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ABSTRACT. We show that the generating functions of Gromov–Witten
invariants with ancestors are invariant under a simple flop, for all genera,
after an analytic continuation in the extended Kähler moduli space. This
is a sequel to [14].

0. INTRODUCTION

0.1. Statement of the main results. Let X be a smooth complex projec-
tive manifold and ψ : X → X̄ a flopping contraction in the sense of min-
imal model theory, with ψ̄ : Z ∼= Pr → pt the restriction map to the ex-
tremal contraction. Assume that NZ/X

∼= OPr(−1)⊕(r+1). It was shown
in [14] that a simple Pr flop f : X 99K X′ exists and the graph closure
[Γ̄ f ] ∈ A∗(X × X′) induces a correspondence F which identifies the Chow
motives X̂ of X and X̂′ of X′. Furthermore, the big quantum cohomology
rings, or equivalently genus zero Gromov–Witten invariants with 3 or more
insertions, are invariant under a simple flop, after an analytic continuation
in the extended Kähler moduli space.

The goal of the current paper is to extend the results of [14] to all gen-
era. In the process we discovered the natural framework in the ancestor
potential

AX(t̄, s) := exp
∞

∑
g=0

h̄g−1FX
g (t̄, s),

which is a formal series in the Novikov variables {qβ}β∈NE(X) defined in
the stable range 2g + n ≥ 3. See Section 1 for the definitions.

The main results of this paper are the following theorems.

Theorem 0.1. The total ancestor potential AX (resp. AX′) is analytic in the ex-
tremal ray variable q` (resp. q`′). They are identified via F under a simple flop, af-
ter an analytic continuation in the extended Kähler moduli space ω ∈ H1,1

R (X) +
i(KX ∪F−1KX′) via

q` = e2πi(ω.`),
where KX (resp. KX′) is the Kähler cone of X (resp. X′).

There are extensive discussions of analytic continuation and the Kähler
moduli in Section 3. We note that the descendent potential is in general not
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invariant under F (c.f. [14], §3). The descendents and ancestors are related
via a simple transformation ([10, 8], c.f. Proposition 1.1), but the transfor-
mation is in general not compatible with F . Nevertheless we do have

Theorem 0.2. For a simple flop f , any generating function of mixed invariant of
f -special type

〈τk1,l̄1 α1, · · · , τkn,l̄n αn〉g,

with 2g + n ≥ 3, is invariant under F up to analytic continuation.

Here a mixed insertion τk,l̄ α consists of descendents ψk and ancestors ψ̄l .
Given f : X 99K X′ with exceptional loci Z ⊂ X and Z′ ⊂ X′, a mixed
invariant is of f -special type if for every insertion τk,l̄ α with k ≥ 1 we have
α.Z = 0. Theorem 0.1 follows from an application of Theorem 0.2 when no
descendent is present.

0.2. Outline of the contents. Section 1 contains some basic definitions as
well as special terminologies in Gromov–Witten theory used in the arti-
cle. One of the main ingredients of our proof of invariance in the higher
genus theory is Givental’s quantization formalism [8] for semisimple Frobe-
nius manifolds. This is reviewed in Section 2.

Another main ingredient, in comparing Gromov–Witten theory of X and
X′, is the degeneration analysis. We generalize the genus zero results of
the degeneration analysis in [14] to ancestor potentials in all genera. The
analysis allows us to reduce the proofs of Theorem 0.1 (and 0.2) from flops
of X to flops of the local model P(NZ/X ⊕O).

To keep the main idea clear, we choose to work on local models first in
Section 3 and postpone the degeneration analysis till section 4. The local
models are semi-Fano toric varieties and localizations had been effectively
used to solve the genus zero case. The idea is to utilize Givental’s quan-
tization formalism on the local models to derive the invariance in higher
genus, up to analytic continuation, from our results [14] in genus zero. In
doing so, the key point is that local models have semisimple quantum co-
homology, and we trace the effect of analytic continuation carefully during
the process of quantization. The issues of the analyticity of the Frobenius
manifolds and the analytic continuation involved in this study is discussed
in the beginning Section 3.

The proofs of our main results Theorem 0.1 and 0.2, as well as the degen-
eration analysis, are presented in section 4.

In section 5 we include some discussions and calculations of the higher
genus Gromov–Witten invariants attached to the extremal rays. Similar to
the g = 0 case, there is also a classical defect occurring at (g, n, d) = (1, 1, 0)

− 1
24

[
(ctop−1(X).α)X − (ctop−1(X′).F α)X′

]
.

Our explicit formula in Theorem 6.12 for the g = 1 invariants attached to
the extremal ray is seen to give quantum corrections to it.
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The calculation of the explicit formula in genus one requires some ele-
mentary combinatorics, and is included in the appendix.

0.3. Some remarks on the crepant resolution conjecture. A morphism ψ :
X → X̄ is called a crepant resolution, if X is smooth and X̄ is Q-Gorenstein
(e.g. an orbifold) such that ψ∗KX̄ = KX. In the case X̄ is an orbifold, there
is a well-defined orbifold Gromov–Witten theory due to Chen–Ruan. The
crepant resolution conjecture asserts a close relation between the Gromov–
Witten theory of X and that of X̄.

Crepant resolution conjecture, as formulated in [3], still uses descendent
potentials rather than the ancestor potentials, as advocated in [11]. Yet an-
cestors often enjoy better properties than the corresponding descendents,
as exploited by Getzler [6].

Since different crepant resolutions are related by a K-equivalent transfor-
mation, e.g. a flop, the conjecture must be consistent with a transformation
under a flop. Although the descendent potentials can be obtained from
ancestor potentials via a simple transformation, this very transformation
actually spoils the invariance under F . The insistence in the descendents
may introduce unnecessary complication in the formulation of the conjec-
ture. This is especially relevant in the stronger form of the conjecture when
the orbifolds satisfy the Hard Lefschetz conditions.

Our result suggests that a more natural framework to study crepant res-
olution conjecture is to use ancestors rather than descendents. We leave the
interested reader to consult [3] and references therein.

0.4. Acknowledgements. Part of this work was done during the second
author’s visit to the NCU Center for Mathematics and Theoretic Physics
(CMTP), Jhongli, Taiwan in November 2007. He is grateful to the Mathe-
matics Department of National Central University for the hospitality dur-
ing his stay.

1. DESCENDENT AND ANCESTOR POTENTIALS

1.1. The ancestor potential. For the stable range 2g + m ≥ 3, let

π := ft ◦ st : Mg,m+l(X, β) → Mg,m

be the composition of the stabilization morphism st : Mg,m+l(X, β) → Mg,m+l

defined by forgetting the map and the forgetful morphism ft : Mg,m+l →
Mg,m defined by forgetting the last l points. The gravitational ancestors are
defined to be

(1.1) ψ̄i := π∗ψi

for i = 1, . . . , m.
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Let {Tµ} be a basis of H∗(X, Q). Denote t̄ = ∑µ,k t̄µ
k ψ̄kTµ, s = ∑µ sµTµ,

and let

FX
g (t̄, s) = ∑

m,l,β

qβ

m!l!
〈t̄m, sl〉g,m+l,β

= ∑
m,l,β

qβ

m!l!

∫
[Mg,m+l(X,β)]vir

m

∏
i=1

∑
k,µ

t̄µ
k ψ̄k

i ev∗i Tµ

m+l

∏
i=m+1

∑
µ

sµ ev∗i Tµ

be the generating function of genus g ancestor invariants. The ancestor
potential is defined to be the formal expression

AX(t̄, s) := exp
∞

∑
g=0

h̄g−1FX
g (t̄, s).

Note that A depends on s (variables on the Frobenius manifold), in addi-
tion to t̄ = ∑ t̄µ

k Tµzk (variables on the “Fock space”).
Let j be one of the first m marked points such that ψ̄j is defined. Let Dj

be the (virtual) divisor on Mg,m+l(X, β) defined by the image of the gluing
morphism

∑
β′+β′′=β

∑
l′+l′′=l

M0,{j}+l′+•(X, β′)×X Mg,(m−1)+l′′+•(X, β′′) → Mg,m+l(X, β),

where • represents the gluing point; Mg,(m−1)+l′′+•(X, β′′) carries all first
m marked points except the j-th one, which is carried by M0,{j}+l′+•(X, β′).
Ancestor and descendent invariants are related by the simple geometric
equation

(1.2) (ψj − ψ̄j) ∩ [Mg,m+l(X, β)]vir = [Dj]vir.

