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Invariance of quantum rings under ordinary flops II:

A quantum Leray–Hirsch theorem

Yuan-Pin Lee, Hui-Wen Lin and Chin-Lung Wang

Abstract

This is the second of a sequence of papers proving the quantum invariance for ordinary
flops over an arbitrary smooth base. In this paper, we complete the proof of the invari-
ance of the big quantum rings under ordinary flops of split type. To achieve that, several
new ingredients are introduced. One is a quantum Leray–Hirsch theorem for the local
model (a certain toric bundle) which extends the quantum D-module of the Dubrovin
connection on the base by a Picard–Fuchs system of the toric fibers. Non-split flops
as well as further applications of the quantum Leray–Hirsch theorem will be discussed
in subsequent papers. In particular, a quantum splitting principle is developed in part
III (Lee, Lin, Qu and Wang, “Invariance of quantum rings under ordinary flops III”,
Cambridge Journal of Mathematics, 2016), which reduces the general ordinary flops to
the split case solved here.

1. Introduction

1.1 Overview

This paper continues our study of the quantum invariance of genus zero Gromov–Witten theory,
up to analytic continuation along the Kähler moduli spaces, under ordinary flops over a non-
trivial base. The quantum invariance via analytic continuation plays an important role in the
study of various Calabi–Yau compactifications in string theory. It is also a potential tool in
comparing various birational minimal models in higher-dimensional algebraic geometry. We refer
the readers to [LLW10] and Part I of this series [LLW16] for a general introduction.

In Part I, we determine the defect of the cup product under the canonical correspondence
[LLW16, Section 2] and show that it is corrected by the small quantum product attached to the
extremal ray [LLW16, Section 3]. We then perform various reductions to local models [LLW16,
Sections 4 and 5]. The most important consequence of this reduction is that we may assume that
our ordinary flops are between two toric fibrations over the same smooth base.

In this paper, we study the local models via various techniques and complete the proof of the
quantum invariance of Gromov–Witten theory in genus zero under ordinary flops of split type.
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This is, as far as we know, the first result on the quantum invariance under the K-equivalence
(crepant transformation) [Wan04, Wan03] where the local structure of the exceptional loci cannot
be deformed to any explicit (for example, toric) geometry and the analytic continuation is non-
trivial. This is also the first result for which the analytic continuation is established with non-
trivial Birkhoff factorization.

Several new ingredients are introduced in the course of the proof. One main technical ingre-
dient is the quantum Leray–Hirsch theorem for the local model, which is related to the canonical
lift of the quantum D-module from the base to the total space of a (toric) bundle. The techniques
developed in this paper are applicable to more general cases and will be discussed in subsequent
papers.

Conventions. This paper is strongly correlated with [LLW16], which will be referred to as Part
I throughout the paper. All conventions and the notation introduced there carry over to this
paper.

1.2 Outline of the contents

1.2.1 On the splitting assumption. We recall the local geometry of an ordinary P r flop
f : X 99K X ′ (Part I [LLW16, Section 2.1]). The local geometry of the f -exceptional loci Z ⊂ X
and Z ′ ⊂ X ′ is encoded in a triple (S, F, F ′), where S is a smooth variety, and F and F ′ are two
rank r+ 1 vector bundles over S. In Part I [LLW16], we reduce the proof of the invariance of the
big quantum ring of any ordinary flop to that of its local model. Therefore, we may assume

X = Ẽ = PZ(O(−1)⊗ F ′ ⊕ O) ,

X ′ = Ẽ′ = PZ′(O(−1)⊗ F ⊕ O) ,

where Z ∼= PS(F ) and Z ′ ∼= PS(F ′) are projective bundles. In particular, X and X ′ are toric
bundles over the smooth base S. Moreover, proving the invariance of the local model is equivalent
to proving the type I quasi-linearity property, namely the invariance for 1-pointed descendent fiber
series of the form

〈t̄1, . . . , t̄n−1, τkaξ〉 ,
where t̄i ∈ H(S) and ξ is the common infinity divisor of X and X ′.

To proceed, recall that the descendent Gromov–Witten (GW) invariants are encoded by their
generating function, that is, the so-called (big) J function: for τ ∈ H(X),

JX
(
τ, z−1

)
:= 1 +

τ

z
+
∑
β,n,µ

qβ

n!
Tµ

〈
Tµ

z(z − ψ)
, τ, . . . , τ

〉X
0,n+1,β

.

The determination of J usually relies on the existence of C×-action. Certain localization data Iβ
coming from the stable map moduli spaces are of hypergeometric type. For “good” cases, say
c1(X) is semipositive and H(X) is generated by H2, the generating function I(t) =

∑
Iβq

β

determines J(τ) on the small parameter space H0⊕H2 through the “classical” mirror transform
τ = τ(t). For a simple flop, X = Xloc is indeed semi-Fano toric and the classical mirror theorem
(of Lian–Liu–Yau and Givental) is sufficient [LLW10]. (It turns out that τ = t and I = J on
H0 ⊕H2.)

For a general base S with given quantum cohomology ring QH(S), the determination of
QH(P ) for a projective bundle P → S is far more involved. To allow fiberwise localization to
determine the structure of the GW invariants of Xloc, the bundles F and F ′ are then assumed
to be split bundles.
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Invariance of quantum rings II

In this paper (Part II), we only consider ordinary flops of split type, namely F ∼=
⊕r

i=0 Li
and F ′ ∼=

⊕r
i=0 L

′
i for some line bundles Li and L′i on S.

1.2.2 Birkhoff factorization and generalized mirror transformation. The splitting assump-
tion allows one to apply C×-localization along the fibers of the toric bundle X → S. Using this
and other sophisticated technical tools, Brown (and Givental) [Bro14] proved that the hyperge-
ometric modification

IX
(
D, t̄, z, z−1

)
:=
∑
β

qβeD/z+(D.β)I
X/S
β

(
z, z−1

)
ψ̄∗JSβS

(
t̄, z−1

)
lies in Givental’s Lagrangian cone generated by JX(τ, z−1). Here D = t1h + t2ξ, t̄ ∈ H(S) and

βS = ψ̄∗β, and the explicit form of I
X/S
β is given in Section 3.2.

Based on Brown’s theorem, we prove the following result. (See Section 2 for the notation
concerning higher derivatives ∂ze.)

Theorem 1.1 (BF/GMT). There is a unique matrix factorization(
∂zeI

(
z, z−1

))
=
(
z∇J

(
z−1
))
B(z) ,

called the Birkhoff factorization (BF) of I, valid along τ = τ(D, t̄, q).

The BF can be stated in another way. There is a recursively defined polynomial differential
operator P (z, q; ∂) = 1 +O(z) in t1, t2 and t̄ such that

J
(
z−1
)

= P (z, q; ∂)I
(
z, z−1

)
.

In other words, P removes the z-polynomial part of I in the NE(X)-adic topology. In this form,
the generalized mirror transform (GMT)

τ(D, t̄, q) = D + t̄+
∑
β 6=0

qβτβ(D, t̄)

is the coefficient of z−1 in J = PI.

1.2.3 Hypergeometric modification and D-modules. In principle, knowing the BF, the GMT
and the GW invariants on S allows us to calculate all g = 0 invariants on X and X ′ by recon-
struction. These data are in turn encoded in the I-functions. One might be tempted to prove the
F -invariance by comparing IX and IX

′
. While they look rather symmetric, the defect of the cup

product implies F IX 6= IX
′

and the comparison via tracking the defects of the ring isomorphism
becomes hopelessly complicated. This can be overcome by studying a more “intrinsic” object:
the cyclic D-module MJ = DJ , where D denotes the ring of differential operators on H with
suitable coefficients.

It is well known by the topological recursion relations (TRR) that (z∂µJ) forms a fundamental
solution matrix of the Dubrovin connection: Namely, we have the quantum differential equations
(QDE)

z∂µz∂νJ =
∑
κ

C̃κµν(t)z∂κJ ,

where the C̃κµν(t) =
∑

ι g
κι∂3

µνιF0(t) are the structural constants of ∗t. This implies that M is
a holonomic D-module of length N = dimH. For I we consider a similar D-module MI = DI.
Theorem1.1 furnishes a change of basis which implies that MI is also holonomic of length N .
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The idea is to go backward: to first find MI and then transform it to MJ . We do not have
similar QDE since I does not have enough variables. Instead we construct higher-order Picard–
Fuchs equations 2`I = 0 and 2γI = 0 in divisor variables, with the nice property that “up to
analytic continuation” they generate F -invariant ideals:

F
〈
2X` ,2

X
γ

〉 ∼= 〈2X′`′ ,2X′γ′ 〉 .
1.2.4 The quantum Leray–Hirsch theorem and the conclusion of the proof. We now want to

determine MI . While the derivatives along the fiber directions are determined by the Picard–
Fuchs equations, we need to find the derivatives along the base direction. Write t̄ =

∑
t̄iT̄i. This

is achieved by lifting the QDE on QH(S), namely

z∂iz∂jJ
S =

∑
k

C̄kij(t̄)z∂kJ
S ,

to a differential system on H(X). A key concept needed for such a lift is the I-minimal lift of a
curve class βS ∈ NE(S) to βIS ∈ NE(X). Various lifts of curve classes are discussed in Section 3.
See in particular Definition 3.7.

Using the Picard–Fuchs equations and the lifted QDE, we show that FMIX
∼= MIX′ .

Theorem 1.2 (Quantum Leray–Hirsch). (1) (I-lift) The quantum differential equation on
QH(S) can be lifted to H(X) as

z∂iz∂jI =
∑
k,βS

qβ
I
Se(D·βIS)C̄kij,βS (t̄)z∂kDβIS

(z)I ,

where DβIS
(z) is an operator depending only on βIS . Any other lift is related to it modulo the

Picard–Fuchs system.

(2) Together with the Picard–Fuchs operators 2` and 2γ , the QDE determine a first-order
matrix system under the naive quantization ∂ze (Definition 4.7) of the canonical basis Te (No-
tation 4.1) of H(X):

z∂a(∂
zeI) = (∂zeI)Ca(z, q) , where ta = t1, t2 or t̄i .

(3) The system has the property that for any fixed βS ∈ NE(S), the coefficients are formal
functions in t̄ and polynomial functions in qγet

2
, q`et

1
and f(q`et

1
). Here the basic rational

function

f(q) := q/
(
1− (−1)r+1q

)
(1.1)

is the “origin of analytic continuation” satisfying f(q) + f(q−1) = (−1)r.

(4) The system is F -invariant.

The final step is to go from MI to MJ . From the perspective of D-modules, the BF can
be considered as a gauge transformation. The defining property (∂zeI) = (z∇J)B of B can be
rephrased as

z∂a(z∇J) = (z∇J)C̃a ,

so that

C̃a = (−z∂aB +BCa)B
−1 (1.2)

is independent of z.

This formulation has the advantage that all objects in (1.2) are expected to be F -invariant
(while I and J are not). It is therefore easier to first establish the F -invariance of the Ca and use
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it to derive the F -invariance of the BF and GMT. As a consequence, this allows us to deduce
the type I quasi-linearity (Proposition 2.11), and hence the invariance of the big quantum rings
for local models.

Theorem 1.3 (Quantum invariance). For ordinary flops of split type, the big quantum coho-
mology ring is invariant up to analytic continuation.

By the reduction procedure in Part I [LLW16], this is equivalent to the quasi-linearity property
of the local models. This completes the outline.

Remark 1.4. Results in this paper had been announced by the authors, in increasing degree of
generality, at various conferences during 2008–2012; see, for example, [Lin10, Wan11, LLW12],
where more examples are studied. Examples of the quantum Leray–Hirsch theorem are included
in Section 5. The complete proofs of Theorems 1.2 and 1.3 were achieved mid-2011.

It might seem possible to prove Theorem 1.3 directly from comparisons of J-functions and
Birkhoff factorizations on X and X ′. Indeed, we were able to carry this out for various special
cases. A mysterious regularization phenomenon appears during such a direct approach. In the
appendix we explain how the regularization of certain rational functions leads to the beginning
steps of analytic continuations in our context. However, the combinatorial complexity becomes
intractable (to us) in the general case. Some examples can be found in the proceedings articles
referred to above.

In Part III [LLQW16], the final part of this series, we will develop a quantum splitting
principle to remove the splitting assumption in Theorem 1.3. This then completes our study of
the quantum invariance under ordinary flops.

2. Birkhoff factorization

In this section, a general framework for calculating the J-function for a split toric bundle is
discussed. It relies on a given (partial) section I of the Lagrangian cone generated by J . The
process to go from I to J is introduced in a constructive manner, and Theorem 1.1 will be proved
(as the combination of Proposition 2.6 and Theorem 2.10).

2.1 Lagrangian cone and the J-function

We start with Givental’s symplectic space reformulation of Gromov–Witten theory arising from
the dilaton, string and topological recursion relation. The main references for this section are
[Giv04, CG07], with supplements and clarification from [LP, Lee09]. In the following, the under-
lying ground ring is the Novikov ring

R = ̂C[NE(X)] .

All complicated issues on completion are deferred to [LP].

Let H := H(X), H := H[z, z−1]], H+ := H[z] and H− := z−1H[[z−1]]. Let 1 ∈ H be
the identity. One can identify H as T ∗H+, and this gives a canonical symplectic structure and
a vector bundle structure on H.

