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ON CREPANT RESOLUTION OF SOME HYPERSURFACE
SINGULARITIES AND A CRITERION FOR UFD

HUI-WEN LIN

Abstract. In this article, we find some diagonal hypersurfaces that admit
crepant resolutions. We also give a criterion for unique factorization domains.

1. Introduction

Let X be a normal complex algebraic variety which is Q-Gorenstein, namely,
a (non-zero) integer multiple of the canonical divisor KX of X gives rise to a line
bundle on X . We say that X has a projective crepant resolution if there exists a
projective birational morphism φ : Y → X such that Y is smooth and KY = φ∗KX .
This is a special type of canonical singularity, studied in minimal model theory,
which also plays an important role in recent research in the theory of Calabi-Yau
manifolds.

In the two dimensional case, singularities admitting projective crepant resolu-
tions are exactly canonical singularities, and have been studied extensively for a
long time. They are isolated quotient singularities X = C2/G with G ⊂ SL(2,C)
a finite subgroup (so-called Kleinian singularities). They can also be represented
as hypersurfaces in C3 through explicit A-D-E equations:

An : X2 + Y 2 + Zn+1 = 0, n ≥ 1;
Dn : X2 + Y 2Z + Zn−1 = 0, n ≥ 4;
E6 : X2 + Y 3 + Z4 = 0;
E7 : X2 + Y 3 + Y Z3 = 0;
E8 : X2 + Y 3 + Z5 = 0.

In the higher dimensional cases, the above two descriptions give rise to two dif-
ferent types of generalization. It has been proved recently by Roan [Ro] that C3/G
with G a finite subgroup of SL(3,C) always admits projective crepant resolutions.
However, it is a consequence of Schlessinger’s theorem [Sc] that if n ≥ 3 then an
isolated quotient singularity Cn/G (G a finite subgroup of SL(n,C)) is not smooth-
able, hence can never be a hypersurface singularity. Alternatively, this follows from
the fact that such a quotient singularity Cn/G is a hypersurface singularity if and
only if the singular locus is of codimension 2 (Kac-Watanabe [KaW]), so the sin-
gularity is never isolated.
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In fact, in dimension three, the structure of canonical singularities has been
well understood since the 80’s, through work of Reid, Kawamata and Kollár. We
surmarize some of their results in the following statement:

Theorem 1. Let X be a three dimensional algebraic variety with at most canonical
singularities. Then

1. “Terminalization” [Re2, Main Theorem]: there exists a projective crepant par-
tial resolution Y → X such that Y has at most terminal sigularities. More-
over,

2. “Q-factorialization” [Ka, Corollary 5.4]: Y can be choosen to be Q-factorial,
possibly by a further projective small resolution.

3. “Quasi-uniqueness” [Ko, Corollary 4.11]: Y may not be unique, but any two
such Y ’s admit the same finite set of germs of isolated singularities.

In this note we consider hypersurfaces X ⊂ Cn+1 with an isolated singularity
0 ∈ X defined by

f(x0, . . . , xn) := xa0
0 + · · ·+ xann = 0,(1.1)

where ai ≥ 2. Our goal is to find examples of ai’s so that X admits crepant
resolutions. To get a better idea of the problem, we recall another theorem of Reid
[Re1, Proposition 4.3] which is valid for arbitrary dimension n:

Theorem 2. Let X be the hypersurface given by (1.1). Then

1. X has at most canonical singularities if and only if
∑ 1

ai
> 1. And

2. X has at most terminal singularities if and only if
∑ 1

ai
> 1 +

1
l.c.m.{ai}

.

In dimension three, our strategy goes in the following way. By Theorem 1,
one should first find the crepant partial resolution φ : Y → X . This step is not
hard to do directly, we simply follow the method of Reid [Re1] via toric (weighted)
blow-ups (see §§3, 4). Then we use a monodromy technique of Milnor [Mi] to
test the analytical Q-factoriality of Y (see §2). Since analytical factoriality implies
factoriality, this may also be used for algebraic purposes.

