 7 or Y = wrTi,F with the root
number Wi (1)) = +1 (mod my) (Recall that W () € A is the root number in
the functional equation of Ly 5), then u,(¥) = 0 implies that fop. s = 0 by [Hsi14l
Cor.5.5, Thm. 6.12] (¢f. [Hid10, Theorem I] if ¢(¢)) = (1)). On the other hand, if
Yy = wrTk/F with Wx (1) = —1(mod my), then using the funtional equation of
Katz p-adic L-functions, we see that L, (¥, X') has a zero at P, = (T} — (5(7_%) —1)).
Write L, (¥, X)) = P, - L,(¥, ). By [Burl4, Thm. A], the anticyclotomic projection
, OL, (¥, X)
(L, (¥, X)) = Tlﬂze(«é)q eA_
has trivial p-invariant. This implies that no prime divisor of L;(W, X’) is contained
in the ideal my, A. Therefore, P, is the only possible exceptional height one prime
and ordp, (L, (¥, X)) = 1. This finishes the proof. d

8.6. Applications.

8.6.1. Two cases of the main conjecture for CM fields. Now we give two examples
where the one-sided divisibility L, (¥, X)|FA (¥, X) in Theorem actually implies
the equality (Fa(¥, X)) = (L, (¥, X)), relying on the works of Hida and Rubin.
Theorem 8.17. Suppose that p{3 - hic - Dr - 4(A) and that

(H1) v is anticyclotomic,
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(H2) the local character ., is unramified and non-trivial for every w € X,
v _ (1 Bt

(H3) Yl o # 1, p" = (=1) = p.

Then
(Fa(, X)) = (Lp(¥, X)).

Proor. If d = [F: Q] = 1, this is the two-variable main conjecture for imagi-
nary quadratic fields proved by Rubin. We assume d > 2. Notation is as in §8.5.2]
Let Fy (7, %) = 7_(FA(¥, %)) and let f& = Fx_(X{(K5)) € A_ be the char-

acteristic power series of X(Ew) (K). By the case (i) in Remark we have a

o0
A_-module pseudo-isomorphism:

Selic (W, X, A_) ~ Sel (¥, X, A)[T4].
Note that 1, # wrTx /7 if ¥ is antiycolotomic and p > 3. It follows from (8.1)) and
Theorem [R.16] that
(8.12) (fi,£) C (Fy (7, X)) C (L, (¥, ).

Hida [Hid06] proved that Selc(¥, X, A_) is a cotorsion A_-module (i.e. f7 5 # 0)
and

(fy.2) = (Lp(¥, X)) (mod (T)).
We deduce from that

(8.13) (fiw) = (Fy (0, X)) = (L, (¥, X)).
In particular Fy (¥, X) # 0, from Theorem and (8.13)) it follows that
(FA(%, X)) = (Lp(¥, X)) O

Theorem 8.18. In addition to the hypotheses (1-2) in Theorem we further
suppose that

(R1) K = FM, where M is an imaginary quadratic field in which p splits,

(R2) X is the p-ordinary CM-type of K obtained by extending the inclusion L :

M — C,

(R3) K’ is abelian over M and pt [K': M].

Then
(Fa(%, X)) = (Lp(¥, X)).

PROOF. Let Xy be the CM-type of M induced by too: M — C. Let I'g be the
kernel of the restriction map waq : I'c — I'aq and let Iy be the ideal of A generated
by (#(I'g) —1). Then Iy is a free Z,-module of rank d — 1 and maq : A/IgA = Apg,
where Ay = Op[Tm]. As p {1 [K' @ M] and K'/M is abelian, we have an A -
module isomorphism

Sel)c(ﬂl, E, AM) = @ SGZM(WJIM, Eo,AM),
Y
where 1)/, ; runs over characters of Gal(K’/M) which extend ¢ and ¥, is the A -

adic character of v,,. By the case (ii) in Remark we have a Aj-module
pseudo-isomorphism Selx (¥, X, Apq) ~ Selic (¥, X)[lo], and therefore

I chara o X (Zs, Zo, Ant) € o (Fa(P, 5)).
Yim
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On the other hand, we have the following factorization of p-adic L-functions as
ideals in A g

(ma(Lp(¥, £))) = ([T Lo (@i, 20)).