Let

q(z) =
∑
µ

∞∑
k=0

qµkTµz
k ∈ H+
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be a general point, where {Tµ} forms a basis of H. In the Gromov–Witten context, the natural
coordinates on H+ are t(z) = q(z) + 1z (dilaton shift), with t(ψ) =

∑
µ,k t

µ
kTµψ

k serving as the
general descendent insertion. Let F0(t) be the generating function of the genus zero descendent
Gromov–Witten invariants on X. Since F0 is a function on H+, the 1-form dF0 gives a section
of π : H → H+.

Givental’s Lagrangian cone L is defined as the graph of dF0, which is considered as a section
of π. By construction it is a Lagrangian subspace. The existence of C∗-action on L is due to
the dilaton equation

∑
qµk∂/∂qµkF0 = 2F0. Thus L is a cone with vertex q = 0 (cf. [Giv04,

Lee09]).

Let τ =
∑

µ τ
µTµ ∈ H. Define the (big) J-function to be

JX
(
τ, z−1

)
= 1 +

τ

z
+
∑
β,n,µ

qβ

n!
Tµ

〈
Tµ

z(z − ψ)
, τ, . . . , τ

〉
0,n+1,β

= eτ/z +
∑

β 6=0,n,µ

qβ

n!
eτ1/z+(τ1.β)Tµ

〈
Tµ

z(z − ψ)
, τ2, . . . , τ2

〉
0,n+1,β

,

(2.1)

where in the second expression τ = τ1 + τ2 with τ1 ∈ H2. The equality follows from the divisor
equation for descendent invariants. Furthermore, the string equation for JX says that we can
take out the fundamental class 1 from the variable τ to get an overall factor eτ

0/z in front of (2.1).

The J-function can be considered as a map from H to zH−. Let Lf = TfL be the tangent
space of L at f ∈ L. Let τ ∈ H be embedded into H+ via

H ∼= −1z +H ⊂ H+ .

Set Lτ = L(τ,dF0(τ)). Here we list the basic structural results from [Giv04]:

(i) We have zLτ ⊂ Lτ , and so Lτ/zLτ ∼= H+/zH+
∼= H has rank N := dimH.

(ii) We have Lτ ∩ L = zLτ , considered as subspaces inside H.

(iii) The subspace Lτ of H is the tangent space at every f ∈ zLτ ⊂ L. Moreover, Tf = Lτ implies
f ∈ zLτ . The subspace zLτ is considered as the ruling of the cone.

(iv) The intersection of L and the affine space −1z+ zH− is parameterized by its image −1z+
H ∼= H via the projection by π. For τ ∈ H,

−zJX
(
τ,−z−1

)
= −1z + τ +O(1/z)

is the function of τ whose graph is the intersection.

(v) The set of all directional derivatives z∂µJ
X = Tµ+O(1/z) spans an N -dimensional subspace

of Lτ , namely Lτ ∩ zH−, such that its projection to Lτ/zLτ is an isomorphism.

Note that we have used a convention for the J-function which differs from that of some more
recent papers [Giv04, CG07] by a factor z.

Lemma 2.1. The matrix z∇JX = (z ∂µJ
ν) has column vectors z ∂µJ

X(τ) that generate the
tangent space Lτ of the Lagrangian cone L as an R{z}-module. Here a =

∑
qβaβ(z) ∈ R{z} if

aβ(z) ∈ C[z].

Proof. Apply result (v) above to Lτ/zLτ and multiply by zk to get zkLτ/z
k+1Lτ .

We see that the germ of L is determined by an N -dimensional submanifold. In this sense,
zJX generates L. Indeed, all discussions are applicable to the Gromov–Witten context only as
formal germs around the neighborhood of q = −1z.
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2.2 Generalized mirror transform for toric bundles

Let p̄ : X → S be a smooth fiber bundle such that H(X) is generated by H(S) and fiber divisors
Di as an algebra, in such a way that there is no linear relation among the Di and H2(S). An
example of X is a toric bundle over S. Assume that H(X) is a free module over H(S) with finite
generators {De :=

∏
iD

ei
i }e∈Λ+ .

Let t̄ :=
∑

s t̄
sT̄s be a general cohomology class in H(S), which is identified with p̄∗H(S).

Similarly, denote by D =
∑
tiDi the general fiber divisor. Elements in H(X) can be written

as linear combinations of {T(s,e) = T̄sD
e}. Denote the T̄s-directional derivative on H(S) by

∂T̄s ≡ ∂t̄s , and denote the multiple derivative by

∂(s,e) := ∂t̄s
∏
i

∂ei
ti
.

Note, however, that most of the time z will appear with derivative. For notational convenience,
denote the index (s, e) by e. We then set

∂ze ≡ ∂z(s,e) := z∂t̄s
∏
i

z ∂ei
ti

= z|e|+1 ∂(s,e) . (2.2)

As usual, the Te-directional derivative on H(X) is denoted by ∂e = ∂Te . Here Te is a special
choice of the basis Tµ (and ∂µ) of H(X), defined by

Te ≡ T(s,e) ≡ T̄sDe, e ∈ Λ+ .

The two operators ∂ze and z∂e are by definition very different; nevertheless, they are closely
related in the study of quantum cohomology, as we will see below.

Assume that p̄ : X → S is a toric bundle of split type, that is, the toric quotient of a split
vector bundle over S. Let JS(t̄, z−1) be the J-function on S. The hypergeometric modification
of JS by the p̄-fibration takes on the form

IX
(
t̄, D, z, z−1

)
:=

∑
β∈NE(X)

qβe
D
z

+(D.β)I
X/S
β

(
z, z−1

)
JSβS
(
t̄, z−1

)
, (2.3)

with the relative factor I
X/S
β , whose explicit form for X = Ẽ → S will be given in Section 3.2.

The major difficulty which makes IX deviate from JX lies in the fact that in general, positive

z-powers may occur in IX . Nevertheless, for each β ∈ NE(X) the power of z in I
X/S
β (z, z−1) is

bounded from above by a constant depending only on β. Thus we may study IX in the space
H := H[z, z−1]] over R.

Notice that the I-function is defined only on the subspace

t̂ := t̄+D ∈ H(S)⊕
⊕
i

CDi ⊂ H(X) . (2.4)

We will use the following theorem by Brown (and Givental).

Theorem 2.2 ([Bro14, Theorem 1]). The vector (−z)IX(t̂,−z) lies in the Lagrangian cone L
of X.

Definition 2.3 (GMT). For each t̂, the vector zI(t̂) lies in the subspace Lτ of L. The corre-
spondence

t̂ 7→ τ(t̂) ∈ H(X)⊗R
is called the generalized mirror transformation (cf. [CG07, Giv04]).
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Remark 2.4. In general τ(t̂) may be outside the submodule of the Novikov ring R generated by
H(S)⊕

⊕
iCDi. This is in contrast to the (classical) mirror transformation where τ is a trans-

formation within (H0(X)⊕H2(X))R (small parameter space).

To use Theorem 2.2, we start by outlining the idea behind the following discussions. By
the properties of L, Theorem 2.2 implies that I can be obtained from J by applying a certain
differential operator in the z∂e to it, with series in z as coefficients. However, what we need is the
reverse direction, namely to obtain J from I, which amounts to removing the positive z-powers
from I. Note that the I-function has variables only in the subspace H(S) ⊕

⊕
iCDi. Thus a

priori the reverse direction does not seem to be possible.

The key idea below is to replace derivatives in the missing directions by higher-order differ-
entiations in the fiber divisor variables ti, a process similar to transforming a first-order ordinary
differential equation system to a higher-order scalar equation. This is possible since H(X) is
generated by the Di as an algebra over H(S).

Lemma 2.5. We have z∂1J
X = JX and z∂1I

X = IX .

Proof. The first equality is the string equation. For the second one, by definition

IX =
∑
β

qβeD/z+(D·β)I
X/S
β JSβS (t̄) ,

where I
X/S
β depends only on z. The differentiation with respect to t0 (dual coordinate of 1) only

applies to JSβS (t̄). Hence the string equation on JSβS (t̄) concludes the proof.

To avoid cluttered notation, we use I and J to denote the I-function and J-function, respec-
tively, when the target space is clear.

Proposition 2.6. (1) The GMT τ = τ(t̂) satisfies τ(t̂, q = 0) = t̂.

(2) Under the basis {Te}e∈Λ+ , there exists an invertible formal series B(τ, z) with N × N
matrices as coefficients, which is free from cohomology classes, such that(

∂zeI
(
t̂, z, z−1

))
=
(
z∇J

(
τ, z−1

))
B(τ, z) , (2.5)

where (∂zeI) is the N ×N matrix with ∂zeI as the column vectors.

Proof. By Theorem 2.2, we have zI ∈ L, hence z∂I ∈ TL = L. Then z(z∂)I ∈ zL ⊂ L and so
z∂(z∂)I lies again in L. Inductively, ∂zeI lies in L. The factorization (∂zeI) = (z∇J)B(z) then
follows from Lemma 2.1. Also, Lemma 2.5 says that the I- and J-functions appear as the first
column vectors of (∂zeI) and (z∇J), respectively. By the R{z}-module structure, it is clear that
B does not involve any cohomology classes.

By the definitions of J , I and ∂ze (cf. (2.1), (2.3), (2.2)), it is clear that

∂zeet̂/z = Tee
t̂/z , z∂ee

t/z = Tee
t/z (2.6)

(t ∈ H(X)). Hence modulo Novikov variables, ∂zeI(t̂) ≡ Teet̂/z and z ∂eJ(τ) ≡ Teeτ/z.
To prove statement (1), note that modulo all qβ we have

et̂/z ≡
∑
e∈Λ+

Be,1(z)Tee
τ(t̂)/z .

Thus

e(t̂−τ(t̂))/z ≡
∑
e

Be,1(z)Te ,
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which forces τ(t̂) ≡ t̂ (and Be,1(z) ≡ δTe,1).

To prove statement (2), notice that by statement (1) and (2.6), we have B(τ, z) ≡ IN×N
modulo Novikov variables, so in particular B is invertible. Notice that in deriving (2.5) we do
not need to worry about the sign on “−z” since it appears in both I and J .

Definition 2.7 (BF). The left-hand side of (2.5) involves z and z−1, while the right-hand side
is the product of a function of z and a function of z−1. Such a matrix-factorization process is
termed a Birkhoff factorization.

Besides its existence and uniqueness, for actual computations it will be important to know
how to calculate τ(t̂) directly or inductively.

Proposition 2.8. There are scalar-valued formal series Ce(t̂, z) such that

J
(
τ, z−1

)
=
∑
e∈Λ+

Ce(t̂, z) ∂zeI
(
t̂, z, z−1

)
, (2.7)

where Ce ≡ δTe,1 modulo Novikov variables.

In particular, τ(t̂) = t̂+ · · · is determined by the coefficient of 1/z on the right-hand side.

Proof. Proposition 2.6 implies

z∇J = (∂zeI)B−1 .

Take the first column vector on the left-hand side, which is z∇1J = J by Lemma 2.5. One gets
expression (2.7) by defining Ce to be the corresponding eth entry of the first column vector
of B−1. Modulo the qβ, we have B−1 ≡ IN×N , hence Ce ≡ δTe,1.

Definition 2.9. A differential operator P is of degree Λ+ if P =
∑

e∈Λ+ Ce∂
ze for some Ce.

Namely, its components are multi-derivatives indexed by Λ+.

Theorem 2.10 (BF/GMT). There is a unique, recursively determined, scalar-valued degree Λ+

differential operator

P (z) = 1 +
∑

β∈NE(X)\{0}

qβPβ(ti, t̄s, z; z∂ti , z∂t̄s) ,

with each Pβ polynomial in z, such that P (z)I(t̂, z, z−1) = 1 +O(1/z).

Moreover,

J
(
τ(t̂), z−1

)
= P (z)I

(
t̂, z, z−1

)
,

with τ(t̂) determined by the coefficient of 1/z on the right-hand side.

Proof. The operator P (z) is constructed by induction on β ∈ NE(X). We set Pβ = 1 for β = 0.
Suppose that Pβ′ has been constructed for all β′ < β in NE(X). We set P<β(z) =

∑
β′<β q

β′Pβ′ .
Let

A1 = zk1qβ
∑
e∈Λ+

fe(ti, t̄s)Te (2.8)

be the top z-power term in P<β(z)I. If k1 < 0, then we are done. Otherwise we will remove it
by introducing “certain Pβ”. Consider the “naive quantization”

Â1 := zk1qβ
∑
e∈Λ+

fe(ti, t̄s)∂ze . (2.9)
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In the expression (
P<β(z)− Â1

)
I = P<β(z)I − Â1I ,

the target term A1 has been removed since

Â1I(q = 0) = Â1e
t̂/z = A1e

t̂/z = A1 +A1O(1/z) .

All the newly created terms either have smaller top z-power or have curve degree qβ
′′

with β′′ > β
in NE(X). Thus we may keep on removing the new top z-power term A2, which has k2 < k1.
Since the process will stop in no more than k1 steps, we simply define Pβ by

qβPβ = −
∑

16j6k1

Âj .

By induction we get P (z) =
∑

β∈NE(X) q
βPβ, which is clearly of degree Λ+.

Now we prove the uniqueness of P (z). Suppose that P1(z) and P2(z) are two such operators.
The difference δ(z) = P1(z)− P2(z) satisfies

δ(z)I =:
∑
β

qβδβI = O(1/z) .