In good cases the Y constructed is already Q-factorial; then Theorem 1.3 shows
that X has crepant resolutions only if Y is smooth. In the bad case, namely if
the obtained Y is not Q-factorial, then we need to perform the small resolution in
Theorem 1.2. This step is much harder and will not be considered in this note, but
we wish to come back to it in a later work.

We summarize our results in the following:

Theorem A. Let X = {x ∈ C4|f(x) = 0} be a three dimensional hypersurface.
Then:

1. For f = x3
0 + x3

1 + x3
2 + xk3 , X has a projective crepant resolution if and only

if k ≡ 0, 1 (mod 3).
2. For f = x2

0 + x4
1 + x4

2 + xk3 , X has a projective crepant resolution if k ≡ 0, 1
(mod 4), and X has no projective crepant resolution if k ≡ −1 (mod 4).

3. For f = x2
0 + x3

1 + x6
2 + xk3 , X has a projective crepant resolution if k ≡ 0, 1

(mod 6), and X has no projective crepant resolution if k ≡ −1 (mod 6).
For higher dimensional cases X = {x ∈ Cn+1|f(x) = 0}, we have
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4. For f = xn0 + xn1 + · · ·+ xnn−1 + xkn, X has a projective crepant resolution if
k ≡ 0, 1 (mod n), and X has no projective crepant resolution if 1 < k < n.

Theorem B. Let f = xa0
0 + xa1

1 + xa2
2 + xa3

3 , A = C[x0, . . . , x3]/(f) and Â =
C[[x0, . . . , x3]]/(f). Then A is an UFD if and only if Â is an UFD. Moreover, if∑ 1

ai
> 1 (that is, the hypersurface f = 0 has only canonical singularities), then

to be an UFD is equivalent to the non-existence of integers ni, 1 ≤ ni ≤ ai − 1,
i = 0, . . . , 3 such that

n0

a0
+
n1

a1
+
n2

a2
+
n3

a3
= 2.(1.2)

The first statement in Theorem B is due to Flenner [Fl, (4.5) Satz]. But our
criterion (1.2) seems to be new. We would like to remark that Theorem B holds
true for dimension ≥ 4 (with the same f); however, this is a simple consequence of
Grothendieck’s result (see Proposition 3.2).

The author would like to thank C.-L. Wang for pointing out to her the relation
between factoriality and the monodromy argument in Milnor’s book [Mi]. She also
wants to give special thanks to the referee, who provided valuable suggestions to
make the paper more clear and organized.

2. Monodromy and Factoriality

In this section we will prove Theorem B, which in turn will be used to prove
Theorem A in later sections.

A normal algebraic variety X is called factorial (resp. analytically factorial) if
all its local rings (resp. completion of local rings) are factorial, that is, UFD’s.
Geometrically X being factorial means that any Weil divisor of X is Cartier. In
general, analytical factoriality implies factoriality (due to Mori, see e.g. [Fl, (1.2)
Lemma]), but not the converse (see for example [Sa, p.41 Corollary 2]). Also we
say that X is Q-factorial if every Weil divisor of X is a Q-Cartier divisor. When
(0 ∈ X) is a germ of an isolated singular point, X is analytically factorial (resp.
Q-factorial) if and only if Pic(X − 0) is zero (resp. torsion).

Let X = {x ∈ Cn+1|f(x) = 0} (n ≥ 3) be a hypersurface with an isolated
singular point at 0, and S a sphere of small radius centered at 0. Then K := S ∩X
is a differentiable manifold of real dimension 2n− 1. In [Mi], Milnor constructed a
fibration over the unit circle S1 (we follow closely the notation there)

Φ : S −K −→ S1, x 7→ f(x)
|f(x)| ∈ S

1(2.1)

such that K is the common boundary of each fiber Fθ := Φ−1(θ). Let F be a fixed
reference fiber and h : F → F the monodromy mapping around the circle. Milnor
showed that K is (n−2)-connected and F has the homotopy type of n-dimensional
spheres with one point in each sphere identified together. Hence Hi(F ; Z) is non-
trivial only when i = 0 or n and Hn(F ; Z) is a free abelian group. He then showed
the following exact sequence:

Hn(F ; Z) I−h∗−→ Hn(F ; Z) −→ Hn(S −K; Z) −→ 0.(2.2)

With these, we may deduce (cf. [Mi, Theorem 8.5]):

Proposition 3. Assume that the hypersurface germ (0 ∈ X) has only rational
singularities and has dimension n ≥ 3. Then
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1. Every Q-Cartier divisor is automatically Cartier, and hence that Q-factoriality
is equivalent to factoriality.