P
As in the proof of Theorem [B:17] the assertion follows from the two-variable main
conjecture of imaginary quadratic fields and Theorem [8.16] O

8.6.2. Main conjectures for elliptic curves with complex multiplication. Let E be
an elliptic curve defined over F with complex multiplication by the ring of integers
of an imaginary quadratic field M. Suppose E has good ordinary reduction at all
places of F above p, which implies that p splits in M. Write pO s = pp, where p
is the prime induced by ¢,: M — C,. Let K = FM and let X' be the CM-type
of K induced from ts : M — C. Let K' = K(E[p]) and let ¢ := ¢p be the
character obtained from the Z,-representation of A = Gal(K'/K) on Elp|. Let X
be the unique ZZ2-extension of K in K(E[p*>]) and let Ap = Z,[Gal(x/K)] be
the two-variable Iwasawa algebra over Z,. Note that I C X C K. Define the
p-Selmer group Selx(E), attached to E, 4 by

Sely(E), = ker {Hl(yg Ep") = [[H' (%o, E)} .

Then Sely(E), is a cofinitely generated discrete Ag-module, and by [PR84, Ch.II,
Thm. 18], we have a A g-module isomorphism

(8.14) Sely(E), = Homg, (X5 (%), E[p™)).
Let F,(E) € Ag denote the characteristic power series of Selx(E),. Let agp be
the the Z,-valued character given by

app : Gal(X/K) — Gal(K(E[p™])/K) — Aut E[p™] = Z;

and let 7, : A — Ag be the morphism induced by the character & : Gal(K /K) —
A%, a(9) = app(9]x)g|«- Let ¢ be the prime-to-p conductor of 1. It is well known
that K' C K(ep) if p £ 6. Let Ap o, := Ap ®z, Op. Define the two-variable
p-adic L-function attached to (E,p) by

Lp(E) = ﬂ'E,p(LP(W, 2)) € AE,Opa
where L(¥, X)) is the p-adic L-function attached to the branch character ¢ : A, —»
A= pp1 =2y

Corollary 8.19. Suppose that p{ 6-hic-Dr and that E has good ordinary reduction
at all places above p. Then we have the following inclusion between ideals in Ag o,

(Fy(E)) C (Ly(E)).

Proor. We apply Theorem to the branch character v = ¥g. Then ¥4 =
Tk FwF, and (1-2) in Theorem 8.16] are satisfied under the our assumptions. The
corollary thus follows from Theorem @ combined with the specialization principle

in Remark and ({8.14). O

We consider the cyclotomic main conjecture for £, 7. Let Ar = Z,[Gal(Foo /F)]
and let 7 : Ap — Ay ~ Ax be the restriction map. Let Ar o, := Ap ®z, 0
and let L,(E/Fy) = m(Ly(E)) € Ar 0, be the cyclotomic p-adic L-function for
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E. Let Q := H

for o € I and Qg) = fEU(R) wpgo is the period of a Néron differential wg) of E°¢

Q(Eo) be the period of E, where E? is the o-conjugate of F

o€lr

over Ors (). We remark that the complex CM period QL* in the interpolation
formula of L, (¥, X) (See ii in fact equals ¢- Qg for some c € ZE;V On the other

hand, Shapiro’s lemma shows that Selr_(E) = Sely+ (E)p as Ar-modules for
odd p. Specializing everything in Corollary [B:19] to the cyclotomic line and using
the descent of Selmer groups for CM elliptic curves [PR84, Ch.II, Lemme 9 and
Prop.12], we obtain the following theorem:

Theorem 8.20. With the assumptions in Corollary [8:19, we have the inclusion
between ideals in Ar o,

(charp . Selr (E)) C (Lp(E/Fso))-
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