Clearly δ0 = 0. If δβ 6= 0 for some β, then β can be chosen such that δβ′ = 0 for all β′ < β. Let
the highest non-zero z-power term of δβ be zk

∑
e δβ,k,e∂

ze. Then

qβzk
∑
e

δβ,k,e∂
ze

(
et̂/z +

∑
β1 6=0

qβ1Iβ1

)
+RI = O(1/z) .

Here R denotes the remaining terms in δ. Note that terms in RI either do not contribute to qβ

or have z-power less than k. Thus the only qβ-term is

qβzk
∑
e

δβ,k,eTee
t̂/z .

This is impossible since k > 0 and {Te} is a basis. Thus δ = 0.

Finally, by Lemma 2.1, both B and B−1 have entries in R{z}. Thus Proposition 2.8 provides
an operator which satisfies the required properties. By the uniqueness it must coincide with the
effectively constructed P (z).

2.3 Reduction to special BF/GMT

Proposition 2.11. Let f : X 99K X ′ be the projective local model of an ordinary flop with graph
correspondence F . Suppose that there are formal lifts τ , τ ′ of t̂ in H(X) ⊗ R and H(X ′) ⊗ R,
respectively, with τ(t̂), τ ′(t̂) ≡ t̂ modulo Novikov variables in NE(S), and with F τ(t̂) ∼= τ ′(t̂).
Then

FJ(τ(t̂)) · ξ ∼= J ′(τ ′(t̂)) · ξ′ =⇒ FJ(t̂) · ξ ∼= J ′(t̂) · ξ′ ,
and consequently QH(X) and QH(X ′) are analytic continuations of each other under F .

Proof. For an induction on the weight w := (βS , d2) ∈ W , suppose that for all w′ < w we have
the invariance of any n-point function (except that if β′S = 0, then n > 3). Here we would like
to recall that W := (NE(Ẽ)/∼) ⊂ NE(S)⊕ Z is the quotient Mori cone.

By the definition of J in (2.1), for any a ∈ H(X) we may pick up the fiber series over w from
the ξaz−(k+2)-component of the assumed F -invariance:

F
〈
τn, ψkξa

〉X ∼= 〈τ ′n, ψkξ′Fa
〉X′

. (2.10)
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Write τ(t̂) =
∑

w̄∈W τw̄(t̂)qw̄. The fiber series is decomposed into a sum of subseries in q` of
the form 〈

τw̄1(t̂), . . . , τw̄n(t̂), ψkξa
〉X
w′′
q
∑n
j=1 w̄j+w

′′
.

Since
∑
w̄j + w′′ = w, any w̄j-term with w̄j 6= 0 leads to w′′ < w, whose fiber series is of

the form
∑

i gi(q
`, t̂)hi(q

`) with gi from
∏
τw̄j (t̂) and hi a fiber series over w′′. The gi are F -

invariant by assumption and the hi are F -invariant by induction, thus the sum of products is
also F -invariant.

From (2.10) and τ0(t̂) = t̂, the remaining fiber series with w̄j = 0 for all j satisfies

F
〈
t̂n, ψkξa

〉X
w
∼=
〈
t̂n, ψkξFa

〉X′
w′
,

which holds for any n, k and a.

Now by Theorem 5.2 (divisorial reconstruction and WDVV reduction) of Part I [LLW16],
this implies the F -invariance of all fiber series over w.

Later we will see that for the GMT τ(t̂) and τ ′(t̂), the lifting condition τ(t̂) ≡ t̂ modulo
NE(S)\{0} (instead of modulo NE(X)\{0}) and the identity FJ(τ(t̂)) · ξ ∼= J ′(τ ′(t̂)) · ξ′ hold
for split ordinary flops.

3. Hypergeometric modification

From now on we work with a split local P r flop f : X 99K X ′ with bundle data (S, F, F ′), where

F =
r⊕
i=0

Li and F ′ =
r⊕
i=0

L′i .

We study the explicit formulae of the hypergeometric modifications IX and IX
′

associated with
the double projective bundles X → S and X ′ → S, especially the symmetry property between
them.

In order to get a better sense of the factor IX/S , it is necessary to have a precise description of
the Mori cone first. We then describe the Picard–Fuchs equations associated with the I-function.

3.1 Minimal lift of curve classes and F -effective cone

Let C be an irreducible projective curve with ψ : V =
⊕r

i=0 O(µi) → C a split bundle. Let
µ = maxµi, and denote by ψ̄ : P (V )→ C the associated projective bundle. Let h = c1(OP (V )(1)),
let

b = ψ̄∗[C] ·Hr = Hr = hr + c1(V )hr−1

be the canonical lift of the base curve, and ` be the fiber curve class.

Lemma 3.1. The Mori cone NE(P (V )) is generated by ` and b− µ`.

Proof. Consider V ′ = O(−µ)⊗V = O⊕N . Then N is a semi-negative bundle and NE(P (V )) ∼=
NE(P (V ′)) is generated by ` and the zero section b′ of N → P 1. In this case b′ is also the
canonical lift b′ = h′r + c1(V ′)h′r−1. From the Euler sequence we know that h′ = h+ µp. Hence

b′ = (h+ µp)r +

r∑
i=1

(µi − µ)p(h+ µp)r+1 = hr + rµphr−1 +

r∑
i=1

(µi − µ)phr−1

= hr + c1(V )hr−1 − µphr−1 = b− µ` .
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Let ψ : V =
⊕r

i=0 Li → S be a split bundle with ψ̄ : P = P (V ) → S. Since ψ̄∗ : NE(P ) →
NE(S) is surjective, for each βS ∈ NE(S) represented by a curve C =

∑
j njCj , the determination

of ψ̄−1
∗ (βS) corresponds to the determination of NE(P (VCj )) for all j. Therefore by Lemma 3.1,

the minimal lift with respect to this curve decomposition is given by

βP :=
∑
j

nj(ψ̄
∗[Cj ] ·Hr − µCj`) = βS − µβS` ,

with µCj = maxi(Cj · Li) and µ = µβS :=
∑

j njµCj . As before we identify the canonical lift

ψ̄∗βS ·Hr with βS . Thus the crucial part is to determine the case of primitive classes. The general
case follows from the primitive case by additivity. When there is more than one way to decompose
into primitive classes, the minimal lift is obtained by taking the minimal one. Notice that further
decomposition leads to a smaller (or equal) lift. Also, there could be more than one minimal lift
coming from different (non-comparable) primitive decompositions.

Now we apply the above results to study the effective and F -effective curve classes under the
local split ordinary flop f : X 99K X ′ of type (S, F, F ′). Fixing a primitive curve class βS ∈ NE(S),
we define

µi := (βS · Li) , µ′i := (βS · L′i) .
Let µ = maxµi and µ′ = maxµ′i. Then by working on an irreducible representation curve C
of βS , we get by Lemma 3.1

NE(Z)βS = (βS − µ`) + Z>0` ≡ βZ + Z>0` ,

NE(Z ′)βS = (βS − µ′`′) + Z>0`
′ ≡ βZ′ + Z>0`

′ .

Now we consider the further lifts of the primitive elements βZ and βZ′ to X. The bundle
N ⊕O is of split type with Chern roots −h+L′i and 0 for i = 0, . . . , r. On βZ they take on values

µ+ µ′i (i = 0, . . . , r) and 0 . (3.1)

To determine the minimal lift of βZ in X, we separate it into two cases.

Case (1): µ+ µ′ > 0. The greatest number in (3.1) is µ+ µ′ and

NE(X)βZ = (βZ − (µ+ µ′)γ) + Z>0γ .

Case (2): µ+ µ′ 6 0. The greatest number in (3.1) is 0 and

NE(X)βZ = βZ + Z>0γ .

To summarize, we have the following.

Lemma 3.2. Given a primitive class βS ∈ NE(S), we have β = βS + d` + d2γ ∈ NE(X) if and
only if

d > −µ and d2 > −ν , (3.2)

where ν = max{µ+ µ′, 0}.

Remark 3.3. For the general case βS =
∑

j nj [Cj ], the constants µ and ν are replaced by

µ = µβS :=
∑
j

njµCj and ν = νβS :=
∑
j

nj max{µCj + µC′j , 0} .
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Thus a geometric minimal lift βXS ∈ NE(X) for βS ∈ NE(S), with respect to the given primitive
decomposition is

βXS = βS − µ`− νγ .
(If µCj + µ′Cj > 0 for all j, then ν = µ+ µ′.)

The geometric minimal lifts describe NE(X). We will however only need a “generic lift”
(I-minimal lift in Definition 3.7) in the study of GW invariants.

Definition 3.4. A class β ∈ N1(X) is F -effective if β ∈ NE(X) and Fβ ∈ NE(X ′).

Proposition 3.5. Let βS ∈ NE(S) be primitive. A class β ∈ NE(X) over βS is F -effective if
and only if

d+ µ > 0 and d2 − d+ µ′ > 0 . (3.3)

Proof. Let β = βS + d` + d2γ, then Fβ = βS − d`′ + d2(γ′ + `′) = βS + (d2 − d)`′ + d2γ =:
βS + d′`′ + d′2γ

′. It is clear that β being F -effective implies both inequalities. Conversely, the
two inequalities imply

d2 > d− µ′ > −(µ+ µ′) > −ν ,
hence β ∈ NE(X). Similarly, Fβ ∈ NE(X ′).

3.2 Symmetry for I

For F =
⊕r

i=0 Li and F ′ =
⊕r

i=0 L
′
i, the Chern polynomials for F and N ⊕ O take on the form

fF =
∏

ai :=
∏

(h+ Li) , fN⊕O = br+1

∏
bi := ξ

∏
(ξ − h+ L′i) .

For β = βS + d` + d2γ, we set µi := (Li.βS) and µ′i := (L′i.βS). Then for i = 0, . . . , r we have
(ai · β) = d+ µi, (bi · β) = d2 − d+ µ′i and (br+1 · β) = d2. Let

λβ = (c1(X/S) · β) = (c1(F ) + c1(F ′)) · βS + (r + 2)d2 . (3.4)

The relative I-factor is given by

I
X/S
β :=

1

zλβ

Γ
(
1 + ξ/z

)
Γ
(
1 + ξ/z + d2

) r∏
i=0

Γ
(
1 + ai/z

)
Γ
(
1 + ai/z + µi + d

) Γ
(
1 + bi/z

)
Γ
(
1 + bi/z + µ′i + d2 − d

) , (3.5)

and the hypergeometric modification of p̄ : X → S is

I = I
(
D, t̄; z, z−1

)
=

∑
β∈NE(X)

qβeD/z+(D·β)I
X/S
β JSβS (t̄) , (3.6)

where D = t1h+ t2ξ is the fiber divisor and t̄ ∈ H(S).

In more explicit terms, for a split projective bundle ψ̄ : P = P (V )→ S, the relative I-factor
equals

I
P/S
β :=

r∏
i=0

β·(h+Li)∏
m=1

(h+ Li +mz)−1 , (3.7)

I
P/S
β :=

r∏
i=0

1
/ β·(h+Li)∏

m=1

(h+ Li +mz)

 , (3.8)
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where the product in m ∈ Z is directed in the sense that

s∏
m=1

:=
s∏

m=−∞
/

0∏
m=−∞

. (3.9)

Thus for each i with β · (h + Li) 6 −1, the corresponding subfactor is understood as occurring
in the numerator; furthermore, the numerator must contain the factor h + Li corresponding to
m = 0. In general, I is viewed as a Laurent series in z−1 with cohomology-valued coefficients.
By the dimension constraint it in fact has only finite terms.

Remark 3.6. The relative factor comes from the equivariant Euler class of

H0(C, TP/S |C)−H1(C, TP/S |C)

at the moduli point [C ∼= P 1 → X].

Definition 3.7 (I-minimal lift). Introduce

µIβS := max
i
{βS · Li} , µ′IβS := max

i
{βS · L′i}

and

νIβS = max
{
µIβS + µ′IβS , 0

}
> 0 .

Define the I-minimal lift of βS to be

βIS := βS − µIβS`− ν
I
βS
γ ∈ NE(X) ,

where βS ∈ NE(X) is the canonical lift such that h · βS = 0 = ξ · βS .

Clearly, βIS is an effective class in NE(X), as µIβS 6 µβS and νIβS 6 νβS . When the inequality
is strict, the I-minimal lift is more effective than any geometric minimal lift. Nevertheless, it
is uniquely defined and we will show that it encodes the information of the hypergeometric
modification.

Definition 3.8. Define β to be I-effective, denoted by β ∈ NEI(X), if

d > −µIβS and d2 > −νIβS .

It is called F I-effective if β is I-effective and Fβ is I ′-effective. By the same proof as that of
Proposition 3.5, this is equivalent to

d+ µIβS > 0 and d2 − d+ µ′IβS > 0 .

Lemma 3.9 (Vanishing lemma). If ψ̄∗β ∈ NE(S) but β 6∈ NE(P ), then I
P/S
β = 0. In fact, the

vanishing statement holds for any β = βS + d` with d < −µIβS .

Proof. We have β · (h + Li) = d + µi 6 d + µIβS < 0 for all i. This implies I
P/S
β = 0 since it

contains the Chern polynomial factor
∏
i(h+ Li) = 0 in the numerator.