2. (Grothendieck) If n ≥ 4 then X is analytically factorial at 0.
3. If n = 3, X is analytically factorial if and only if det(I−h∗) 6= 0 on H3(F ; Z).

Proof. For isolated rational singularities, Flenner [Fl, (6.1) Satz] has shown that

Pic(X − 0) ∼= H2(K; Z).(2.3)

Since K is simply connected, the universal coefficient theorem shows that H2(K; Z)
∼= H2(K; Z)∗ has no torsions. If D is a Weil divisor, then it defines an element [D]
in the local divisor class group Pic(X−0), and D is Cartier if and only if [D] = 0 in
Pic(X − 0) since X is a contractible neighborhood of 0. Now if `D is Cartier, then
[`D] = 0 in Pic(X − 0). This implies that [D] is torsion; hence by (2.3) [D] = 0.
That is, D is Cartier.

If n ≥ 4, then K is (n − 2) ≥ 2 connected; hence H2(K; Z) = 0 and X is
analytically factorial at 0.

For n = 3, by Poincaré duality H2(K; Z) ∼= H3(K; Z) and by Alexander duality
H3(K; Z) ∼= H3(S −K; Z). Since torsions will be cancelled out after taking dual,
we find that X is factorial if and only if H3(S −K; Z) is a torsion group. By (2.2),
this is equivalent to I − h∗ inducing an isomorphism of Q-vector spaces. That is,
det(I − h∗) 6= 0. Q.E.D.

Proof of Theorem B. The statement that A is an UFD if and only if Â is an UFD
is due to Flenner, so we will only prove the criterion (1.2). In case f is given by
(1.1), the formula for det(I−h∗) has been determined by Brieskorn and Pham (see
[Mi, Theorem 9.1]):

det(I − h∗) =
∏

w
ai
i =1, wi 6=1

(1− w0 · · ·w3).(2.4)

A result due to Elkik and Flenner (see e.g. [Re3], [KMM]) says that canonical
singularities are all rational. So by assumption on f , X = Spec(A) is rational.
Proposition 3.3 and (2.4) then imply that Â is an UFD if and only if

w0 · · ·w3 6= 1, ∀wi 6= 1, waii = 1.(2.5)

Write wi = e2π
√
−1ni/ai ; then it is clear that (2.5) is equivalent to (1.2), because(

n0

a0
+
n1

a1
+
n2

a2
+
n3

a3

)
+
(
a0 − n0

a0
+
a1 − n1

a1
+
a2 − n2

a2
+
a3 − n3

a3

)
= 4,(2.6)

and each term in the LHS is an integer bigger than 1. Q.E.D.

Remark 4. In fact, rational Gorenstein singularities are exactly canonical singular-
ities of index one ([Re3], [KMM]).

3. Standard Crepant Blow Up

In this section we prove part 1 and part 4 of the Main Theorem: let f = xn0 +
xn1 + · · · + xnn−1 + xkn and X = {x ∈ Cn+1|f(x) = 0} with k ≥ n. In general, if
mult0(X) = m then for φ : C̃n+1 → Cn+1 the blow-up at 0 with exceptional divisor
E we have

KC̃n+1 = φ∗KCn+1 + nE,(3.1)



ON CREPANT RESOLUTION AND A CRITERION FOR UFD 1865

and if X ′ is the proper transform of X in C̃n+1 then, as pull-back of Cartier divisors,

φ∗X = X ′ +mE.(3.2)

Since C̃n+1 is smooth, X ′ is Gorenstein and we may apply the adjunction formula

KX′ =
(
KC̃n+1 +X ′

)∣∣
X′

and KX =
(
KCn+1 +X

)∣∣
X
.(3.3)

Putting these together, we get the canonical bundle formula for a single blow-up:

KX′ = φ∗KX + (n−m)E|X′ .(3.4)

In our case m = n, so φ : X ′ → X is a crepant blow-up.
Now let C̃n+1 =

⋃n
i=0 Ui with Ui ∼= Cn+1 affine charts, and let k ≥ n.