This can be easily seen from the definitions of ψ and ψ̄. The morphism π
in (1.1) contracts only rational curves during the processes of forgetful and
stabilization morphisms. The (virtual) difference of ψ and ψ̄ is exactly Dj.

1.2. The mixed invariants. We will consider more general mixed invariants
with mixed ancestor and descendent insertions. Denote by

〈τk1,l̄1 α1, · · · , τkn,l̄n αn〉g,n,β

the invariants with mixed descendent and ancestor insertion ψki
i ψ̄li

i ev∗i αi at
the i-th marked point and let

〈τk1,l̄1 α1, · · · , τkn,l̄n αn〉g(s) := ∑
l,β

qβ

l!
〈τk1,l̄1 α1, · · · , τkn,l̄n αn, sl〉g,n+l,β,

〈τk1,l̄1 α1, · · · , τkn,l̄n αn〉g(t̄, s) := ∑
m,l,β

qβ

m!l!
〈τk1,l̄1 α1, · · · , τkn,l̄n αn, t̄m, sl〉g,n+m+l,β.

to be the generating functions.
Equation (1.2) can be rephrased in terms of these generating functions.
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Proposition 1.1. In the stable range 2g + n ≥ 3,

〈τk+1,l̄ α1, · · · 〉g(t̄, s)

= 〈τk,l+1 α1, · · · 〉g(t̄, s) + ∑
ν

〈τk α1, Tν〉0(s) 〈τl Tν, · · · 〉g(t̄, s)(1.3)

where · · · denote the same mixed insertions.

In fact, only one special type of the mixed invariants will be needed. Let
(X, E) be a smooth pair with j : E ↪→ X a smooth (infinity) divisor. At the i-
th marked point, if ki 6= 0, then we require that αi = ε i ∈ j∗H∗(E) ⊂ H∗(X).
This type of invariants will be called mixed invariants of special type and the
marked points with ki 6= 0 will be called marked points at infinity.

For a birational map f : X 99K X′ with exceptional loci Z ⊂ X, a mixed
invariant is said to be of f -special type if α.Z = 0 for every insertion τk,l̄ α

with k 6= 0. When (Xloc, E) comes form the local model of (X, Z), namely
Xloc := Ẽ = PZ(NZ/X ⊕ O) with E being the infinity divisor, these two
notions of special type agree.

Proposition 1.1 will later be used (c.f. Theorem 3.7) in the following set-
ting. Suppose that under a flop f : X 99K X′ we have invariance of ancestor
generating functions. To extend the invariance to allow also descendents
we may reduce the problem to the g = 0 case and with at most one descen-
dent insertion τk α. For local models, it is important that the invariants are
of special type to ensure the invariance.

2. REVIEW OF GIVENTAL’S QUANTIZATION FORMALISM

2.1. Formal ingredients in the geometric Gromov–Witten theory. For a
projective smooth variety X, Gromov–Witten theory of X consists of the
following ingredients

(i) H := H∗(X, Q) is a Q-vector space, assumed of rank N. Let {Tµ}N
µ=1

be a basis of H and {sµ}N
µ=1 be the dual coordinates with ∂/∂sµ =

Tµ. 1 ∈ H0(X), the (dual of) fundamental class, is a special element.
H carries a symmetric bilinear form, Poincaré pairing,

(·, ·) : H ⊗ H → Q.

Define
gµν := (Tµ, Tν)

and gµν to be the inverse matrix.
(ii) Let Ht := ⊕∞

k=0H be the infinite dimensional complex vector space
with basis {Tµψk}. Ht has a natural Q-algebra structure:

Tµψk1 ⊗ Tνψk2 7→ (Tµ ∪ Tν)ψk1+k2 .

Let {tµ
k }, µ = 1, . . . , N, k = 0, . . . , ∞, be the dual coordinates of the

basis {Tµψk}. We note that at each marked point, the insertion is
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Ht-valued. Let
t := ∑

k,µ
tµ
k Tµψk

denote a general element in the vector space Ht.
(iii) The generating function of descendents FX

g (t) is a formal function
on Ht. The generating function of ancestors F̄X

g (t̄, s) is a formal
function of (t̄, s) ∈ Ht × H.

(iv) H carries a (big quantum cohomology) ring structure. Let sµ = tµ
0

and F0(s) = F0(t)|tk=0, ∀ k>0. The ring structure is defined by

Tµ1 ∗s Tµ2 := ∑
ν,ν′

∂3F0(s)
∂sµ1 ∂sµ2 ∂sν

gνν′Tν′ .

1 is the identity element of the ring.
(v) The Dubrovin connection ∇z on the tangent bundle TH is defined

by
∇z := d− z−1 ∑

µ

dsµ(Tµ∗).

The quantum cohomology differential equation

(2.1) ∇zS = 0

has a fundamental solution J = (Jµ,ν(s, z−1)), an N × N matrix-
valued function, in (formal) power series of z−1 satisfying the con-
ditions

(2.2) J(s, z−1) = Id + O(z−1) and J∗(s,−z−1)J(s, z−1) = Id,

where ∗ denotes the adjoint with respect to (·, ·).
(vi) The non-equivariant genus zero Gromov–Witten theory is graded,

i.e. with a conformal structure. The grading is determined by an
Euler field E ∈ Γ(TX),

(2.3) E = ∑
µ

(1− 1
2

deg Tµ)sµ ∂

∂sµ
+ c1(TX).

2.2. Semisimple Frobenius manifolds. The concept of Frobenius mani-
folds was originally introduced by B. Dubrovin. We assume that the read-
ers are familiar with the definitions of the Frobenius manifolds. See [13]
Part I for an introduction. The quantum product ∗, together with Poincaré
pairing, and the special element 1, defines on H a Frobenius manifold struc-
ture (QH, ∗).

A point s ∈ H is called a semisimple point if the quantum product at the
tangent algebra (TsH, ∗s) at s ∈ H is isomorphic to ⊕N

1 C as an algebra.
(QH, ∗) is called semisimple if the semisimple points are dense in H. If
(QH, ∗) is semisimple, it has idempotents {εi}N

1

εi ∗ εj = δijεi.
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defined up to SN permutations. The canonical coordinates {ui}N
1 are defined

by ∂/∂ui = εi. When the Euler field is present, the canonical coordinates
are also uniquely defined up to permutations. We will often use the nor-
malized form

ε̃i =
1√

(εi, εi)
εi.

Lemma 2.1. {εi} and {ε̃i} form orthogonal bases.

Proof.

(εi, εj) = (εi ∗ εi, εj) = (εi, εi ∗ εj)
= (εi, δijεi) = δij(εi, εi).

�

When the quantum cohomology is semisimple, the quantum differential
equation (2.1) has a fundamental solution of the following type

R(s, z) := Ψ(s)−1R(s, z)eu/z,

where (Ψµi) := (Tµ, ε̃i) is the transition matrix from {ε̃i} to {Tµ}; u is the
diagonal matrix (uij) = δijui. The main information of R is carried by
R(s, z), which is a (formal) power series in z. One notable difference be-
tween J(s, z−1) and R(s, z) is that the former is a (formal) power series in
z−1 while the latter is a (formal) power series in z. See [8] and Theorem 1 in
Chapter 1 of [13].

2.3. Preliminaries on quantization. Let Hq := H[z]. Let {Tµzk}∞
k=0 be a

basis of Hq, and {qµ
k } the dual coordinates. We define an isomorphism of

Hq to Ht as an affine vector space via a dilaton shift “t = q + z”:

(2.4) tµ
k = qµ

k + δµ1δk1.

The cotangent bundle H := T∗Hq has a natural symplectic structure

Ω = ∑
k,µ,ν

gµν dpµ
k ∧ dqν

k

where {pµ
k } are the dual coordinates in the fiber direction of H in the nat-

ural basis {Tµz−k−1}∞
k=0. H is naturally isomorphic to the H-valued Lau-

rent series in z−1, H[[z−1]]. In this way,

Ω( f , g) = Resz=0( f (−z), g(z)).