Now I
X/S
β ≡ IZ/Sβ I

X/Z
β is given by

r∏
i=0

β·ai∏
m=1

(ai +mz)−1
r∏
i=0

β·bi∏
m=1

(bi +mz)−1
β·ξ∏
m=1

(ξ +mz)−1 =: AβBβCβ . (3.10)

Although (3.10) makes sense for any β ∈ N1(X), we have the following.
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Lemma 3.10. The I-factor I
X/S
β is non-trivial only if β ∈ NEI(X).

Proof. Indeed, if βS ∈ NE(S) but β 6∈ NEI(X), then either d < −µIβS and Aβ = 0 by Lemma 3.9,

or d > −µIβS and we must have d2 < −νIβS 6 0 and all factors in Bβ appear in the numerator:

d2 − d+ µ′i 6 d2 + µIβS + µ′IβS 6 d2 + νIβS < 0 .

In particular, BβCβ contains the Chern polynomial fN⊕O = 0.

Remark 3.11. In view of Lemma 3.2, if β is a primitive class, then β ∈ NEI(X) if and only if
β ∈ NE(X). Hence the condition β ∈ NEI(X) is the “effective condition that β behaves as a
primitive class.” One way to think about this is that the localization calculation of the I-factor
is performed on the main component of the stable map moduli space where β is represented by
a smooth rational curve.

As far as I is concerned, the I-effective class plays the role of effective class. However, one
needs to be careful that the converse of Lemma 3.10 is not true: If β is I-effective, it is still

possible to have I
X/S
β = 0.

The expression (3.10) agrees with (3.5) by taking out the z-factor with m. The total factor
is clearly

z−
(∑r

i=0 ai+
∑r+1
i=0 bi

)
·β = z−c1(X/S)·β .

Similarly, for β′ ∈ NE(X ′), the I-factor I
X′/S
β′ ≡ IZ

′/S
β′ I

X′/Z′

β′ is given by

r∏
i=0

β′·a′i∏
m=1

(a′i +mz)−1
r∏
i=0

β′·b′i∏
m=1

(b′i +mz)−1
β′·ξ′∏
m=1

(ξ′ +mz)−1 =: A′β′B
′
β′C
′
β′ . (3.11)

Here a′i = h′ + L′i = F bi and b′i = ξ′ − h′ + Li = Fai.

By the invariance of the Poincaré pairing, (β ·ai) = d+µi = (Fβ ·b′i) and (β ·bi) = d2−d+µ′i =

(Fβ · a′i), and it is clear that all the linear subfactors in I
X/S
β and I

X′/S
Fβ correspond perfectly

under Aβ 7→ B′Fβ, Bβ 7→ A′Fβ and Cβ 7→ C ′Fβ.

However, since the cup product is not preserved under F , in general F Iβ 6= I ′Fβ. Clearly,
any direct comparison of Iβ and I ′Fβ (without analytic continuations) can make sense only if
β is F I-effective. This is the case if the (β · ai) and (β · bi), respectively, are not all negative.
Namely, Aβ and Bβ both contain factors in the denominator.

Lemma 3.12 (Naive quasi-linearity). (1) F Iβ · ξ = I ′Fβ · ξ′.
(2) If d2 := β.ξ < 0, then F Iβ = I ′Fβ.

The expressions in statements (1) or (2) are non-trivial only if β is F I-effective.

Proof. Statement (1) follows from the fact that f : X 99K X ′ is an isomorphism over the infin-
ity divisors E ∼= E. For statement (2), notice that since d2 < 0, the factor Cβ contains ξ in
the numerator corresponding to m = 0. Similarly, C ′Fβ contains ξ′ in the numerator. Hence,
statement (2) follows for the same reason as statement (1). The last statement follows from
Lemma 3.10.

3.3 The Picard–Fuchs system

Now, we return to the BF/GMT constructed in Theorem 2.10 and multiply it by the infinity
divisor ξ:

JX(τ(t̂)) · ξ = P (z)IX(t̂) · ξ .
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By Proposition 2.11 and Lemma 3.12, we need to show the F -invariance for P (z) and τ(t̂) in
order to establish the general analytic continuation.

The very first evidence for this is that, as in the case of classical hypergeometric series, IX

and IX
′

are solutions of certain Picard–Fuchs systems which turn out to be F -compatible.

Proposition 3.13 (Picard–Fuchs system on X). We have 2`I
X = 0 and 2γI

X = 0, where

2` =
r∏
j=0

z∂aj − q`et
1

r∏
j=0

z∂bj , 2γ = z∂ξ

r∏
j=0

z∂bj − q
γet

2
.

Recall that t1 and t2 are the dual coordinates of h and ξ, respectively. Here we use ∂v to
denote the directional derivative in v. Thus if v =

∑
viTi ∈ H2, then ∂v =

∑
vi∂ti .

Proof. By extracting all the divisor variables D = t1h + t2ξ and t̄1 ∈ H2(S) from IX (where
t̄ = t̄1 + t̄2), we get

IX =
∑

β∈NE(X)

qβe(D+t̄1)/z+(D+t̄1)·βI
X/S
β JSβS (t̄2) .

It is clear that z∂v produces the factor v + z(v · β) for v ∈ H2. From (3.10), we deduce that∏
j z∂aj modifies the AβBβCβ-factor to

r∏
j=0

β·aj−1∏
m=1

(aj +mz)−1BβCβ = Aβ−`Bβ−`

r∏
j=0

(bj + z(β − `) · bj)Cβ−`

(since β · aj − 1 = (β − `) · aj , (β − `) · bj = β · bj + 1 and (β − `) · ξ = β · ξ).
Clearly it equals the corresponding term from q`et

1∏
j z∂bjI

X unless β − ` is not effective.
But in that case the term is itself zero since Aβ−` = 0 by Lemma 3.9.

The proof for 2γI
X = 0 is similar and is thus omitted.

Similarly, IX
′

is a solution to

2`′ =
r∏
j=0

z∂a′j − q
`′e−t

1
r∏
j=0

z∂b′j , 2γ′ = z∂ξ′
r∏
j=0

z∂b′j − q
γ′et

2+t1 ,

where the dual coordinates of h′ and ξ′ are −t1 and t2 + t1, respectively (since F (t1h + t2ξ) =
t1(ξ′ − h′) + t2ξ′ = (−t1)h′ + (t2 + t1)ξ′).

Proposition 3.14. F
〈
2X` ,2

X
γ

〉 ∼= 〈2X′`′ ,2X′γ′ 〉.
Proof. It is clear that

F2` = −q−`′et12`′ ,
and

F2γ = z∂ξ′
r∏
j=0

z∂a′j − q
γ′+`′et

2
= z∂ξ′2`′ + q`

′
e−t

1
2γ′ .

Namely, the Picard–Fuchs systems on X and X ′ are indeed equivalent under F . Moreover,
both I = IX and I ′ = IX

′
satisfy this system, but in different coordinate charts (of the Kähler

moduli space) “|q`| < 1” and “|q`| > 1”, respectively.

We do not expect I and I ′ to be the same solution under analytic continuation in general.
In fact, they are not in some examples. We know this is not true for J and J ′ since the general
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descendent invariants are not F -invariant. Nevertheless, it turns out that P (z) and τ(t̂) are
correct objects to admit F -invariance.

Lemma 3.15. Modulo qβS , βS ∈ NE(S) and γ, we have P (z) ≡ 1 and τ(t̂) ≡ t̂.

Proof. One simply notices that in the proof of Theorem 2.10, to construct P (z) the induction
can be performed on [β] = (βS , d2) ∈ W , as in [LLW16, Section 4.2], by removing the whole
series in q` with the same top non-negative z-power one at a time. For the initial step [β] = 0
and JS([β] = 0) = et̄/z, from (3.10) we have extremal ray contributions:

I[β]=0 = et̂/z
(
1 +O

(
1/zr+1

))
.

As there are no non-negative z-powers besides 1, later inductive steps will also create only higher-
order q[β] with respect to W , hence the result follows.

Remark 3.16. By a virtual dimension count and (2.1), the J-function is weighted homogeneous
of degree 0 in the following weights | · |: we set |Tµ| to be its Chow degree, |tµ| = 1 − |Tµ| and
|qβ| = (c1(X) · β), and finally |ψ| = |z| = 1. This is usually expressed as: the Frobenius manifold
(QH(X), ∗) is conformal with respect to the Euler vector field

E =
∑

(1− |Tµ|)tµ∂µ + c1(X) ∈ Γ(TH) .

For the hypergeometric modification I, the base JS has degree zero with |qβS | = (c1(S).βS). But
when βS is viewed as an object in X, the weight increases by (c1(X/S).βS). This cancels with
the weight of the factor IX/Sqβ−βS , which is

−c1(X/S) · β + c1(X) · β − c1(X) · βS = c1(S) · β − c1(X) · βS
= −c1(X/S) · βS .

Hence I is also homogeneous of degree zero.

4. Extension of quantum D-modules via the quantum Leray–Hirsch theorem

In this section we will complete the proof of the main theorem (Theorem 1.3) on the invariance of
quantum rings under ordinary flops of split type. Proposition 3.14 guarantees the F -invariance of
the Picard–Fuchs systems (in the fiber directions). In order to construct the D-module MI = DI,
we will need to find the derivatives in the general base directions. This will be accomplished by a
lifting of the QDE on the base S. Putting these together, we will show that they generate enough
(correct) equations for MX

I . This is referred to as the quantum Leray–Hirsch theorem, which is
the content of Theorem 1.2 (a combination of Theorems 4.6, 4.8 and 4.10).

To obtain the (true) quantum D-module MX
J (on a sufficiently large Zariski-closed subset

given by the image of τ(t̂)), we apply the Birkhoff factorization on MX
I . We specifically choose

a way to perform the BF such that the F -invariance can be checked more naturally.

Before proceeding to the first step, let us lay out the notation and conventions for this section.

Notation 4.1. We use β̄ ∈ NE(S), t̄ ∈ H(S) etc. to denote objects in S. When they are viewed as
objects in X, however, β̄ means the canonical lift and t̄ means the pullback p̄∗ : H(S)→ H(X).

For a basis {T̄i} of H(S), denote by t̄ =
∑
t̄iT̄i a general element in H(S). When T̄i is

considered as an element in H(X), we sometimes abuse the notation by setting Ti := T̄i.

Given a basis {T̄i} of H(S), we use the following canonical basis for H(X):{
Te = T̄ih

lξm | 0 6 l 6 r, 0 6 m 6 r + 1
}
.
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A general element in H(X) is denoted by t =
∑
teTe. The index set of the canonical basis is

denoted by Λ+.

By abusing the notation, if Te = T̄i (that is, l = m = 0), we set te = ti = t̄i. Similarly, we set
te = t1 for Te = h and te = t2 for Te = ξ. That is, we reserve the indices 0, 1 and 2 for 1, h and
ξ, respectively.

On H(X ′) the canonical basis is chosen to be{
T ′e := FTe = T̄i(ξ

′ − h′)lξ′m
}
,

so that it shares the same coordinate system as H(X):

t =
∑
e

teTe 7→ F t =
∑
e

teFTe =
∑
e

teT ′e .

4.1 I-lift of the Dubrovin connection

Let the quantum differential equation of QH(S) be given by

z∂iz∂jJ
S(t̄) =

∑
k

C̄kij(t̄, q̄) z∂kJ
S(t̄) .

If we write C̄kij(t̄, q̄) =
∑
C̄k
ij,β̄

(t̄)qβ̄, then the effect on the β̄-components reads as

z∂iz∂jJ
S
β̄ =

∑
k,β̄1

C̄kij,β̄1 z∂kJ
S
β̄−β̄1 .

Now we lift the equation to X. In the following, for a curve class β̄ ∈ NE(S), its I-minimal
lift in NE(X) is denoted by β̄I . We compute

z∂iz∂jI =
∑
β

qβeD/z+(D·β)I
X/S
β z∂iz∂jJ

S
β̄

=
∑
k,β,β̄1

qβeD/z+(D·β)I
X/S
β C̄kij,β̄1 z∂kJ

S
β̄−β̄1

=
∑
k,β̄1

qβ̄
I
1eD·β̄

I
1 C̄kij,β̄1z∂k

∑
β

qβ−β̄
I
1eD/z+D·(β−β̄

I
1 )I

X/S
β JSβ̄−β̄1 .

(4.1)

The terms in last sum are non-trivial only if β̄ − β̄1 ∈ NE(S). However, in this presentation it is
not a priori guaranteed that β − β̄I1 is I-effective. (Hence, there might be some vanishing terms
in the presentation.)

In order to obtain the right-hand side as an operator acting on I, we will seek to “transform”
terms of the form

eD/z+D·(β−β̄
I
1 )I

X/S
β JSβ̄−β̄1

to terms of the form

eD/z+D·(β−β̄
I
1 )I

X/S

β−β̄I1
JSβ̄−β̄1 .

This can be achieved by differentiating the right-hand side judiciously and will be explained
below.

As a first step, we will show that I
X/S
β = 0 if β − β̄I1 6∈ NEI(X) and β̄ − β̄1 ∈ NE(S).

Definition 4.2. For any 1-cycle β ∈ A1(X), effective or not, we define

ni(β) := −β · (h+ Li) , n′i(β) := −β · (ξ − h+ L′i) , n′r+1(β) := −β · ξ ,
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where 0 6 i 6 r.

Lemma 4.3. For β̄ ∈ NE(S), the I-minimal lift β̄I ∈ NE(X) satisfies ni(β̄
I) > 0 and n′i(β̄

I) > 0
for all i.