Claim 5. X ′ is nonsingular on Ui for i 6= n. On Un, X ′ is a hypersurface with
equation g = yn0 + yn1 + · · ·+ ynn−1 + yk−nn = 0.

In fact, consider U0 with coordinates (y0, . . . , yn); then the morphism φ is given
by x0 = y0, x1 = y0y1, . . . , xn = y0yn. So

φ∗f(y) = f(φ(y)) = f(y0, y0y1, . . . , y0yn)
= yn0 + yn0 y

n
1 + · · ·+ yn0 y

n
n−1 + yk0y

k
n

= yn0 (1 + yn1 + · · ·+ ynn−1 + yk−n0 ykn) = yn0 g(y).
(3.5)

The singular set is on the exceptional divisor E ∩X ′. On U0 it is given by y0 = 0
and g(y) = 0. The singular set satisfies Dg = 0, that is,

Dg = ((k − n)yk−n−1
0 ykn, ny

n−1
1 , . . . , nyn−1

n−1, ky
k−n
0 yk−1

n ) = 0.(3.6)

This forces y1 = · · · = yn−1 = 0 and y0yn = 0. On such a set, g(y) = 1 6= 0, hence
X ′ is nonsingular on it. Similarly X ′ is nonsingular on Ui for i 6= n.

Now consider Un with coordinates (y0, . . . , yn). The morphism φ is now given
by x0 = yny0, . . . , xn−1 = ynyn−1, xn = yn. So

φ∗f(y) = f(φ(y)) = f(yny0, . . . , ynyn−1, yn)
= ynny

n
0 + · · ·+ ynny

n
n−1 + ykn

= ynn(yn0 + · · ·+ ynn−1 + yk−nn ) = ynng(y).
(3.7)

The claim is thus proved.
For the theorem, if k ≡ 0, 1 modn, then after a finite number of crepant blow-

ups we arrive at the case k = 0 or k = 1. In both cases we get smooth varieties,
and hence we get the crepant resolution of X . For other cases, after a finite number
of crepant blow-ups we arrive at a hypersurface X ′ when 1 < k < n. These are

terminal singularities since
∑ 1

ai
= n · 1

n
+

1
k
> 1 +

1
n

.

Consider first the case n = 3. Then k = 2, and there are no positive integer
solutions of

1
2

+
a

3
+
b

3
+
c

3
= 2.(3.8)

By Theorem B, X ′ is factorial but singular. Hence by Theorem 1.3, X has no
crepant resolution.

Now assume that n ≥ 4 and 1 < k < n. Then X ′ is factorial by Proposition
3.2. If there is a further projective small resolution ψ : Y → X ′, then there is a
nontrivial divisor D on Y with D.C > 0 for some curve C lying on a fiber of ψ. But
since ψ is an isomorphism in codimension one, D = ψ∗L for some Cartier divisor
L in X ′. But then D.C = ψ∗L.C = L.ψ(C) = 0, a contradiction. Q.E.D.
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Remark 6. This later argument only works for 1 < k < n, because of the non-
uniqueness of “Terminalization” and lack of a theorem like Kollár’s result in higher
dimensions.

4. Weighted Crepant Blow-Up

In this section we prove part 2 and part 3 of the Main Theorem. Namely, we
consider the equation f = x2

0 +x4
1 +x4

2 +xk3 or f = x2
0 +x3

1 +x6
2 +xk3 . Since these are

double points, the standard blow-up at 0 is not a crepant blow-up. In fact it will
even create more complicated singularities (one dimensional or even non-normal).

In Reid’s process of terminalization [Re1], he introduced two more weighted blow-
ups to resolve the problem. Namely, he showed that for index one isolated canonical
singularities, one may achieve the terminal partial resolution by only three types
of (weighted) blow-ups: their weights are (1, 1, 1, 1), (2, 1, 1, 1) and (3, 2, 1, 1). The
two equations we take here are the simplest ones that require weighted blow-ups.