To quantize an infinitesimal symplectic transformation on (H , Ω), or its
corresponding quadratic hamiltonians, we recall the standard Weyl quanti-
zation. An identification H = T∗Hq of the symplectic vector space H (the
phase space) as a cotangent bundle of Hq (the configuration space) is called a
polarization. The “Fock space” will be a certain class of functions f (h̄, q)
on Hq (containing at least polynomial functions), with additional formal
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variable h̄ (“Planck’s constant”). The classical observables are certain func-
tions of p, q. The quantization process is to find for the classical mechanical
system on (H , Ω) a “quantum” system on the Fock space such that the
classical observables, like the hamiltonians h(q, p) on H , are quantized to
become operators ĥ(q, ∂/∂q) on the Fock space.

Let A(z) be an End(H)-valued Laurent formal series in z satisfying

Ω(A f , g) + Ω( f , Ag) = 0,

for all f , g ∈ H . That is, A(z) defines an infinitesimal symplectic transfor-
mation. A(z) corresponds to a quadratic polynomial 1 P(A) in p, q

P(A)( f ) :=
1
2

Ω(A f , f ).

Choose a Darboux coordinate system {qi
k, pi

k} so that Ω = ∑ dpi
k ∧ dqi

k. The
quantization P 7→ P̂ assigns

1̂ = 1, p̂i
k =

√
h̄

∂

∂qi
k
, q̂i

k = qi
k/
√

h̄,

p̂i
k pj

l = p̂i
k p̂j

l = h̄
∂

∂qi
k

∂

∂qj
l

,

p̂i
kqj

l = qj
l

∂

∂qi
k
,

q̂i
kqj

l = qi
kqj

l/h̄,

(2.5)

In summary, the quantization is the process

A 7→ P(A) 7→ P̂(A)
inf. sympl. transf. 7→ quadr. hamilt. 7→ operator on Fock sp..

It can be readily checked that the first map is a Lie algebra isomorphism:
The Lie bracket on the left is defined by [A1, A2] = A1 A2 − A2 A1 and the
Lie bracket in the middle is defined by Poisson bracket

{P1(p, q), P2(p, q)} = ∑
k,i

∂P1

∂pi
k

∂P2

∂qi
k
− ∂P2

∂pi
k

∂P1

∂qi
k

.

The second map is close to be a Lie algebra homomorphism. Indeed

[P̂1, P̂2] = ̂{P1, P2}+ C (P1, P2),

where the cocycle C , in orthonormal coordinates, vanishes except

C (pi
k pj

l , qi
kqj

l) = −C (qi
kqj

l , pi
k pj

l) = 1 + δijδkl .

1Due to the nature of the infinite dimensional vector spaces involved, the “polynomials”
here might have infinite many terms, but the degrees remain finite.
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Example 2.2. Let dim H = 1 and A(z) be multiplication by z−1. It is easy to
see that A(z) is infinitesimally symplectic.

P(z−1) =− q2
0

2
−

∞

∑
m=0

qm+1 pm

P̂(z−1) =− q2
0

2
−

∞

∑
m=0

qm+1
∂

∂qm
.

(2.6)

Note that one often has to quantize the symplectic instead of the infin-
itesimal symplectic transformations. Following the common practice in
physics, define

(2.7) êA(z) := eÂ(z),

for A(z) an infinitesimal symplectic transformation.

2.4. Ancestor potentials via quantization. Let N be the rank of H = H∗(X)
and DN(t) = ∏N

i=1 Dpt(ti) be the descendent potential of N points, where

Dpt(ti) ≡ Apt(ti) := exp
∞

∑
g=0

h̄g−1Fpt
g (ti)

is the total descendent potential on a point and ti = ∑k ti
kzk.

Suppose that (QH, ∗) is semisimple, then the ancestor potential can be
reconstructed from the DN(t) via the the quantization formalism.

First of all, {ε̃i} define an orthonormal basis for H with canonical coordi-
nates {ui}N

i=1. Therefore, the dual coordinates (pi
k, qi

k) of the basis {ε̃izk}k∈Z

for H form a Darboux coordinate system. The coordinate system t = {ti
k}

is related to q = {qi
k} by the dilaton shift (2.4). Note that ∂/∂qi

k = ∂/∂ti
k.

The following beautiful formula was first formulated by Givental [8].
Many special cases have since been solved by Givental and others [2], [12].
It was completely established by C. Teleman in a recent preprint [17].

Theorem 2.3 ([8, 17]).

(2.8) AX(t̄, s) = ec̄(s)Ψ̂−1(s)R̂X(s, z)eû/z(s)DN(t),

where c̄(s) = 1
48 ln det(εi, εj).

Note that it is not very difficult to check that ln RX(s, z) defines an in-
finitesimal symplectic transformation. See e.g. [8, 13]. R̂X(s, z) is therefore
well-defined. By Example 2.2, eû/z is also well-defined. Since the quanti-
zation involves only the z variable, Ψ̂−1(s) really is the induced transfor-
mation from canonical coordinates to flat coordinates. No quantization is
needed.

Remark 2.4. The operator eû/z can be removed from the above expression.
It is shown in [8] that the string equation implies that eû/zDN = DN .
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3. ANALYTIC CONTINUATION AND LOCAL MODELS

In the first part of this section, we discuss the issues of the analyticity
of the Frobenius manifolds and the analytic continuation involved in the
study of the flops f : X 99K X′. We then move to the study of the local mod-
els. There the semisimplicity of the Frobenius manifolds and the quantiza-
tion formalism are used to reduce the invariance of Gromov–Witten theory
to the semi-classical (genus zero) case.

3.1. Review of the genus zero theory. Let f : X 99K X′ be a simple Pr

flop with F being the graph correspondence. This subsection rephrases the
analytic continuation of big quantum rings proved in [14] in more algebraic
terms.

Let NE f be the cone of curve classes β ∈ NE(X) with F β ∈ NE(X′),
i.e. the classes which are effective on both sides. Let

f(q) =
q

1− (−1)r+1q

be the rational function coming from the generating function of three points
Gromov–Witten invariants attached to the extremal ray ` ⊂ Z ∼= Pr with
positive degrees. Namely for any i, j, k ∈ N with i + j + k = 2r + 1,

f(q`) = ∑
d≥1

〈hi, hj, hk〉0,3,d` qd`,

where h denotes a class in X which restricts to the hyperplane class of Z.
Define the ring

(3.1) R = Ĉ[NE f ][f],

which can be regarded as certain algebraization of the Novikov ring N̂E(X)
in the q` variable. Notice that R is canonically identified with its counter-

part R ′ = Ĉ[NE′f ][f
′] under F since F NE f = NE′f and

(3.2) F f(q`) = (−1)r − f(q`′)

(via f(q) + f(q−1) = (−1)r).

Theorem 3.1. The genus zero n-point functions with n ≥ 3 lie in R:

〈α〉X ∈ R

for all α ∈ H∗(X)⊕n. Moreover F 〈α〉X = 〈F α〉X′
in R ′.

Proof. This is the main result of [14] except the statement that 〈α〉X ∈ R.
For this, the degeneration analysis in § 4 of [14] implies

〈α〉•X = ∑
µ

m(µ) ∑
I
〈α1 | ε I , µ〉•(Y,E)〈α2 | εI , µ〉•(Ẽ,E).

(A generalization to all genera is presented in the next section.) Here Y =
BlZX = Γ̄ f ⊂ X × X′; 〈·〉• denote invariants with possibly disconnected
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domain curves. Under the projections φ : Y → X and φ′ : Y → X′, the
variable qβ1 for β1 ∈ NE(Y) is identified with qφ∗β1 ∈ NE(X). If qβ1 appears
in the sum of contact type µ, then (E.β1) = |µ| ≥ 0. Also

F φ∗β1 = φ′∗β1 + |µ|`′ ∈ NE(X′).

Hence 〈α1 | ε I , µ〉•(Y,E) ∈ Ĉ[NE f ].
For the local model Ẽ := PZ(NZ/X ⊕ O), the process in [14] (§5, Theo-

rem 5.6) via reconstruction theorem shows that there are indeed only two
generators of the functional equations. One is (3.2), which is the source of
analytic continuation. Another one is the quasi-linearity ([14], Lemma 5.4),
which is an identity in C[NE f ] where no analytic continuation is needed.