Proof. During the proof, the superscript I is omitted for simplicity.

By definition,

ni = −β̄I · (h+ Li) = µ− µi > 0 .

Similarly, for 0 6 i 6 r,

n′i = −β̄I · (ξ − h+ L′i) = max{µ+ µ′, 0} − µ− µ′i .

If µ+ µ′ > 0, we have

n′i = µ′ − µ′i > 0 .

Otherwise, if µ+ µ′ < 0, then we get

n′i = 0− (µ+ µ′i) > −(µ+ µ′) > 0 . (4.2)

Finally, for the compactification factor O, we get

n′r+1 = −β̄I · ξ = max{µ+ µ′, 0} > 0 .

Let β, β′ ∈ A1(X) be (not necessarily effective) 1-cycles. By definition of the I-function, the
β-factor corresponding to h+ Li is

Ai,β =

β·(h+Li)∏
m=1

(h+ Li +mz)−1 ,

which depends only on the intersection number. Suppose

li := β′ · (h+ Li)− β · (h+ Li) > 0 ,

we then have

Ai,β = Ai,β′

β′·(h+Li)∏
m=β·(h+Li)+1

(h+ Li +mz) . (4.3)

We say that Ai,β is a product of Ai,β′ with a (cohomology-valued) factor of length li. The factors
corresponding to ξ − h+ L′i and ξ behave similarly.

Lemma 4.4. Let β ∈ NE(X), and let β − β̄I1 be an I-effective class. Then I
X/S
β is the product

of I
X/S

β−β̄I1
with factors of lengths ni(β̄

I
1), n′i(β̄

I
1) and n′r+1(β̄I1) corresponding to h+Li, ξ − h+L′i

and ξ, respectively.

If β − β̄I1 is not I-effective, the conclusion holds in the sense that I
X/S
β = 0.

Proof. Set β′ = β − β̄I1 in (4.3). The length is

(β′ − β) · (h+ Li) = −β̄I1 · (h+ Li) = ni
(
β̄I1
)
.

The arguments for ξ − h+ L′i and ξ are similar.

If β − β̄I1 is not I-effective, formally I
X/S

β−β̄I1
= 0 contains either the Chern polynomial fF or

fN⊕O in its numerator. Notice that (4.3) holds formally.

This proves the lemma.
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Our next step is to show that the factors in (4.3) can be obtained by introducing certain
differential operators acting on I.

Definition 4.5. A 1-cycle β ∈ A1(X) is called admissible if we have ni(β) > 0, n′i(β) > 0 and
n′r+1(β) > 0. For admissible β we define differential operators

DA
β :=

r∏
i=0

ni(β)−1∏
m=0

(z∂h+Li −mz) ,

DB
β :=

r∏
i=0

n′i(β)−1∏
m=0

(z∂ξ−h+L′i
−mz) ,

DC
β :=

n′r+1(β)−1∏
m=0

(z∂ξ −mz) ,

Dβ(z) := DA
βD

B
β D

C
β .

Now we are ready to lift the quantum differential equations for JS to equations for IX .

Theorem 4.6 (I-lift of QDE). The Dubrovin connection on QH(S) can be lifted to H(X) as

z∂iz∂jI =
∑
k,β̄

qβ̄
∗
eD·β̄

∗
C̄kij,β̄(t̄)z∂kDβ̄∗(z)I , (4.4)

where β̄∗ ∈ A1(X) is any admissible lift of β̄, which in particular implies the well-definedness of
the operators Dβ̄∗(z).

Furthermore, one can always choose β̄∗ to be effective. An example of an effective lift is the
I-minimal lift β̄∗ = β̄I , which is the only admissible lift if and only if µ+ µ′ > 0.

In general, all lifts are related to one another modulo the Picard–Fuchs system generated
by 2` and 2γ .

Proof. We apply the calculation in (4.1) with β̄I1 replaced by a general admissible lift β̄∗1 . For
t̄ = t̄1 + t̄2, with t̄1 the divisor part,∑

β

qβ−β̄
∗
1 eD/z+D·(β−β̄

∗
1 )I

X/S
β JSβ̄−β̄1(t̄)

=
∑
β

Dβ̄∗1
(z)qβ−β̄

∗
1 e(D+t̄1)/z+(D+t̄1)·(β−β̄∗1 )I

X/S

β−β̄∗1
JSβ̄−β̄1(t̄2) = Dβ̄∗1

(z)I .

Now we prove the last statement. Any two (admissible) lifts differ by some a` + bγ, say,
β′′ = β′ + a`+ bγ. Then we have

ni(β
′′) = ni(β

′)− a , n′i(β
′′) = n′i(β

′) + (a− b) , n′r+1(β′′) = n′r+1(β′)− b . (4.5)

Then it is elementary to see that we may connect β′ to β′′ by adding or subtracting ` or γ one
at a time, with all the intermediate steps β′j being admissible. For example, if a > 0, b > 0 and
a− b > 0, then we start by adding ` up to j = a− b times. Then we iterate the process: adding γ
followed by adding `, up to b times. Thus we only have to consider the two cases (1) β′′ = β′+ `
and (2) β′′ = β′ + γ.

For case (1), we get from (4.5) with (a, b) = (1, 0) that ni(β
′) > 1 for all i. This implies

DA
β′ = DA+

β′ D
A
0 , where DA

0 =
∏r
j=0 z∂aj comes from the product of m = 0 terms. Since 2`I = 0,
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we compute

Dβ′(z)I = DB
β′D

C
β′D

A+
β′ q

`et
1

r∏
j=0

z∂bjI .

Now we move q`et
1

to the left-hand side of all operators by noticing that

z∂he
t1 = et

1
(z∂h + z)

in the operator sense. Then (notice that DC
β′ = DC

β′+`)

Dβ′(z)I = q`et
1
DB+
β′+`D

C
β′D

A
β′+`

r∏
j=0

z∂bjI = q`et
1
Dβ′+`(z)I ,

which is the desired factor for β′′.

The proof for case (2) is entirely similar, with 2γI = 0 used instead, and is thus omitted.

The uniqueness statement for µ+µ′ > 0 follows from (4.5) and the observation that ni(β̄
I) =

µ− µi and n′i(β̄
I) = µ′ − µ′i both attain zero somewhere and there is no room to move around.

The proof is complete.

Notice that the lifts of the QDE may not be unique. We will see the importance of such
freedom when we discuss the F -invariance property.

4.2 The quantum Leray–Hirsch theorem

Definition 4.7. Let Te = T̄ih
lξm be an element of the canonical basis of H(X). The naive

quantization of Te is defined as (cf. (2.2) and (2.9))

T̂e := ∂ze = z∂t̄i(z∂t1)l(z∂t2)m .

Theorem 4.8 (Quantum Leray–Hirsch). The I-lift (4.4) of quantum differential equations on S
and the Picard–Fuchs equations determine a first-order matrix system under the naive quanti-
zation ∂ze of the canonical basis Te of H(X):

z∂a(∂
zeI) = (∂zeI)Ca(z, q) , ta ∈ {t1, t2, t̄i} .

This system has the property that for any fixed β̄ ∈ NE(S), the coefficients are formal
functions in t̄ and polynomial functions in qγet

2
and q`et

1
and the basic rational function f(q`et

1
),

defined in (1.1).

We start with an overview of the general ideas involved in the proof. The Picard–Fuchs
system generated by 2` and 2γ is a perturbation of the Picard–Fuchs (hypergeometric) system
associated with the (toric) fiber by operators in base divisors. The fiberwise toric case is a GKZ
system, which by the theorem of Gelfand–Kapranov–Zelevinsky is a holonomic system of rank
(r + 1)(r + 2), the dimension of cohomology space of a fiber. It is also known that the GKZ
system admits a Gröbner basis reduction to the holonomic system.

We apply this result in the following manner: We will construct a D-module with basis ∂ze

for e ∈ Λ+. We apply operators z∂t1 and z∂t2 and first-order operators z∂i to this selected basis.
Notice that

2` = (1− (−1)r+1q`et
1
)(z∂t1)r+1 + · · · ,

2γ = (z∂t2)r+2 + · · · .
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The Gröbner basis reduction allows one to reduce the differentiation order in z∂t1 and z∂t2 to a
smaller one. In the process higher-order differentiation in the z∂i will be introduced. Using the
I-lift, the differentiation in the base direction with order higher than 1 can be reduced to order 1
by introducing more terms with strictly larger effective classes in NE(S). A refinement of these
observations will lead to a proof, which is presented below.

Remark 4.9. In fact, neither the Gröbner basis nor the GKZ theorem will be needed, due to the
simple feature of the Picard–Fuchs system we have for split ordinary flops.

Proof. Consider first the case of simple P r flops (S = pt). In this special case the Gröbner basis
is already at hand. The naive quantization of the canonical cohomology basis gives

∂z(i,j) := (z∂t1)i(z∂t2)j , 0 6 i 6 r , 0 6 j 6 r + 1 .

Further differentiation in the t1-direction leads to

z∂t1∂
z(i,j) = ∂z(i+1,j) .

It is clear that we only need to deal with the boundary case i = r, when the right-hand side goes
beyond the standard basis.

Case (i, j) = (r, 0). The equation 2` = (z∂t1)r+1− q`et1(z∂t2 − z∂t1)r+1 ≡ 0 modulo I leads
to

(z∂t1)r+1 ≡ q`et
1

1− (−1)r+1q`et1

r+1∑
k=1

Cr+1
k (z∂t2)k(−z∂t1)r+1−k , (4.6)

which solves the case.

Case (i, j) = (r, j > 1). For j > 1, notice that 2γ = z∂t2(z∂t2 − z∂t1)r+1 − qγet
2 ≡ 0

modulo I. Hence

(z∂t1)r+1(z∂t2)j = q`et
1
(z∂t2)j(z∂t2 − z∂t1)r+1

≡ q`et1(z∂t2)j−1qγet
2

= q`et
1
qγet

2
(z∂t2 + z)j−1 .

(4.7)

This in particular solves the other cases with 1 6 j 6 r + 1.

Similarly, differentiation in the t2-direction gives

z∂t2∂
z(i,j) = ∂z(i,j+1) .

And we only need to deal with the boundary case j = r + 1.

Case (i, j) = (0, r + 1). First of all, 2γI = 0 leads to

(z∂t2)r+2 ≡ −(−1)r+1(z∂t1)r+1z∂t2 −
r∑

k=1

Cr+1
k (z∂t2)k+1(−z∂t1)r+1−k + qγet

2

= (1− (−1)r+1q`et
1
)qγet

2 −
r∑

k=1

(−1)r+1−kCr+1
k ∂z(r+1−k,k+1) ,

(4.8)

which solves the case.
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Case (i, j) = (i > 1, r + 1). By further differentiating t1 in (4.8) and in (4.7), we get

(z∂t1)i(z∂t2)r+2 ≡ (z∂t1)iqγet
2 − (−1)r+1(z∂t1)iq`et

1
qγet

2

−
r∑

k=1

(−1)r+1−kCr+1
k (z∂t1)r+1+(i−k)(z∂t2)k+1

= qγet
2
(z∂t1)i − (−1)r+1q`et

1
qγet

2
(z∂t1 + z)i

−
r∑

k=i+1

(−1)r+1−kCr+1
k ∂z(r+i+1−k,k+1)

− q`et1qγet2
i∑

k=1

(−1)r+1−kCr+1
k (z∂t1 + z)i−k(z∂t2 + z)k .

(4.9)

This in particular solves the remaining cases with 1 6 i 6 r.

An important observation of the above calculation of the matrices C1(z, q) and C2(z, q) is
that Ci is constant in z modulo qγ . Moreover, qd2γ appears only in the case d2 = 1.

Now we consider the case with base S. The Picard–Fuchs equations are

2` =
r∏
j=0

z∂h+Lj − q
`et

1
r∏
j=0

z∂ξ−h+L′j
,

2γ = z∂ξ

r∏
j=0

z∂ξ−h+L′j
− qγet2 .

(4.10)

Recall that for a basis element Te = T̄sh
iξj in its canonical presentation (0 6 i 6 r, 0 6 j 6 r+1),

we defined its naive quantization

T̂e = ∂ze = z∂t̄s(z∂t1)i(z∂t2)j . (4.11)

The above calculations (4.6)–(4.9) need to be corrected by adding more differential symbols which
may consist of higher derivatives in base divisors z∂Lj and z∂L′j instead of a single z∂t̄s . Thus

they are not yet in the desired form (4.11). The I-lift (4.4) helps to reduce higher derivatives in
the base to first-order ones. Although new derivatives Dβ̄ may appear during this reduction, it

is crucial to notice that they all come with non-trivial classes qβ̄
I
.

With these preparations, we will prove the theorem by constructing

Ca,β̄(z) =
∑
β 7→β̄

Ca;β(z)qβ

for any fixed β̄ ∈ NE(S).

For β̄ = 0, the I-lift (4.4) introduces no further derivatives: Dβ̄=0(z) = Id. Thus higher-
order differentiations in the t̄s can all be reduced to the first order. Notice that in (4.10) all the
corrected terms have (z∂t1)i(z∂t2)j in the canonical range, hence (4.6)–(4.9) plus (4.4) lead to
the desired matrix Ca;β̄=0(z).