Let X = {x ∈ Cn+1|f(x) = 0}. For a general weight α, let φ : C̃n+1 → Cn+1

be the α-blow up at the point 0, and E its exceptional divisor. E is isomorphic to
the α-weighted projective space. We have the following well known computation
via toric geometry (cf. [Re3]):

KC̃n+1 = φ∗KCn+1 +
(
α(x0x1 · · ·xn)− 1

)
E,(4.1)

and if X ′ is the proper transform of X in C̃n+1, then, as pull-back of Cartier
divisors,

φ∗X = X ′ + α(f)E;(4.2)

here α(f) := min{α(xu)|xu a term in f} is the weighted multiplicity of f at 0.
Although C̃n+1 is in general not smooth, it is Q-factorial. So we may still apply
the adjunction formula (in a suitable sense):

KX′ =
(
KC̃n+1 +X ′

)∣∣
X′

and KX =
(
KCn+1 +X

)∣∣
X
.(4.3)

Putting these together, we get the canonical bundle formula for the α-blow-up:

KX′ = φ∗KX +
(
α(x0 · · ·xn)− α(f)− 1

)
E|X′ .(4.4)

In the two cases considered here one sees easily that φ : X ′ → X is a crepant
blow-up.

Write α = (d0, . . . , dn). In terms of α-weighted homogeneous coordinates, E =
P(d0, . . . , dn) = Cn+1/ ∼ with

(Y0, . . . , Yn) ∼ (λd0Y0, . . . , λ
dnYn), λ ∈ C∗.(4.5)

The standard chart Vi := {Yi 6= 0} thus has the form

(Y −d0/di
i Y0, Y

−d1/di
i Y1, . . . , 1 (i-th place), · · · , Y −dn/dii Yn).(4.6)

with quasi-coordinates yj = Y
−dj/di
i Yj , j 6= i. Notice that if di 6= 1, then Vi is in

general singular.
The corresponding chart Ui of C̃n+1 then has quasi-coordinates (y0, . . . , yn) with

yi = xi, yj = Y
−dj/di
i Yj , j 6= i. From (4.5), C̃n+1 ⊂ Cn+1 × P(d0, . . . , dn) can
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be described as the set (x, Y ) with x
dj
i Y

di
j = xdij Y

dj
i , and we obtain the mapping

φ : C̃n+1 → Cn+1 on Ui in terms of coordinates:{
xi = yi,

xj = y
dj/di
i yj, j 6= i.

(4.7)

Now let C̃4 =
⋃3
i=0 Ui and f = x2

0 + x3
1 + x6

2 + xk3 with k ≥ 6.

Claim 7. X ′ is nonsingular on Ui for i 6= 3. On U3
∼= C4, X ′ is a hypersurface with

equation f = y2
0 + y3

1 + y6
2 + yk−6

3 .

In fact, on U0 with quasi-coordinates (y0, . . . , y3), the morphism φ is given by
x0 = y0, x1 = y

2/3
0 y1, x2 = y

1/3
0 y2, x3 = y

1/3
0 y3. So

φ∗f(y) = f(φ(y)) = y2
0 + y2

0y
3
1 + y2

0y
6
2 + y

k/3
0 yk3

= y2
0(1 + y3

1 + y6
2 + y

k/3−2
0 yk3 ) = y2

0g(y).
(4.8)

The only singular point on U0 is y = 0, which does not lie in X ′ since g(0) =
1 6= 0. Outside 0 we may regard ỹ0 := y

1/3
0 as a coordinate (locally), and an easy

calculation of Dg as in §3 shows that X ′ is nonsingular on it. Similar calculation
shows also that X ′ is nonsingular on Ui for i 6= 3.

Now consider U3 with coordinates (y0, . . . , y3). The morphism φ is given by
x0 = y3

3y0, x1 = y2
3y1, x2 = y3y2, x3 = y3. Notice that by (4.6) the chart U3 is

isomorphic to C4. So

φ∗f(y) = f(φ(y)) = y6
3y

2
0 + y6

3y
3
1 + y6

3y
6
2 + yk3

= y6
3(y2

0 + y3
1 + y6

2 + yk−6
3 ) = y6

3g(y).
(4.9)

The claim is thus proved.
For the theorem, if k ≡ 0, 1 mod 6, then after a finite number of crepant blow-ups

we arrive at the case k = 0 or k = 1. In both cases we get smooth varieties, and
hence we get the crepant resolution of X . For other cases, after a finite number
of crepant blow-ups we arrive at a hypersurface X ′ when 1 < k < 6. These are

terminal singularities, since
∑ 1

ai
=

1
2

+
1
3

+
1
6

+
1
k
> 1 +

1
6

.