Denote

(3.3) δ = δh = q` d
dq`

.

Then all other analytic continuation come from δmf’s with m ≥ 0. It remains
to show that δmf is a polynomial in f. This follows easily from δf = f +
(−1)r+1f2 and δ(f1f2) = (δf1)f2 + f1δf2 by induction on m. �

3.2. Integral structure on local models. For X = Ẽ, the above proof shows
that

(3.4) 〈α〉 ∈ C[NE f ][f] =: Rloc

without the need of taking completion, where NE f = Z+γ + Z+(γ + `). In
fact for a given set of insertions α and genus g, the virtual dimension count
shows that the contact weight d2 := (E.β) is fixed among all β = d1` + d2γ
in the series 〈τk,l̄α〉X

g . Hence for g = 0 we must have

〈α〉X = qd2γ(p0(f) + q`p1(f) + · · ·+ qd2`pd2(f))

for certain polynomials pi(f) ∈ Z[f].
In particular 〈α〉 is an analytic function over the extended Kähler moduli

ω ∈ H1,1
R (X) + i(KX ∪F−1KX′) via the identification

(3.5) qβ = e2πi(ω.β).

Thus analytic continuation can be taken in the traditional complex analytic
sense or as isomorphisms in the ring Rloc

∼= R ′
loc.

3.3. Analytic structure on the Frobenius manifolds. The Frobenius man-
ifold corresponding to X is a priori a formal scheme, given by the for-
mal completing ĤX of H∗(X, C) at the origin. The big quantum product
takes values in the Novikov ring, or equivalently the formal Kähler moduli

̂C[NE(X)]. The divisor axiom implies that one may combine H2(X, C) di-
rections of the Frobenius manifold and the formal Kähler moduli into a
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formal completion at q = 0 of the complex torus

(3.6) q ∈ H2(X, C)
H2(X, Z)

.

Indeed, let s = s′ + s1 be a point in the Frobenius manifold with s1 ∈
H2(X, C). The divisor axiom says that

〈α〉β(s) qβ = 〈α〉β(s′) qβe(s1.β).

Compared with (3.5), this suggests an identification of the formal Kähler
moduli and the corresponding underlying Frobenius manifold in the H2(X)
direction into the complex torus (3.6). 2 Note that the “origin” of s1 = 0 is
moved to the origin of q = 0 under this identification. In the case ` is the
only primitive numerical class of curves and h an ample class such that
(h.`) = 1, one may set s1 = th. Thus, we have the familiar identification

q = q` = et,

which will be used in the appendix. This identification can be done at the
analytic level in some directions of H2(X) when the convergence is known.

Let f : X 99K X′ be a simple Pr flop and h be an ample divisor class dual
to the extremal ray `, i.e. (h.`) = 1. Then H2(X, Z) = Zh ⊕ H2(X, Z)⊥` .
Theorem 3.1 gives an analytic structure on ĤX in the h-direction:

Corollary 3.2. (i) The Frobenius manifold structure on ĤX can be extended to

HX := Ĥ⊥`
X × (P1

q` \ (−1)r+1).

(ii) HX ∼= HX′ .
(iii) If X is the local model, HX is an analytic manifold.

Proof. Indeed, Theorem 3.1 says that, as functions of f, all invariants are
defined on f ∈ C. Equivalently, as function of q`, all invariants are de-
fined on P1 \ (−1)r+1. This proves (i). (ii) follows from (i), and (iii) from
Section 3.2 �

Corollary 3.2 and results of the previous subsections show that the Frobe-
nius manifold structures on the quantum cohomology of X and X′ are iso-
morphic. The former is a series expansion of analytic functions at q` = 0,
and the latter at q` = ∞. Considered as a one-parameter family

HX → P1
q` \ (−1)r+1,

it produces a family of product structure on Ĥ⊥`
X ⊗ Ĉ[NE f ]. At two spe-

cial points 0 and ∞, the Frobenius structure specializes to the big quantum
cohomology modulo extremal rays of X and of X′ respectively. The term

2In string theory, the identification of weights qβ = e2πi(ω.β) is essential in matching the
A model and B model moduli spaces in mirror symmetry (cf. [4]). It is generally believed
that the GW theory converges in the “large radius limit”, i.e. when Im ω is large.



INVARIANCE OF GW THEORY UNDER A SIMPLE FLOP 13

“analytic continuation” used in this paper can thus be understood in this
way.

3.4. Semisimplicity of big quantum ring for local models. Toric varieties
admits a nice big torus action and its equivariant cohomology ring is al-
ways semisimple, hence as a deformation the equivariant big quantum
cohomology ring (the Frobenius manifold) is also semisimple. Givental’s
quantization formalism works in the equivariant setting, hence one way to
prove the higher genus invariance for local models is to extend results in
[14] to the equivariant setting. This can in principle be done, but here we
take a direct approach which requires no more work.

Lemma 3.3. For X = PPr(O(−1)r+1 ⊕O), QH∗(X) is semisimple.

Proof. By [4], the proof of Proposition 11.2.17 and [14], Lemma 5.2, the small
quantum cohomology ring is given by Batyrev’s ring (though X is only
semi-Fano). Namely for q1 = q` and q2 = qγ,

QH∗
small(X) ∼= C[h, ξ][q1, q2]/(hr+1 − q1(ξ − h)r+1, (ξ − h)r+1ξ − q2).

Solving the relations, we get the eigenvalues of the quantum multiplica-
tions h∗ and ξ∗:

(3.7) h = η jωiq
1

r+1
1 q

1
r+2
2 (1 + ωiq

1
r+1
1 )−

1
r+2 , ξ = η jq

1
r+2
2 (1 + ωiq

1
r+1
1 )

r+1
r+2

for i = 0, 1, · · · , r and j = 0, 1, · · · , r + 1. where ω and η are the (r + 1)-th
and the (r + 2)-th root of unity respectively. As these eigenvalues of h∗
(resp. ξ∗) are all different, we see that h∗ and ξ∗ are semisimple operators,
hence QH∗

small(X) is semisimple.
This proves that the formal Frobenius manifold (QH∗, ∗) is semisimple

at the origin s = 0. Since semisimplicity is an open condition, the formal
Frobenius manifold QH∗(X) is also semisimple. �

Remark 3.4. The Batyrev ring for any toric variety, whether or not equal to
the small quantum ring, is always semisimple.

3.5. Invariance of mixed invariants of special type.

Proposition 3.5. For the local models, the correspondence F for a simple flop
induces, after the analytic continuation, an isomorphism of the ancestor potentials.

Proof. Since a flop induces K-equivalence, by (2.3) the Euler vector fields of
X and X′ are identified under F . By Theorem 3.1 and Lemma 3.3, X and X′

give rise to isomorphic semisimple conformal formal Frobenius manifolds
over R (or rather Rloc):

QH∗(X) ∼= QH∗(X′)

under F . The first statement then follows from Theorem 2.3, the quantiza-
tion formula, since all the quantities involved are uniquely determined by
the underlying abstract Frobenius structure.
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To be more explicit, to compare FAX with AX′ is equivalent to compare
F (Ψ̂−1

X R̂X)eû/z with Ψ̂−1
X′ R̂X′eû′/z, and F c̄ with c̄′. Recall that

εi := ∂ui , ε̃i :=
εi√

(εi, εi)
.

Lemma 3.6. F sends canonical coordinates on X to canonical coordinates on X′:
F εi = ε′i , F ε̃i = ε̃′i . Moreover, c̄, Ψ and u transform covariantly under F .

Proof. As F preserves the big quantum product, F sends idempotents {εi}
to idempotents {ε′i}. Since the canonical coordinates are uniquely defined
for conformal Frobenius manifolds (up to SN permutation which is fixed by
F ), F takes canonical coordinates on X to those on X′. Furthermore, F
preserves the Poincaré pairing [14], hence that F ε̃i = ε̃′i .

The F covariance of c̄(s) = 1
48 ln det(εi, εj), the matrix uij = (δijui) and

the matrix Ψµi = (Tµ, ε̃i) also follow immediately. For example,

F Ψµi = (F Tµ, F ε̃i).