Given β̄ ∈ NE(S), to determine the coefficient Ca,β̄ from calculating z∂a(∂
ze), it is enough to

consider the restriction of (4.4) to the finite sum over β̄′ 6 β̄. We repeatedly apply the following
two constructions:

(i) The double derivative in the base can be reduced to a single derivative by (4.4). If a new
non-trivial derivative Dβ̄I1

(z) is introduced, then we get a new higher-order term with respect
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to NE(S) because the factor qβ̄
I
1 is added; thus such processes will produce classes with image

outside NE6β̄(S) in finitely many steps. In fact the only term in (4.4) not increasing the order
in NE(S) is given by

C̄kaj;β̄=0z∂k .

This is precisely the structural constant of the cup product on H(S), which is non-zero only if

deg T̄a + deg T̄j = deg T̄k .

Hence deg T̄k > deg T̄a, with equality only if T̄j = 1, which may occur only for the first step.
Any further reduction of double derivatives z∂kz∂l in the base into a single derivative z∂m must
then increase the cohomology degree deg T̄m > deg T̄k if the order in NE(S) is not increased. It
is clear that the process stops in finitely many steps.

(ii) Each time we have terms not in the reduced form (4.11), we perform the Picard–Fuchs
reduction (4.6)–(4.9) with correction terms. After the first step in simplifying z∂t1(∂ze) and
z∂t2(∂ze), in all the remaining steps we face such a situation only when we have non-trivial
terms Dβ̄I1

(z) from construction (i). As before this produces classes with image outside NE6β̄(S)
in finitely many steps.

Combining constructions (i) and (ii), we obtain Ca;β̄ in finitely many steps. It is clearly

polynomial in z, qγet
2
, q`et

1
and f(q`et

1
) since this holds for each step.

Theorem 4.10 (Naturality). The system is F -invariant. That is, FCa(t̂) ∼= C ′a(F t̂).

Proof. We have seen the F -invariance of the Picard–Fuchs systems. It remains to show the
F -invariance of the I-lift of the base Dubrovin connection, up to modification by 2` and 2γ .

By (4.4), the simplest situation to achieve such an invariance is the case F β̄I = β̄I
′
, since

then FDβ̄I (z) = D′
β̄I′

(z) as well.

Indeed, when µ+ µ′ > 0 for a curve class β̄, we do have

F β̄I = F (β̄ − µ`− (µ+ µ′)γ) = β̄ + µ`′ − (µ+ µ′)(`′ + γ′)

= β̄ − µ′`′ − (µ+ µ′)γ′ = β̄I
′
.

It remains to analyze the case µ+ µ′ < 0 for β̄. In this case,

F β̄I − β̄I′ = β̄ + µ`′ − (β̄ − µ′`′) = (µ+ µ′)`′ = −δ`′ ,

where δ := −(µ+ µ′) > 0 is the finite gap. Thus

F qβ̄
I−δ` = qβ̄

I′

and this suggests that we should try to decrease β̄I by ` a total of δ times.

In other words, we should expect to have another valid lift:

z∂iz∂jI =
∑
k,β̄

qβ̄
I−δ`eD·(β̄

I−δ`)C̄kij,β̄(t̄)z∂kDβ̄I−δ`(z)I . (4.12)

This is easy to check: Notice that ni(β̄
I − δ`) = ni(β̄

I) + δ > 0 and n′i(β̄
I − δ) = n′i(β̄

I) − δ,
which is also n′i(β̄ + µ′`) = µ′ − µ′i > 0 (cf. the gap in (4.2)). The value n′r+1 > 0 is unchanged.
Thus, the operator Dβ̄I−δ` is well defined, though β̄I − δ` may not be effective. By Theorem 4.6,
we see that (4.12) is also a lift and the theorem is proved.
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4.3 Reduction to the canonical form: the final proof

We will construct a gauge transformation B to eliminate all z-dependence of Ca. The final system
is then equivalent to the Dubrovin connection on QH(X). Such a procedure is well known in
the small quantum cohomology of Fano-type examples or in the context of abstract quantum
cohomology. (See, for example, [Gue08] and references therein.) Here we will also need to take
into account the role played by the generalized mirror transformation (GMT) τ(t̂).

In fact, B is nothing more than the Birkhoff factorization introduced before:

(∂zeI(t̂)) = (z∇J)(τ)B(τ) , (4.13)

valid at the generalized mirror point τ = τ(t̂). Thus B exists uniquely via an inductive procedure.
However, the analytic (formal) dependence of B is not manifest if one proceeds in this direction,
as the procedure involves J and I, and the analytic dependence holds for neither. Therefore, it
is not clear how to prove FB ∼= B′ up to analytic continuation.

In this subsection we will proceed in a slightly different, but ultimately equivalent, way.
Namely, we study instead the gauge transformation B directly from the differential system

z∂a(∂
zeI) = (∂zeI)Ca . (4.14)

Even though the solutions I are not F -invariant, the system is F -invariant by Theorem 4.10.
This system can be analyzed inductively with respect to the partial ordering of the Mori cone
on the base NE(S).

Substituting (4.13) into (4.14), we get z∂a(∇J)B + z(∇J)∂aB = (∇J)BCa, hence

z∂a(∇J) = (∇J)(−z∂aB +BCa)B
−1 =: (∇J)C̃a . (4.15)

We note the subtlety in the meaning of C̃a(t̂). Let τ =
∑
τµTµ. Then the QDE reads as

z∂µ(∇J)(τ) = (∇J)(τ)C̃µ(τ) ,

where C̃µ(τ) is the structure matrix of quantum multiplication at the point τ ∈ H(X). Then

z∂a(∇J) =
∑
µ

∂τµ

∂ta
z∂µ(∇J) = (∇J)

∑
µ

C̃µ
∂τµ

∂ta
,

hence

C̃a(t̂) ≡
∑
µ

C̃µ(τ(t̂))
∂τµ

∂ta
(t̂) . (4.16)

In particular, C̃a is independent of z.

Taking this into account, (4.15) in fact is equivalent to

C̃a = B0Ca;0B
−1
0 (4.17)

(B−1
0 := (B−1)0) and the cancellation equation

z∂aB = BCa −B0Ca;0B
−1
0 B , (4.18)

where the subscript 0 stands for the coefficients of z0 in the z-expansion.

Our plan is to analyze B = B(z) with respect to the weight w := (β̄, d2) ∈W , which carries
a natural partial ordering. The initial condition is Bw=(0,0) = Id, since we have seen that for
w = (0, 0), the only z-constant term of Ca is Ca;(0,0),0z

0”. The total z-constant terms in (4.18)
are trivially compatible. They are −B0Ca;0 on both sides.
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Now, we perform the induction on W . Suppose that Bw′ satisfies FBw′ = B′w′ for all w′ < w.
Then

z∂aBw =
∑

w1+w2=w

Bw1Ca;w2 −
∑

w1+w2+w3+w4=w

Bw1,0Ca;w2,0B
−1
w3,0

Bw4 . (4.19)

Write Ca;w =
∑m(w)

j=0 Ca;w,jz
j and Bw =

∑n(w)
j=0 Bw,jz

j . Then (4.19) implies

n(w) = max
w′<w

(n(w′) +m(w − w′))− 1 .

Notice that on the right-hand side all B-terms have degree strictly smaller than w except

BwCa;(0,0) − Ca;(0,0)Bw +Bw,0Ca;(0,0) − Ca;(0,0)B
−1
w,0 ,

which has maximal z-degree at most n(w). Moreover, by descending induction on the z-degree,
to determine Bw,j we need only Bw′ with w′ < w or Bw,j′ with j′ > j, which are all F -invariant
by induction. Hence the difference satisfies

∂a(FBw,j −B′w,j) = 0 .

The functions involved are all formal in t̄ and analytic in t1 and t2, and without constant term
(Bw=(0,0) = Id). Hence FBw,j = B′w,j .

To summarize, we have proved that for any t̂ = t̄+D ∈ H(S)⊕ Ch⊕ Cξ,

FB(τ(t̂)) ∼= B′(τ ′(t̂)) .

In particular, by (4.17) this implies the F -invariance of C̃a(t̂). In more explicit terms, we have
the F -invariance of

C̃κaν =
∑
n>0, µ

qβ

n!

∂τµ(t̂)

∂ta
〈
Tµ, Tν , T

κ, τ(t̂)n
〉
β

(4.20)

for arbitrary (basis elements) Tν , T κ ∈ H(X).

The very special case Tν = 1 leads to non-trivial invariants only for the 3-point classical
invariant (n = 0) and β = 0, and also µ = κ. Since κ is arbitrary, we have thus proved the
F -invariance of ∂aτ . Then

∂a(F τ − τ ′) = F∂aτ − ∂aτ ′ = 0 .

Again, since τ(t̂) = t̂ for (β̄, d2) = (0, 0), this proves

F τ = τ ′ .

Remark 4.11. The matrix C̃a is the derivative of the 2-point (Green) function at τ(t̂),

C̃κaν =
∂

∂ta
〈〈Tν , T κ〉〉(τ) .

Now, we may finish the proof of the quantum invariance (Theorem 1.3).

Proof. Since we have established the analytic continuation of B (hence P ) and τ , by Proposi-
tion 2.11 (reduction to special BF/GMT with ξ-class) and Lemma 3.12 (naive quasi-linearity
with ξ-class) the invariance of the quantum ring is proved.

Remark 4.12. We sketch an alternative shortcut to the proof to minimize the usage of extremal
functions and completely get rid of the quasi-linearity reduction.

Indeed, by degeneration reduction (Section 4 of Part I [LLW16]), the quantum invariance
problem is reduced to local models for descendent invariants of special type. Theorem 5.2 of
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[LLW16] then eliminates the necessity of using ψ-classes and we only need to prove the invariance
of the quantum ring for local models.

Now for split flops, the Birkhoff factorization matrix B(z) exists uniquely. Then the quantum
Leray–Hirsch theorem (Theorem 4.8) produces the matrix Ca(z) which satisfies the analytic
continuation property. The analytic continuation of B(z) is then deduced from it. In particular,
(4.17) gives the analytic continuation of C̃a(t̂), namely (4.20), and then of τ(t̂).

Now we apply the reduction method used in the proof of Proposition 2.11, with the role of
special insertion τkaξ replaced by three primary insertions Ta, Tν , T κ with Ta ∈ H(S) and Tν ,
T κ ∈ H(X) arbitrary. We can do so because ∂τ/∂ta = Ta + · · · . Notice that since n > 3, the
divisor reconstructions we need can all be performed within primary invariants.

Namely, using [LLW16, equation (3.1)] for h and ξ, we may reconstruct any n-point pri-
mary invariants with n > 3 from the primary invariant with only two general insertions not
from H(S). As in step 2 of the proof of [LLW16, Theorem 5.4], moving the ξ-class will always be
F -compatible, while moving the h-class to an insertion tih

r may generate a topological defect.
The key point is that this defect can be cancelled out by the extremal quantum corrections from
some diagonal splitting term. (In fact, this is the building block of our determination of the
extremal invariants in Section 3 of Part I [LLW16].)

This leads to a logically shorter and more conceptual proof of the quantum invariance theo-
rem.

We present the complete argument for at least two reasons. First, the quantum correction part
(extremal case) works for non-split flops as well. Second, the BF/GMT algorithm, together with
the divisorial reconstruction, provides an effective method to determine all genus zero descendent
(not just primary) invariants for any split toric bundle.

5. Examples of the quantum Leray–Hirsch theorem

5.1 The toy example

We consider the Hirzebruch surface X = Σ−1 which is the P 1 bundle over P 1 associated with
the vector bundle O ⊕ O(1). The GW theory on X can be easily determined by the classical
method. However, we will apply the quantum Leray–Hirsch theorem to it and compare the result
with that obtained by the classical method.

Write H(S) = H(P 1) = C[p]/(p2). By the Leray–Hirsch theorem, H(X) = H(S)[h]/〈h(h+p)〉
has rank N = 4. Consider the basis {Ti | 1 6 i 6 4} given in the following order:

1 , h , p , hp .

The dual basis {T i} is easily seen to be given by

hp , p , h+ p , 1 .

We write q = q`et and q̄ = qbet̄, where b = [S] ∼= [P 1]. The Picard–Fuchs operator is

2` = (z∂h)(z∂h+p)− q .

It leads to

(z∂h)2 = q − (z∂h)(z∂p) . (5.1)

Since H(S) = H0(S) ⊕ H2(S) = C1 ⊕ Cp consists of small parameters only, the small and
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big quantum rings coincide. It is easy to compute its QDE:

z∂p(z∂1, z∂p) = (z∂1, z∂p)

(
0 q̄
1 0

)
.

Since bI = b− `, we get DbI (z) = z∂h. We find the lift of the QDE to be

(z∂p)
2 = q̄q−1z∂h . (5.2)

Using (5.1) and (5.2), we calculate the matrix Cta of the action of z∂ta = z∂h or z∂p on T̂i as
z∂ta T̂j =

∑
k C

k
taj(z)T̂k modulo IX . Then

Ch =


0 q 0 −q̄
1 0 0 zq̄q−1

0 0 0 q
0 −1 1 q̄q−1

 , Cp =


0 0 0 q̄
0 0 q̄q−1 −zq̄q−1

1 0 0 0
0 1 0 −q̄q−1

 .
Here the indices k and j correspond to the row and column indices, respectively.