By assumption, we have k = 5 (a cE8 singularity), and it is easy to see that
there are no positive integer solutions of

1
2

+
a

3
+
b

6
+
c

5
= 2.(4.10)

By Theorem B, X ′ is factorial but singular. Hence by Theorem 1.3, X has no
crepant resolutions.

The proof of the case f = x2
0 + x4

1 + x4
2 + xk3 is entirely the same as the above.

We simply use weight (2,1,1,1) instead of (3,2,1,1). Then after a single (2,1,1,1)
weighted blow-up we find that X ′ is nonsingular on Ui for i 6= 3. On U3

∼= C4,
X ′ is a hypersurface with equation f = y2

0 + y4
1 + y4

2 + yk−4
3 . If k ≡ 0, 1 mod 4,

then after a finite number of crepant blow-ups we arrive at smooth varieties. For
k ≡ 3 mod 4 , after a finite number of crepant blow-ups we arrive at a hypersur-
face X ′ given by y2

0 + y4
1 + y4

2 + y3
3 = 0. These are terminal singularities, since∑ 1

ai
=

1
2

+
1
4

+
1
4

+
1
3
> 1 +

1
4

. (In fact, it is a cE6 singularity.)
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Now there are no positive integer solutions of
1
2

+
a

4
+
b

4
+
c

3
= 2.(4.11)

So the theorem follows as before. Q.E.D.
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Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, 273-310. MR 82i:14025
[Re2] M. Reid, Minimal models of canonical threefolds, Algebraic Varieties and Analytic Va-

rieties, Tokyo, 1981, Adv. Stud. Pure Math. Vol. 1, ed. S. Iitaka, 131-180 (1983). MR
86a:14010

[Re3] M. Reid, Young person’s guide to canonical singularities, Algebraic Geometry Bowdowin
1985, Proc. Symp. Pure Math. 46 (1987), 345-414. MR 89b:14016

[Ro] S.-S. Roan, Minimal Resolution of Gorenstein Orbifolds in Dimension Three, Topology
35 (1996), 489-508. MR 97c:14013

[Sa] P. Samuel, Lectures on Unique Factorization Domains, Tata Instutite of Fundamental
Research, Bombay 1964. MR 35:5428

[Sc] M. Schlessinger, Rigidity of Quotient Singularities, Invent. Math. 14 (1971), 17-26. MR
45:5428

National Center for Theoretical Sciences, Mathematics Division, No. 101, Sec. 2,

Kuang Fu Road, Hsinchu 30034, Taiwan

Current address: Department of Mathematics, National Central University, Chung-Li (320),
Taoyuan, Taiwan

E-mail address: linhw@math.ncu.edu.tw

http://www.ams.org/mathscinet-getitem?mr=83a:13009
http://www.ams.org/mathscinet-getitem?mr=89d:14023
http://www.ams.org/mathscinet-getitem?mr=83h:14042
http://www.ams.org/mathscinet-getitem?mr=89e:14015
http://www.ams.org/mathscinet-getitem?mr=90e:14011
http://www.ams.org/mathscinet-getitem?mr=39:969
http://www.ams.org/mathscinet-getitem?mr=82i:14025
http://www.ams.org/mathscinet-getitem?mr=86a:14010
http://www.ams.org/mathscinet-getitem?mr=89b:14016
http://www.ams.org/mathscinet-getitem?mr=97c:14013
http://www.ams.org/mathscinet-getitem?mr=35:5428
http://www.ams.org/mathscinet-getitem?mr=45:5428

	1. Introduction
	2. Monodromy and Factoriality
	3. Standard Crepant Blow Up
	4. Weighted Crepant Blow-Up
	References