�

The lemma implies that the Darboux coordinate systems on X and X′

defined by canonical coordinates are compatible under F . By the defi-
nition of the quantization process (2.5), which assigns differential opera-
tors ∂/∂qi

k’s in an universal manner under a Darboux coordinate system,
it clearly commutes with F . It is thus enough to prove the invariance of
the semi-classical counterparts, or equivalently the “covariance” of the cor-
responding matrix functions, under F . Note that all the invariance and
covariance are up to an analytic continuation.

Therefore, one is left with the proof of the covariance of the R matrix
under F , after analytic continuation. Namely F R(s) = R′(F s).

This follows from the uniqueness of R for semisimple formal conformal
Frobenius manifolds. To be explicit, recall that in the proof of [13], Theorem
1, the formal series R(s, z) = ∑∞

n=0 Rn(s)zn of the R matrix is recursively
constructed by R0 = Id and the following relation in canonical coordinates:

(3.8) (Rn)ij(dui − duj) = [(ΨdΨ−1 + d)Rn−1]ij.

Applying F to it, we get F Rn = R′
n by induction on n. �

In order to generalize Proposition 3.5 to simple flops of general smooth
varieties, which will be carried out in the next section by degeneration
analysis, we have to allow descendent insertions at the infinity marked
points, i.e. those marked points where the cohomology insertions come
from j∗H∗(E) ⊂ H∗(X).

Theorem 3.7. For the local models, the correspondence F for a simple flop in-
duces, after the analytic continuation, an isomorphism of the generating functions
of mixed invariants of special type in the stable range.
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Proof. Using Proposition 3.5 and 1.1 and by induction on the power k of
descendent, the theorem is reduced to the case of g = 0 and with exactly
one descendent insertion. It is of the form 〈τkα, Tν〉0(s) with k ≥ 0 and by
our assumption α ∈ j∗H∗(E). (Notice that for s = 0 this is not in the stable
range.) This series is a formal sum of subseries

〈τkα, Tν, Tµ1 , · · · Tµl 〉0,2+l

which are sums over β ∈ NE(Ẽ). Each such series supports a unique d2 ≥ 0
in β = d1` + d2γ. If d2 = 0 then the series and its counterpart in X′ = Ẽ′
(which supports the same d2) are both trivial since α is supported in E. If
d2 > 0, then the invariance follows from [14], Theorem 5.6. �

We will generalize the theorem into the form of Theorem 0.2 by removing
the local model condition after we discuss the degeneration formula.

Remark 3.8. By section 3.4 and the proof of Proposition 3.5, the canonical
coordinates ui’s, idempotents εi’s, hence the transition matrix Ψ and the R
matrix can all be solved in some integral extension R̃loc of Rloc. It is inter-
esting to know whether all genus g ancestor n-point generating functions
take value in R̃loc and F 〈τl̄ α〉X

g = 〈τl̄ F α〉X′
g in R̃loc. This is plausible from

Theorem 2.3 since the quantization process requires no further extensions.
In fact the calculation in genus one in the Appendix suggests that 〈τl̄ α〉X

g
might belong to Rloc.

4. DEGENERATION ANALYSIS

Let f : X 99K X′ be a simple Pr flop with F being the graph corre-
spondence. To prove Theorem 0.2, we need to show that, up to analytic
continuation,

F 〈τk,l̄ α〉X
g = 〈τk,l̄ F α〉X′

g

for all τk,l̄ α = (τk1,l̄1 α1, . . . , τkn,l̄n αn) being of f -special type and g ≥ 0 with
2g + n ≥ 3.

We follow the same strategy employed in Section 4 of [14]. The two
minor changes are

(1) to generalize primary invariants to ancestors (and descendents);
(2) to generalize genus zero invariants to arbitrary genus.

Since it is quite straightforward to make the necessary modifications, we
will simply comment on the necessary changes and ask the interested read-
ers to consult Section 4 of [14] for further details.

The first step is to apply degeneration to the normal cone

W = BlZ×{0}X ×A1 → A1.

W0 = Y1 ∪ Y2, Y1 = Y = BlZX
φ→X and Y2 = Ẽ = PZ(NZ/X ⊕ O)

p→ Z.
E = Y ∩ Ẽ is the φ exceptional divisor as well as the infinity divisor of Ẽ.
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Define the generating series for genus g (connected) relative invariants

(4.1) 〈A | ε, µ〉(Ẽ,E)
g := ∑

β2∈NE(Ẽ)

1
|Aut µ| 〈A | ε, µ〉(Ẽ,E)

g,β2
qβ2

and the similar one with possibly disconnected domain curves

(4.2) 〈A | ε, µ〉•(Ẽ,E) := ∑
Γ; µΓ=µ

1
|Aut Γ| 〈A | ε, µ〉•(Ẽ,E)

Γ qβΓ
h̄gΓ−|Γ|.

Here for connected invariants of genus g we assign the h̄-weight h̄g−1, while
for disconnected ones we simply assign the product weights.

Since the degeneration formula is really about the degeneration of the
virtual cycles, the ancestors and descendents obey the same formula. There-
fore, Proposition 4.6 of [14] can be generalized into the following form:

Proposition 4.1 (Reduction to relative local models). To prove

F 〈τk,l̄ α〉X
g = 〈τk,l̄ F α〉X′

g

for all α and k, l, it suffices to show

F 〈τk,l̄ A | ε, µ〉(Ẽ,E)
h = 〈τk,l̄ F A | ε, µ〉(Ẽ′,E)

h

for all A ∈ H∗(Ẽ)n, k, l ∈ Zn
+, ε ∈ H∗(E)ρ, contact type µ, and all h ≤ g.

Proof. For the n-point mixed generating function

〈τk,l̄ α〉X = ∑
g
〈τk,l̄ α〉X

g h̄g−1 = ∑
g; β∈NE(X)

〈τk,l̄ α〉X
g,β qβ h̄g−1,

the degeneration formula gives (let m(µ) = ∏ µi, Cη = m(µ)/|Aut η|):

〈τk,l̄ α〉X

= ∑
β∈NE(X)

∑
η∈Ωβ

∑
I

Cη〈τk1,l̄1 α1 | ε I , µ〉•(Y1,E)
Γ1

〈τk2,l̄2 α2 | εI , µ〉•(Y2,E)
Γ2

qφ∗β h̄g−1

= ∑
µ

∑
I

∑
η∈Ωµ

Cη

(
〈τk1,l̄1 α1 | ε I , µ〉•(Y1,E)

Γ1
qβ1 h̄gΓ1−|Γ1|

)
×

(
〈τk2,l̄2 α2 | εI , µ〉•(Y2,E)

Γ2
qβ2 h̄gΓ2−|Γ2|

)
h̄ρ,

where we have used g− 1 = ∑i(gΓi − |Γi|) + ρ with ρ being the number of
contact points. Notice that β = φ∗β1 + p∗β2 and we identify qβ1 = qφ∗β1 ,
qβ2 = qp∗β2 throughout our degeneration analysis.

We consider also absolute invariants 〈τk,l̄ α〉•X with product weights in
h̄. Then by comparing the order of automorphisms,

(4.3) 〈τk,l̄ α〉•X = ∑
µ

m(µ) ∑
I
〈τk1,l̄1 α1 | ε I , µ〉•(Y1,E)〈τk2,l̄2 α2 | εI , µ〉•(Y2,E) h̄ρ.

To compare F 〈τk,l̄ α〉•X and 〈τk,l̄ F α〉•X′
, by [14], Proposition 4.4, we may

assume that α1 = α′1 and α′2 = F α2. This choice of cohomology liftings
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identifies the relative invariants of (Y1, E) and those of (Y′
1, E′) with the

same topological types. It remains to compare

〈τk2,l̄2 α2 | εI , µ〉•(Ẽ,E) and 〈τk2,l̄2 α2 | εI , µ〉•(Ẽ′,E).

We further split the sum into connected invariants. Let Γπ be a connected
part with the contact order µπ induced from µ. Denote P : µ = ∑π∈P µπ a
partition of µ and P(µ) the set of all such partitions. Then

〈A | s, µ〉•(Ẽ,E) = ∑
P∈P(µ)

∏
π∈P

∑
Γπ

1
|Aut µπ| 〈Aπ | sπ, µπ〉(Ẽ,E)

Γπ qβΓπ

h̄gΓπ−1.