We solve B from Ch and Cp by the recursive equation (4.19): B2,4 = −q̄q−1,

B =


1 0 0 0
0 1 0 −q̄q−1

0 0 1 0
0 0 0 1

 .
Looking at the first column vector, it implies that in J = PI, one needs no Birkhoff factoriza-

tion (P (z) = 1) and the mirror transformation reduces to the identity τ(t̂) = t̂. The full matrix
system requires a basis in all directions which uses the full matrix B, and non-trivial Birkhoff
factorization is required:

B = I4 − q̄q−1e2,4 , B−1 = I4 + q̄q−1e2,4 .

Using this we get C̃ta from (4.17): C̃ta = B0Cta;0B
−1
0 , which is a minor adjustment of the

matrix Cta . We have

C̃h =


0 q 0 0
1 q̄q−1 −q̄q−1 0
0 0 0 q
0 −1 1 0

 , C̃p =


0 0 0 q̄
0 −q̄q−1 q̄q−1 0
1 0 0 0
0 1 0 0

 .
By setting t̂ = 0, we get q = q` and q̄ = qb. Thus we can read out the corresponding 3-point

invariants from the tables above. For example, we look at the entries at (2, 3):

C̃2
h3 = 〈T2, T3, T

2〉 = 〈h, p, p〉 = −q−`qb ,
C̃2
p3 = 〈T3, T3, T

2〉 = 〈p, p, p〉 = q−`qb .
(5.3)

By the classical method, we can write down the I-function: for β = d`+ sb,

IXβ =
qd`qsb

s∏
1

(p+mz)2
d∏
1

(h+mz)
d+s∏

1
(h+ p+mz)

= O
(
z−2
)
.

This implies JX = IX . Also, we find that IXβ = O(z−3) except when s = 1 and d = −1,

and in that case the coefficient of z−2 is h. It tells us that 〈p〉 = q−`qb and 〈h〉 = −q−`qb.
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(Here we have used h2 = −hp.) By the divisor axiom, 〈h, p, p〉 = δhδp〈p〉 = −q−`qb. Similarly,
〈p, p, p〉 = δpδp〈p〉 = q−`qb. These results coincide with (5.3).

Remark 5.1. Notice that we state and prove the quantum Leray–Hirsch theorem (Theorem 4.8)
for certain double projective bundles (of split type) in order to apply it to the analytic continu-
ation problem under flops. The same proof shows that it holds true for projective bundles, and
more generally for iterated projective bundles (of split type).

5.2 An example with non-trivial BF/GMT

Consider the P 1 flop f : X 99K X ′ with bundle data

(S, F, F ′) = (P 1,O ⊕ O,O ⊕ O(1)) .

Write H(S) = C[p]/(p2) with Chern polynomials

fF (h) := h2 , fN⊕O(ξ) := ξ(ξ − h)(ξ − h+ p) .

Then H = H(X) = H(S)[h, ξ]/(fF , fN⊕O) has dimension N = 12 with basis {Ti | 0 6 i 6 11}
equal to

1 , h , ξ , p , hξ , hp , ξ2 , ξp , hξ2 , hξp , ξ2p , hξ2p .

Set q1 = q`et
1
, q2 = qγet

2
, q̄ = qbet

3
, where b = [S] ∼= [P 1], and f = f(q1). The Picard–Fuchs

operators are

2` = (z∂h)2 − q1z∂ξ−h z∂ξ−h+p ,

2γ = z∂ξ z∂ξ−h z∂ξ−h+p − q2 .

They lead to

(z∂h)2 = f(z∂ξ)
2 − fz∂pz∂h + fz∂pz∂ξ − 2fz∂hz∂ξ , (5.4)

(z∂ξ)
3 = q2(1− q1)− z∂p(z∂ξ)2 + 2z∂h(z∂ξ)

2 + z∂pz∂hz∂ξ . (5.5)

As before, H(S) = H0(S)⊕H2(S) = C1⊕Cp has only small parameters and QDE given by

z∂p(z∂1, z∂p) = (z∂1, z∂p)

(
0 q̄
1 0

)
.

The real difference from the previous ((0, 0), (0,−1)) case starts with the lift of this QDE.
Now bI = b− γ, so we get Db = z∂ξz∂ξ−h, and the lift becomes

(z∂p)
2 = q̄q−1

2 z∂ξz∂ξ−h . (5.6)

By (5.4)–(5.6), following the steps in the proof of Theorem 4.8, we calculate Ca in z∂aT̂j =∑
k C

k
aj(z)T̂k modulo IX . This is a lengthy yet straightforward calculation. For simplicity let
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q∗ = q̄q−1
2 be the chosen admissible lift and set g = f(q∗), A = q2 − q1q2, S = q2 + q1q2. We get

C1 =



q1q2 f q2q
∗ zq1q2

1
q1q2

q1q2 zq1q2
−2f 1 zf q∗

−f 1
f −zf q∗
f q1q2

1
f(q∗ − 2) 1
f(1− q∗)

1



,

C2 =



A zq1q2 zAg z2q1q2g
A zAg

1 2q1q2 −q2g zq1q2g
q1q2 A(1 + g) zq1q2(1 + 2g)

1 z2g −q2q∗(1 + g)
A(1 + g)

1 −z2g
1 q1q2(2 + g)

1 2 zg −z2g
1 1 2zg
−1 1 −2zg

−1 1 2 + g −2zg


and

C3 =



−q1q2q∗ Aq∗ zq1q2q
∗ z(q1q2q

∗ −Ag) −z2q1q2g
Aq∗ Aq∗ −zAg
q1q2q

∗ (S − q1q2q∗)g −zq1q2g
1 q1q2q

∗ q1q2q
∗ −Ag −2zq1q2g

−q∗ zq∗ −z2g (A+ q1q2q
∗)g

1 −Ag
q∗ −zq∗ z2g q1q2q

∗

1 −q1q2g
q∗ q∗ −zq∗ z(q∗ − 2)g z2g

1 q∗ −2zg
1 −q∗ 2zg

1 −q∗ (q∗ − 2)g 2zg



.

The appearance of f and g demonstrates the analytic dependence on the parameters and
explains the validity of analytic continuation. It is now possible to solve the gauge transform B
inductively on w = (β̄, d2). The formulae are complicated and the details are thus omitted.

Remark 5.2. These examples were contained in the manuscript prepared by the second and third
authors and circulated at the MSJ Autumn meeting 2012, at Kyushu University.

Appendix A. BF/GMT and regularization

We consider a local split P r flop f : X 99K X ′ over a general base S and perform the BF/GMT
algorithm from Section 2 simultaneously on X and X ′. A mysterious cancellation arisen from
the Birkhoff factorization, which is called regularization here, leads to the first step of analytic
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continuation by transforming a rational function into its polynomial part in a canonical fashion.
(See Proposition A.6.)

This result might lead one to believe that it is possible to prove the main results of this
paper without the quantum Leray–Hirsch theorem. However, a closer look at the proof reveals
the increasing complexity of the combinatorics and shows the limitation of this approach beyond
the first step. In fact, the quantum Leray–Hirsch theorem implicitly implies the existence of
all higher-order regularizations. A direct proof along the line presented here seems, however, a
rather non-trivial combinatorial task.

A.1 The fundamental rational functions Q and WβS,d2

We start by recalling some of the basic set-up from Section 3.

Consider a local split P r flop f : X 99K X ′ with structure data (S, F, F ′), where F =
⊕r

i=0 Li
and F ′ =

⊕r
i=0 L

′
i are sums of line bundles. Let ai = c1(Li) + h and bi = c1(L′i) + ξ − h. For

β = βS +d`+d2γ, set µi := Li ·βS and µ′i := L′i ·βS . Thus ai ·β = d+µi and bi ·β = d2−d+µ′i.
Also recall that µI = maxi µi, µ

′I = maxi µ
′
i, and νI = max{µI + µ′I , 0}. Let

λβ := c1(X/S) · β = (c1 + c′1) · βS + (r + 2)d2 =
∑

(µi + µ′i) + (r + 2)d2 , (A.1)

which depends only on (βS , d2). Then the hypergeometric modification takes on the form

I = I
(
t1, t2, t̄, z, z−1

)
= e(t1h+t2ξ)/z

∑
β∈NE(X)

qβedt
1+d2t2I

X/S
β JSβS (t̄)

with relative factor

I
X/S
β = z−λβ

Γ
(
1 + ξ/z

)
Γ
(
1 + ξ/z + d2

) r∏
i=0

Γ
(
1 + ai/z

)
Γ
(
1 + ai/z + d+ µi

) Γ
(
1 + bi/z

)
Γ
(
1 + bi/z + d2 − d+ µ′i

) .
The case d2 < 0 leads to a ξ-factor, and then F Id2 = I ′d2 , which contains only the F I-

effective range (by Lemma 3.12). In particular, the BF and GMT are all F -compatible. So let
d2 > 0. In this case, it is clear that the factor Γ(1 + ξ/z)/Γ(1 + ξ/z + d2) contains ξ except
for the ξ-constant term 1/(d2!). Thus this factor needs no treatment and will be ignored in the

following discussion. In other words, I
X/S
β will be used as if this factor is 1. For the same reason

(the appearance of a ξ-factor), the BF is needed only if λβ 6 0.

Recall the rule for the directed product : for any n ∈ Z,

Γ(1 +A)

Γ(1 +A+ n+ x)
=

Γ(1 +A)

Γ(1 +A+ x)

n∏
j=1

(A+ j + x)−1 . (A.2)

Definition A.1. Given (βS , d2), with d2 > −νI , the fundamental rational function Q(~x) in
~x = (x0, . . . , xr, y0, . . . , yr) with cohomology-valued coefficients is defined by

Q(~x) = QβS ,d2(~x) :=

r∏
i=0

µi∏
j=1

(ai
z

+ j + xi

)−1
d2+µ′i∏
j=1

(
bi
z

+ j − yi
)−1

.

Its 1-variable (diagonal) version Q(x) is given by setting xi = x = yi for all i. Abusing the
notation, we write ~x = x for this specialization.
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In terms of Q, assuming (A.2), the product in I
X/S
β is then the specialization of

Q(~x)

r∏
i=0

Γ
(
1 + ai/z

)
Γ(1 + ai/z + xi)

Γ
(
1 + bi/z

)
Γ
(
1 + bi/z − yi

) =: Q(~x)I~x` (A.3)

at ~x = d. However, cancellations have to be carried out on the right-hand side of (A.3) for certain
~x = d ∈ Z: When x = d ∈ N, it is clear that Id` contains the factor

Θr+1

zr+1
:=

r∏
i=0

bi
z
. (A.4)

However, for those i with d2 − d+ µ′i > 0 (which exist when β is F I-effective), it is understood
that the factor bi/z cancels out with the same term in the denominator of Q(d). To make sense
of the cancellation of bi, we may temporarily treat the classes ai and bi as formal variables.

For those i with d+µi < 0, the factor ai/z appears in the numerator. This is not the case for
at least one i (since β is effective; otherwise the factor

∏r
i=0 ai = 0 appears). Thus the leading

terms take on the form

c(d)
∏

d+µi<0

ai
z

∏
d2−d+µ′i<0

bi
z

+ · · ·

in their 1/z-expansion. The leading expression changes as d varies over the integer values. This
motivates the following

Definition A.2. Given (βS , d2), the class β = βS + d` + d2γ ∈ NE(X), as well as d, is said to
be in the unstable range if β is F I-effective (d 6 d2 + µ′I). Otherwise it is in the stable range
(d > d2 + µ′I).

In view of (A.3) and (A.4), the leading z-order of I
X/S
β which admits infinite series in d is

at z−λβ−(r+1). Any zk with k > −λβ − (r+ 1) supports only a finite number of d and all of them
are within the unstable range. For this reason, we consider the shifted expression

W [r + 1]
(
~x, z, z−1

)
:= zr+1Q(~x)I~x` (A.5)

to locate the first infinite series at the z0-level (constant level).

Viewing 1/z as ∆xi = ∆yi, the expression W [r+1] is the multivariate extension in the multi-
directions ai and −bi of the similar expression W (~x) defined by setting 1/z = 0 in W [r + 1]:

W (~x) := zr+1
(
Q(~x)I~x`

)∣∣
1/z=0

. (A.6)

Notice that W (x) has poles at some x = d if and only if a non-trivial positive z-power survives
in W [r + 1](d). By our construction, d must lie in the unstable range.

Remark A.3. This extension is unique under the normalization that I~x` = 1 at ~x = 0. Indeed,
Ix`(z

−1 = 0) = 1/
∏r
i=0 Γ(1 + x)Γ(1 − x) = (sinπx/πx)r+1. The naive extension gives only

1/
∏r
i=0 Γ(1 + ai/z + x)Γ(1 + bi/z − x). The extra factor

∏r
i=0 Γ(1 + ai/z)Γ(1 + bi/z) is needed

to recover Ix`.

For x = d ∈ N, applying the Taylor series for log(1 ± t) to each ai or bi separately and then
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taking a product, we get

Id` =

r∏
i=0

0∏
j=−d+1

(
bi/z + j

) d∏
j=1

(
ai/z + j

)−1

=
(−1)(d−1)(r+1)Θr+1

dr+1zr+1
exp

∑
k>1

1

kzk

(
(−1)k

∑
i

akiH
(k)
d −

∑
i

bkiH
(k)
d−1

)
.

Here H
(k)
d :=

∑d
j=1 j

−k is the kth harmonic series.

Similarly, in the stable range,

Q(d)Id` =
r∏
i=0

0∏
j=µ′i+d2−d+1

(
bi/z + j

)µi+d∏
j=1

(
ai/z + j

)−1

= WβS ,d2(d)
Θr+1

zr+1
exp

∑
k>1

1

kzk

(
(−1)k

∑
i

akiH
(k)
d+µi

−
∑
i

bkiH
(k)
d−d2−µ′i−1

)
,

where

WβS ,d2(d) = (−1)

r∑
i=0

(d−(d2+µ′i)−1)
r∏
i=0

(d− (d2 + µ′i)− 1)!

(d+ µi)!

is the fundamental rational function studied in [Lin10, Wan11]. Here for r even a sign twisting
(−1)d is understood.

For a general d (say in the unstable range), the expansion in 1/z depends only on the length
data d + µi and d2 − d + µ′i of the curve class β. Let I and J be the index set with length less
than zero, and let Ic and Jc be the complementary sets, respectively. Then

Q(d)Id` =

∏
i∈I

0∏
j=µi+d+1

(ai/z + j)

∏
i∈Ic

µi+d∏
j=1

(
ai/z + j

)
∏
i∈J

0∏
j=µ′i+d2−d+1

(
bi/z + j

)
∏
i∈Jc

µ′i+d2−d∏
j=1

(
bi/z + j

)
= (−1)

∑
i∈I

µi+
∑
i∈J

(µ′i+d2)+(d−1)(|I|+|J |) aIbJ

z|I|+|J |

×

∏
i∈I

(−d− µi − 1)!∏
i∈Ic

(d+ µi)!

∏
i∈J

(d− d2 − µ′i − 1)!∏
i∈Jc

(d2 − d+ µ′i)!

× exp
∑
k>1

1

kzk

(
(−1)k

∑
i∈Ic

akiH
(k)
d+µi

+ (−1)k
∑
i∈Jc

bkiH
(k)
µ′i+d2−d

−
∑
i∈I

akiH
(k)
−µi−d−1 −

∑
i∈J

bkiH
(k)
d−d2−µ′i−1

)
.

This awful-looking expression is in fact very simple in nature. It is a product of 2(r+1) series
with each one belonging to two types, namely with negative or non-negative length data.
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A.2 Regularization of rational functions

The key observation is that the whole situation can be considered as a product of r + 1 series
by pairing (Li, L

′
i) together. As in the Calabi–Yau P 1 flops case (cf. the proof of Lemma 3.15

in [Wan11]), any factor of the form

(x− µ′ − 1)!

(x+ µ)!

(for x a large integer) defines a rational function which has at most simple poles. (Here we take
for example µ = µi and µ′ = µ′i + d2.)

Let µ > −µ′ (otherwise it is a polynomial and we take Taylor series), then the Laurent series
at x = d ∈ [−µ, µ′] ∩ Z is given by

µ′∏
j=−µ

(x− j)−1 =
1

x− d

µ′∏
j 6=d; j=−µ

−1

j − d

(
1

1− (x− d)/(j − d)

)
.

Taking products over (Li, L
′
i) shows that the most singular term is actually the product of the

simple poles from each i. It remains to take into account the harmonic series and figure out the
correspondences among them at poles. Replacing x−d = ∆x by 1/z, the above expression splits
at j = d and becomes (again using the Taylor series of log(1± t))

1

z

(−1)µ
′−d

(µ+ d)!(−d+ µ′)!
exp

∑
k>1

1

kzk

(
(−1)kH

(k)
d+µ +H

(k)
µ′−d

)
.

Notice the formal correspondence with ai = 1 and bi = −1 up to a sign.

The expansion of W [r + 1] in 1/z is the Laurent expansion of W (~x) at ~x = x. The unstable
range contains all possible poles of W (x). The constant term at x = d is the regular part
RegW (d). In the stable range,

W (d) = RegW (d) = (−1)(d−1)(r+1) Θr+1

dr+1

r∏
i=0

µi∏
j=1

(j + d)−1

µ′i+d2∏
j=1

(j − d)−1 ,

which by definition coincides with Θr+1WβS ,d2(d).

By the same process, the Taylor expansion at x = d gives back Q(d)Id` with ai = 1 and
bi = −1. Notice that this does not recover Q(d)Id` completely since the process does depend
on the presentation of the rational expression. Nevertheless, the above discussions lead to the
following.

Lemma A.4. In the full range of d, the series expansion

zr+1Q(x)Ix` =
∑
k6r+1

Wkz
k

and the Laurent expansion of WβS ,d2(x) in 1/z, denoted by
∑

k6r+1wkz
k, at x = d are compatible

in the sense that

wk(d) = Wk(d)|ai=1, bi=−1 . (A.7)

Here is a basic fact concerning the polynomial part of a rational function.

Lemma A.5. Let F (x) be a rational function with poles at x = ej for all j and with polynomial
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part P (x). Then

P (e) = RegF (e)−
∑
ej 6=e

Priej F (e) ,

where Priej F (e) is the principal part of F (x) at x = ej .

Proof. Let nj = ordx=ej F (x). By division and taking partial fractions, we have

F (x) = P (x) +
R(x)∏

j
(x− ej)nj

= P (x) +
∑
j

Priej F (x) .

If e 6∈ {ej}, then RegF (e) = F (e) and the lemma holds. If e = ei for some i, then

F (x) = Prie F (x) +

(
P (x) +

∑
j 6=i

Priej F (x)

)
and the lemma again holds.

Combining both lemmas leads to results on the first stable series W0(d). For ease of notation,
denote by

A = A(q, z) = z−λβ−(r+1)qβSqd2γ

the basic factor centered at the first stable series (λβ ≡ c1(X/S) · β).

Proposition A.6. Given (βS , d2) with c1(X/S) · β 6 −(r + 1), so that the first stable series
is located at non-negative z-degree, the “partial Birkhoff factorization” up to the first stable
series

P1(z)I := I −A
∑

r+1>k>1; e

zkqeŴk(e)I

leads to polynomial values PβS ,d2(d)qd at order z−c1(X/S)·β−(r+1) in the stable range. This also
holds for general d if we consider FP1(z)IX − P ′1(z)IX

′
. In particular, this leads to analytic

continuations of P1(z)I up to z−c1(X/S)·β−(r+1).

The compatibility of the partial BF operators FP1(z) = P ′1(z) always holds, even for
c1(X/S) · β > −(r + 1). In that case FP1(z)IX − P ′1(z)IX

′
= 0 for all non-negative z-degree

terms lying over (βS , d2).

Proof. For 1 6 k 6 r+ 1, a target term with an additional zk-power lies in AWkz
kqe` and takes

on the form

AckIJ(e)aIbJz
kqe`

with |I| + |J | = r + 1 − k 6 r. In particular, there is a corresponding F -compatible term on
the X ′ side given by (FA)ckIJ(e)b′Ia

′
Jz

kq−e`
′
.

For a divisor D, the naive quantization has the effect D̂ = z∂D = D + zδD, where δD is
the number operator which acts on qβ by δD q

β = (D.β)qβ. Then in the partial BF procedure
(cf. Theorem 2.10)

I −A
∑
k,e,I,J

ckIJ(e)zkqe
∏
i∈I

(ai + zδai)
∏
j∈J

(bj + zδbj )I ,

the first term aIbJ in the product cancels the target term.

649



Y.-P. Lee, H.-W. Lin and C.-L. Wang

Modulo higher βS and d2γ, we need to consider only the extremal contribution
∑

d>1 Id` q
d

to the product (q := q`). The highest z degree comes from

−AckIJ(e)zk+(r+1−k)qe
∏

δai
∏

δbj
∑
d>1

(−1)(d−1)(r+1)Θr+1

dr+1zr+1
qd

= −(−1)|J |AckIJ(e)Θr+1

∑
d>1

(−1)(d−1)(r+1)

dk
qd+e

= −(−1)|J |AckIJ(e)Θr+1

∑
d>e+1

(−1)(d−e−1)(r+1)

(d− e)k
qd .

By construction, we have for each fixed k and unstable e∑
|I|+|J |=r+1−k

(−1)|J |ckIJ(e) = Wk(e)|ai=1, bi=−1 = wk(e) . (A.8)

If d is in the stable range, then summing all the unstable terms with positive z-power gives
rise to the principal part of WβS ,d2(d). Thus the result follows by a careful check of the signs.

If d is in the unstable range, then there are two places in the proof of polynomiality which
need to be modified.

First, W0(d) is related to RegWβS ,d2(d) if we set a1 = 1 and bi = −1. Alternatively, as d
makes sense on both the X and X ′ sides, we also have the relation on the topological defect

FW0(d)−W ′0(d) = (−1)r+1 RegWβS ,d2(d)Θ′r+1 , (A.9)

where Θ′r+1 =
∏r
i=0 b

′
i =

∏r
i=0(c1(Li) + ξ′ − h′). (This follows from Part I [LLW16]. Indeed, it is

clear that the difference is a scalar multiple of Θ′r+1 since it is in the kernel of the multiplication
map by ξ′.)

Second, the shifting of a kth order pole by e works only for e < d. The poles at e with e > d
are missing from the formula on the X side. Thus to receive a complete correction of the principal
part from all e 6= d we need to consider FP1(z)IX/S − P ′1(z)IX

′/S , and only this.

For the last statement, notice that f(q)+f(q−1) = (−1)r is formally equivalent to the vanishing
of the Euler series E(q) :=

∑
d∈Z q

d = 0. Hence∑
d∈Z

PβS ,d2(d)qd = PβS ,d2(qd/dq)E(q) = 0 .

The proof is complete.

A.3 A remark on higher regularization

Next we move to the Birkhoff factorization up to the second stable series. This step is needed
only if

−c1(X/S).β − (r + 1) > 1 .

Harmonic series appear naturally and the expected regularization into polynomials becomes
much more tricky. A simple useful fact is that the difference of two harmonic series is a rational
function.

Let λj = c1(Lj) and λ′j = c1(L′j). Denote by e an index in the unstable range; then the partial
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BF with order 1 more reads as

P2(z)I := I −A
∑

r+1>k>1; e

zkqeŴk(e)I −A
∑

d : stable

qdPβS ,d2(d)Θ̂r+1I

−A
∑

d : unstable

qd
(
Ŵ0(d)−

∑
e<d

Prie(d)Θ̂r+1

)
I ,

(A.10)

where Θr+1 =
∏r
j=0 bj =

∏r
j=0((λj + λ′j) + ξ − aj) and

Θ̂r+1 :=

r∏
j=0

z∂bj − (−1)r+1
r∏
j=0

z∂aj

(since
∏
aj = 0, the corresponding quantization product is removed). By construction, the first

stable series vanishes automatically.

Now we investigate the second stable series, namely the term with the same degree as

Az−1 = z−λβ−(r+1)−1qβSqd2γ .

They all contain the factor (−1)(d−1)(r+1)Θr+1; hence we may remove ξ from the remaining
classes.

The main terms come from the first two series in (A.10). The terms from I are degree A
terms multiplied by the following harmonic series:

−
∑

aiHd+µi −
∑

biHd−1−µ′i−d2

= h
∑

(−Hd+µi +Hd−1−µ′i−d2)−
∑

(λi + λ′i)Hd−1

+
∑

λi(Hd −Hd+µi) +
∑

λ′i(Hd−1 −Hd−1−µ′i−d2)−
∑

λi/d .

The terms from the second series form a sum over k and e, which has two parts: one with (zδh)r

on the second extremal series, which is∑
(−1)|J |ckIJ(e)Az−1Θr+1

multiplied by

−
∑

aiHd −
∑

biHd−1 = −(r + 1)h/d−
∑

(λi + λ′i)Hd−1 −
∑

λi/d ,

and another one with one less differentiation (zδh)r−1 on the top extremal term, which receives
a factor (∑

i∈I
ai −

∑
i∈J

bi

)
/d = (r + 1− k)h/d+

∑
i∈I

λi/d−
∑
i∈J

λ′i/d .

For each (k, e), we find a correction factor

−kh
d

(
7→ − kh

d− e
after a shift by qe

)
;

hence this gives rise to a derivative of (d− e)−k.
In the stable range, the terms containing the factor h then lead to the derivative, denoted by

• here, of the corresponding rational function. Since f• −
∑
g• = (f −

∑
g)•, they combine to

the polynomial

hP •βS ·d2(d) , (A.11)

which is expected for the purpose of analytic continuations.
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Similarly, the terms containing the factor λi + λ′i combine to

−(c1 + c′1)PβS ,d2(d)Hd−1 . (A.12)

This is unfortunately the trouble term, due to the appearance of Hd−1.

Finally, the remaining terms combine to PβS ,d2(d) multiplied by certain rational functions in
d. This is a good term since it can be handled by the regularization procedure introduced in
Section A.2.

For the unstable range, as in the proof of Proposition A.6, it is expected that a similar
calculation holds if we consider FP2(z)IX/S − P ′2(z)IX

′/S .

Combining the third series in (A.10) and the one on the X ′ side does produce correction
terms, via harmonic convolution, to cancel out the bad term (A.12). The actual calculation is,
however, becoming more and more involved.

Simple examples where the higher regularization is carried out explicitly can be found in
[LLW12]. But the elementary method used there (harmonic convolution, etc.) does not seem to
apply to the general case. This was one of the major motivations for us to develop the quantum
Leray–Hirsch theorem during the early stage of this project after [LLW10].
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