In the summation over Γπ, the only index to be summed over is βΓπ
on

Ẽ and the genus. This reduces the problem to 〈Aπ | sπ, µπ〉(Ẽ,E)
g .

Instead of working with all genera, the proposition follows from the
same argument by reduction modulo h̄g+1. �

Proposition 4.2 (Relative to absolute). For a simple flop Ẽ 99K Ẽ′, to prove

F 〈τl̄ A | ε, µ〉(Ẽ,E)
g = 〈τl̄ F A | ε, µ〉(Ẽ′,E)

g

for all A, l, ε, µ, it suffices to show for mixed invariants of special type

F 〈τl̄ A, τk ε〉Ẽ
h = 〈τl̄ F A, τk ε〉Ẽ′

h

for all A, l, ε and k ∈ Z
ρ
+, and all h ≤ g.

Sketch of Proof. We apply degeneration to the normal cone for Z ↪→ Ẽ to get
W → A1. Then W0 = Y1 ∪ Y2 with π : Y1

∼= PE(OE(−1,−1)⊕ O) → E a
P1 bundle and Y2 ∼= Ẽ.

By induction on g and then on (|µ|, n, ρ) with ρ in the reverse ordering,
the same procedure used in the proof of [14], Proposition 4.8 leads to

〈τl̄ A, τµ1−1ε i1 , . . . , τµρ−1ε iρ
〉•Ẽ

g = ∑
µ′

m(µ′)×

∑
I′
〈τµ1−1ε i1 , . . . , τµρ−1ε iρ

| εI′ , µ′〉•(Y1,E)
0 〈τl̄ A | ε I′ , µ′〉(Ẽ,E)

g + R,

where R denotes the remaining terms which either have lower genus or
have total contact order smaller than d2 = |µ| = |µ′| or have number of
insertions fewer than n on the (Ẽ, E) side or the invariants on (Ẽ, E) are
disconnected ones.

For the main terms, the integrals on (Y1, E) are all fiber integrals and this
allows to conclude that there is a single top order term in the sum given by

C(µ)〈τl̄ A | ε I , µ〉(Ẽ,E)

with C(µ) 6= 0. Thus the proposition follows by induction.
�
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Proof of Main Theorems. We only need to prove Theorem 0.2.
By Proposition 4.1, the theorem is reduced to the relative local case.

Moreover, for any insertion τk,l̄ α with nontrivial descendent (k ≥ 1), we
may select the cohomology lifting of α to be (α, 0). To avoid trivial in-
variants this insertion must go to the (Y1, E) side in the degeneration for-
mula. Hence the theorem is reduced to the case of relative local models
X = Ẽ = PPr(O(−1)r+1 ⊕O) with at most ancestor insertions.

Now by Propositions 4.2, the proof is further reduced to the case for
absolute invariants of the form

〈τl̄ A, τk ε〉Ẽ
g

which are mixed invariants of special type. But this is exactly the content
of Theorem 3.7. The proof is complete. �

Remark 4.3. The proof also shows that nontrivial descendent invariants of
f -special type without 2g + n ≥ 3, that is (g, n) = (0, 1) or (0, 2), are also
invariant under F .

5. EXPLICIT FORMULAE FOR PRIMARY INVARIANTS
ATTACHED TO THE EXTREMAL RAY

In this section we specialize our curve classes to the extremal ray and
investigate the invariance in more explicit terms. Note that all Gromov–
Witten invariants discussed here are primary.

5.1. Generalities concerning flopping curves. Let dim X ≥ 3. In gen-
eral, for ` being a curve class with (KX.`) = 0, the virtual dimension of
Mg,n(X, d`) is given by

(5.1) Dg,n = (dim X − 3)(1− g) + n

which is independent of d. If moreover ` is a log-extremal ray of flopping
type (e.g. in our case ` is the line class of Z), 〈α〉g,n,d` depends only on the
local geometry of (Z, NZ/X) for d ≥ 1. But for d = 0 it depends on the
global geometry of X.

If Dg,n is negative, all Gromov–Witten invariants must vanish. ¿From
fundamental class axiom, all primary invariants 〈1, · · · 〉g,n,d` must vanish
if Mg,n−1(X, d`) exists. We are therefore left with 3 cases: g = 0, g = 1,
dim X = 3 (and g ≥ 2).

g = 0 then Dg,3 = dim X and the 3-point functions with d ≥ 1 are ex-
pected to correct the classical cubic product corresponding to d = 0, which
is indeed the case for simple flops. There is no n-point invariant with n ≥ 4
and d = 0. In fact for simple flops the n-point functions with n ≥ 4, d ≥ 1
are invariant under F .

If g = 1 then D1,n = n. By the fundamental class axiom each cohomology
insertion must be a divisor. Hence if d ≥ 1 by the divisor axiom the n-point
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invariants are determined by the “partition function”∫
[M1,0(X,d`)]vir

1.

For d = 0 and n ≥ 2, the divisor axiom shows that 〈α〉1,n,0 = 0. n = 1 case
requires different consideration.

Indeed it is well known that Mg,n(X, 0) ∼= X × Mg,n and the virtual fun-
damental class is given by

(5.2) [Mg,n(X, 0)]vir = e(E) ∩ [X × Mg,n]

where the obstruction bundle is given by E = π∗
1 TX ⊗π∗

2H∨
g with Hg being

the Hodge bundle. Let λi = ci(Hg).
For (g, n) = (1, 1) we clearly have

c(E) = ctop(X)− ctop−1(X).λ1.

Thus for one point invariants we get a (semi-)classical term

(5.3) 〈α〉X
1,0 = −(ctop−1(X).α)X ·

∫
M1,1

λ1 = − 1
24

(ctop−1(X).α)X,

where the basic Hodge integral
∫

M1,1
λ1 = 1/24 is used.

For simple flops, we will verify that F 〈α〉X
1 = 〈F α〉X′

1 in the next sub-
section by showing that the genus one invariants with d ≥ 1 correct the
semi-classical defect 〈α〉X

1,0 − 〈F α〉X′
1,0.

For dim X = 3 (and g ≥ 2), Dg,n = n. As in the g = 1 case we are reduced
to consider the case n = 0. For simple P1 flop, the extremal invariants with
d ≥ 1 are determined by Faber and Pandharipande [5] to be

〈−〉g,d :=
∫

[Mg,0(X,d`)]vir
1 = Cg d2g−3

where Cg = |χ(Mg)|/(2g− 3)!. We claim that the generating function

(5.4) 〈−〉g :=
∞

∑
d=0

〈−〉g,d qd = 〈−〉g,0 + Cg δ2g−3f,

is invariant under F (since 2g− 3 ≥ 1), where the operator δ is defined in
(3.3). The second term is invariant following the analysis in Section 3. For
degree zero term, it is not difficult to see 〈−〉X

g,0 = 〈−〉X′
g,0: The degenera-

tion analysis in Section 4 reduces the proof to a corresponding statement
for local models. The local models of X and X′ are both isomorphic to
PP1(O(−1)2 ⊕O), and hence have the same degree zero invariants. In fact
it is not hard to see from (5.2) that

(5.5) e(E) =
(−1)g

2
(
c3(X)− c2(X).c1(X)

)
λ3

g−1.

The invariance of these Chern numbers can be directly verified for P1 flops.



20 Y. IWAO, Y.-P. LEE, H.-W. LIN, AND C.-L. WANG

5.2. The genus one case. Let G be the genus one potential of twisted GW
invariants on OPr(−1)r+1 without marked points. Namely, for ` being the
line class in Pr,

G(q) := 〈−〉1 = ∑
d≥0

〈−〉1,d` qd.

For r = 1, d ≥ 1, the formula

〈−〉1,d =
1

12d
was first obtained by physical consideration in [1] and later mathemati-
cally justified in [9]. Here, by using the theory of semisimple Frobenius
manifolds, we generalize it to all r ∈ N and get

Proposition 5.1. For d ∈ N,

(5.6) 〈−〉1,d = (−1)d(r+1) r + 1
24d

.

In fact the g = 1 case can be achieved without using the machinery of
quantization. Givental has shown in [7], Theorem 4.1 that the total dif-
ferential dG can be expressed, up to a constant, in terms of the canonical
coordinates ui’s as

(5.7) dG = ∑
i

[
d log ∆i/48− ci

−1dui/24 + R1
iidui/2

]
,

where the RHS is determined by the equivariant genus zero theory.
In the appendix we will determine all the terms ui, ∆i := 1/(εi.εi) and

R1
ii step by step. The final result (Theorem 6.12) is equivalent to (5.6):

(5.8) δhG = (−1)r+1 r + 1
24

f

in the non-equivariant limit, where δh := qd/dq.
We use it in the following setting: Let f : X 99K X′ be a simple Pr flop.

Under the canonical correspondence F = [Γ̄ f ] we have F ` = −`′ and we
identify q′ = q−1. Then δh′ = −δh and by (3.2), δhf(q) = δh′f(q′). Hence
δ2

hG(q) = δ2
h′G

′(q′) and by the divisor axiom

〈h, . . . , h〉X
1,n = δn

h G(q) = (−1)n−2δn
h′G

′(q′) = (−1)n〈h′, . . . , h′〉X′
1,n.

Since F hk = (−1)kh′k, this implies the invariance of n-point functions
for all n ≥ 2. (The invariance for g ≥ 2, n ≥ 1 is proved in the same way.)

For n = 1, to prove the invariance we may assume that X and X′ are
local models. We compute via (5.3), (5.8) and (3.2) that

〈h〉X
1 − 〈F h〉X′

1 = − 1
24

(
(c2r(X).h)− (c2r(X′).(ξ ′ − h′))

)
− r + 1

24
.

Since X ∼= X′, the invariance will follow from

Proposition 5.2.
(c2r(X).(2h− ξ)) = −(r + 1).



INVARIANCE OF GW THEORY UNDER A SIMPLE FLOP 21

Proof. Since X = PZ(NZ/X ⊕O)
p→ Z, by the Leray-Hirsh theorem,

H∗(X) = Z[h, ξ]/(hr+1, ξ(ξ − h)r+1).

¿From 0 → O → O(1) ⊗ p∗(NZ/X ⊕ O) → TX/Z → 0 we get c(X) =
p∗c(Z).c(TX/Z) = (1 + h)r+1(1 + ξ)(1 + ξ − h)r+1. So we need to calculate
the degree 2r + 1 terms in

c(X).(2h− ξ) = (1 + h)r+1(1 + ξ)(1 + ξ − h)r+1(2h− ξ)

under the additional relation hrξr+1 = 1.
Since ξ(ξ − h)r+1 = 0, (1 + ξ)(1 + (ξ − h))r+1 start with

(ξ − h)r+1 + Cr+1
1 ξ(ξ − h)r + Cr+1(ξ − h)r + Cr+1

2 ξ(ξ − h)r−1 + lower terms.

Thus in (1 + h)r+1 = hr+1 + Cr+1
1 hr + · · · only hr and hr−1 contribute to

terms with total degree 2r + 1. There are four such terms:

Cr+1
1 Cr+1

1 hr(ξ − h)r(2h− ξ) = −(Cr+1
1 )2,

Cr+1
1 Cr+1

2 hrξ(ξ − h)r−1(2h− ξ) = −Cr+1
1 Cr+1

2 ,

Cr+1
2 hr−1(ξ − h)r+1(2h− ξ) = 2Cr+1

2

and (using the Chern relation 0 = ξ(ξ − h)r+1 = ξr+1 − Cr+1
1 ξrh + · · · )

Cr+1
2 Cr+1

1 hr−1ξ(ξ − h)r(2h− ξ) = Cr+1
2 Cr+1

1 (2hrξ(ξ − h)r − hr−1ξ2(ξ − h)r)

= Cr+1
2 Cr+1

1 (2− Cr+1
1 + Cr

1) = Cr+1
2 Cr+1

1 .

The sum is −(r + 1)2 + (r + 1)r = −(r + 1) as expected. �

6. APPENDIX: THE CALCULATIONS FOR g = 1

We calculate the genus one twisted Gromov–Witten invariants on the
bundle OPr(−1)r+1 by using Givental’s work [7].

6.1. The Frobenius structure and the canonical coordinates. This calcula-
tion follows the general scheme outlined in [7].

Let E be the total space of OPr(−1)r+1 over Pr and consider the torus
action of C∗ × C∗ on E such that the first C∗ acts trivially on Pr and by
scalar multiplication on the fiber of E and the second one acts by

α · [x0 : x1 : · · · : xr] = [αl0 x0 : αl1 x1 : · · · : αlr xr].

Let λ and λ′ denote the characters of these two actions respectively. Let
i : E f ixed ↪→ E be the injection, where E f ixed denotes the fixed loci. Denote
by p the equivariant hyperplane class of Pr for the first action.

Proposition 6.1. The characteristic polynomial of p∗ in equivariant small quan-
tum cohomology is given by

(6.1) q(λ− p)r+1 = pr+1.
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Proof. Formally this follows from the formula for small quantum ring of
local models in Lemma 3.3, with h, ξ being replaced by p, λ.

Alternatively, by [7] Corollary 4.4 (in the limit λ′ → 0 which exists),

Quantum (λ− p)r+1 = Classical
1

1 + (−1)rq
(λ− p)r+1.

Using the fact that pr+1 = 0 in the classical product and the quantum pk

coincides with the classical one for k ≤ r, we get

(1 + (−1)rq)(λ− p)r+1 = (λ− p)r+1 − (−1)r+1 pr+1

in small quantum product. The proposition follows. �

Solving this formally in q or locally analytically in the Kähler moduli
coordinate t with q = et, we get (with ξ := e2πi/(r+1)):

(6.2) pi =
λ

1 + (−1)rξ iq−
1

r+1
, i = 0, 1, . . . , r.

Using the standard basis 1, p, . . . , pr of H∗
C×(Pr), it is easy to see that pi’s

are the eigenvalues of the quantum multiplication operator p∗. It follows
that for k ≤ r, pk

i ’s are the eigenvalues of pk∗ = (p∗)◦k. The common
eigenvectors εi’s which simultaneously diagonalize the quantum product
pk ∗ εi = pk

i εi are known as the canonical basis. Let ti’s be the standard (flat)
coordinates dual to {1, p, . . . , pr} and ui’s be the canonical coordinates dual
to {ε0, . . . , εr}. The canonical basis {εi} is orthogonal with respect to the
Poincaré pairing since quantum multiplications are self adjoint.

In practice we may simply define ui and then εi by the relation

(6.3) dui =
r

∑
k=0

pk
i dtk.

Calculations in canonical coordinates are thus essentially formal linear alge-
bra which in our case are reduced to the roots-coefficients relation

(6.4) (−1)r pr+1 − fCr+1
1 λpr + fCr+1

2 λ2 pr−1 − · · ·+ (−1)r+1fλr+1 = 0.

Remark 6.2. It is important to point out that all the coefficients involve f
only! Thus in principle everything canonically determined by the Frobenius
structure should be invariant under flops after one more differentiation by
δh = qd/dq ≡ d/dt. This note provides a demonstration in this direction.

We start with determining ∑i ci
−1dui/24. Recall that ci

−1 is the localiza-
tion of cdim−1/cdim at the i-th fixed point [0 : · · · : 1 : · · · : 0]. Since the
Chern roots at there are given by

liλ′ + λ, · · · , liλ′ + λ︸ ︷︷ ︸
r+1

, (lj − li)λ′︸ ︷︷ ︸
r

(j 6= i),
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we see that

ci
−1 =

r + 1
liλ′ + λ

+ ∑
j 6=i

1
(lj − li)λ′

.

In the limit λ′ → 0, the trouble terms with 1/λ′ must be canceled out with
the corresponding terms in R1

ii’s via (5.7). So ci
−1 = (r + 1)/λ and

(6.5) ∑
i

ci
−1dui/24 =

r + 1
24λ ∑

i
dui =

r + 1
24λ

r

∑
k=0

(
∑

i
pk

i

)
dtk.

Since we are only interested in the non-equivariant limit λ → 0, by (6.4)
the only terms remaining are with k = 1, hence we obtain

Proposition 6.3.

∑
i

ci
−1dui/24 = (−1)r (r + 1)2

24
f dt1.

In Givental’s formulation, we will need to identify t = t1 in the sequel.
But we will keep q = et independent of t1 whenever possible.

6.2. The Poincaré pairing and the formula for ∆i := 〈εi.εi〉−1.

Lemma 6.4. The equivariant Poincaré pairing is given by

〈pk.pl〉 = C2r−d
r−d

1
λ2r+1−d

where d = k + l. It vanishes if d > r.

Proof. The localization formula for the first C× action reads as:∫
E

ω =
∫

Pr

i∗ω

(λ− p)r+1 =
∫

Pr

i∗ω

λr+1

(
1− p

λ

)−(r+1)
.

Since pk vanishes if k > r, we get by Taylor expansion that(
1− p

λ

)−(r+1)
= 1 + Cr+1

1
p
λ

+ Cr+2
2

( p
λ

)2
+ · · ·+ Cr+r

r

( p
λ

)r
.

So the Poincaré pairing is given by

〈pk.pl〉 =
∫

E
pd = Cr+r−d

r−d
1

λr+1+(r−d) = C2r−d
r−d

1
λ2r+1−d .

�

Define ai := 1 + (−1)rξ iq−
1

r+1 so pi = λ/ai. For convenience we also
denote by ci = (−1)rξ iq−

1
r+1 , so ai = 1 + ci and cj = c0ξ j = ciξ

j−i.

Proposition 6.5. The canonical basis εi’s are given by

εi =
qci

r + 1
ar

i ∏
l 6=i

(
1− al

p
λ

)
.

They are vector fields along the Kähler moduli variable q.
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Proof. Call the RHS ε i and it suffices to show that duj(ε i) = δji. By (6.3), the
effect of duj is simply the replacement of p by pj = λ/aj. Hence

duj(ε i) =
qci

r + 1

( ai

aj

)r
∏
l 6=i

(aj − al)

=
qci

r + 1

( ai

aj

)r
∏
l 6=i

(−1)r(ξ j − ξ l)q−
1

r+1

=
ξ jr+i

r + 1

( ai

aj

)r
∏
l 6=i

(1− ξ l−j) =
{

1 if j = i
0 if j 6= i .

�

Denote by Sl
k(x) the k-th elementary symmetric polynomial in xj’s with

0 ≤ j ≤ r and j 6= l. We often need some basic formulae on roots of unity
whose verifications are elementary and omitted.

Lemma 6.6. The following formulae for ξ hold:
(1) Si

k(ξ) := Si
k(ξ0, . . . , ξr) = (−1)kξki for k = 0, 1, . . . , r.

(2) ∑r
i=0 ξki = 0 for k = 1, 2, . . . , r.

Clearly the lemma applies to cj’s as well. Then

εi =
qciar

i
r + 1 ∏

j 6=i

[(
1− p

λ

)
− cj

p
λ

]
=

qciar
i

r + 1

r

∑
k=0

(−1)kSi
k(c)

( p
λ

)k(
1− p

λ

)r−k

=
qciar

i
r + 1

r

∑
k=0

ck
i

( p
λ

)k(
1− p

λ

)r−k
.

(6.6)

It is convenient to denote 〈p〉k+l = 〈pk.pl〉 = 〈pk+l〉.

Lemma 6.7. For k = 0, 1, . . . , r − 1,〈( p
λ

)k(
1− p

λ

)2r−k〉
= 0.

Proof. By Lemma 6.4, it equals〈 p
λ

〉k
− C2r−k

1

〈 p
λ

〉k+1
+ · · ·+ (−1)r−kC2r−k

r−k

〈 p
λ

〉k+(r−k)

=
1

λ2r+1

(
C2r−k

r−k − C2r−k
1 C2r−(k+1)

r−(k+1) + · · ·+ (−1)r−kC2r−k
r−k C2r−(k+(r−k))

r−(k+(r−k))

)
=

C2r−k
r

λ2r+1

(
1− Cr−k

1 + · · ·+ (−1)r−kCr−k
r−k

)
=

C2r−k
r

λ2r+1 (1− 1)r−k = 0.

�
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Using (6.6), Lemma 6.6 and Lemma 6.7, we compute

∆−1
i = 〈εi.εi〉

=
q2c2

i a2r
i

(r + 1)2 (−1)r(r + 1)cr
i

〈( p
λ

)r(
1− p

λ

)r〉
=

q2c2
i a2r

i
r + 1

cr
i

〈 p
λ

〉r
(cr+1

i = q−1)

=
qcia2r

i
(r + 1)λ2r+1 .

Lemma 6.8. As a function in q, the norm square inverse of εi equals

∆i = (r + 1)λq−1c−1
i p2r

i .

Proposition 6.9.

d log(∆0∆1 · · ·∆r) = r
1− (−1)rq
1 + (−1)rq

d log q = r(1− 2(−1)rf) d log q.

Proof. Simply take log differentiation of

∆0∆1 · · ·∆r = (r + 1)r+1λ(2r+1)(r+1)ξ−
r(r+1)

2 q−rf2r.

�

6.3. The transition matrix Ψ and the connection one form ΨdΨ−1.
The matrix Ψ is defined by

pµ = ∑
i

Ψi
µε̃i = ∑

i
〈pµ.ε̃i〉ε̃i

relative to the orthonormal frame {ε̃i :=
√

∆iεi}. From (6.3), we get the
dual relation

(6.7) pk = ∑
i

pk
i εi.

Hence by Lemma 6.8,

(6.8) Ψi
µ = pµ

i /
√

∆i =
√

qci

r + 1
λ−

1
2 pµ−r

i =
√

qci

r + 1
λµ−r− 1

2 ar−µ
i .

The inverse Ψ−1 has already been determined in Proposition 6.5 up to a
normalization factor. Indeed, (Ψ−1)µ

j is the coefficient of pµ in the expres-
sion of

√
∆jεj, hence we get

(6.9) (Ψ−1)µ
j = (−1)µ

√
qcj

r + 1
λr−µ+ 1

2 Sj
µ(a).



26 Y. IWAO, Y.-P. LEE, H.-W. LIN, AND C.-L. WANG

To proceed, notice that by Lemma 6.6

Sj
µ(a) = ∑

k1<···<kµ, ks 6=j
(1 + ck1) · · · (1 + ckµ

)

= ∑
(

1 + (ck1 + · · · ckµ
) + (ck1 ck2 + · · · ) + · · ·+ (ck1 · · · ckµ

)
)

= Cr
µ − Cr−1

µ−1cj + Cr−2
µ−2c2

j − · · ·+ (−1)µcµ
j .

We regard q = et and take differentiation in t = log q. Then

(dΨ−1)µ
j =

r
2(r + 1)

(Ψ−1)µ
j dt + (−1)µ

√
qcj

r + 1
λr−µ+ 1

2 dSj
µ(a),

and we compute

(ΨdΨ−1)i
j =

r

∑
µ=0

Ψi
µ(dΨ−1)µ

j =
rδij

2(r + 1)
dt−

q√cicj

(r + 1)2 dt

×
r

∑
µ=1

(−1)µar−µ
i

(
− Cr−1

µ−1cj + 2Cr−2
µ−2c2

j − · · ·+ (−1)µµcµ
j

)
.

The last sum equals

cj

(
ar−1

i − Cr−1
1 ar−2

i + + · · ·+ (−1)r−2Cr−1
r−2 ai + (−1)r−1

)
+ 2c2

j

(
ar−2

i − Cr−2
1 ar−3

i + · · ·+ (−1)r−3Cr−2
r−3 ai + (−1)r−2

)
+ · · ·

= cj(ai − 1)r−1 + 2c2
j (ai − 1)r−2 + · · ·+ rcr

j

= cjcr−1
i + 2c2

j cr−2
i + · · ·+ rcr

j .

If i = j, using qcr+1
j = 1 we get

(ΨdΨ−1)i
i =

r
2(r + 1)

dt− r(r + 1)
2

qcr+1
j

(r + 1)2 dt = 0.

This agrees with the well-known fact that ΨdΨ−1 is skew-symmetric.
If i 6= j, using cj = ciξ

j−i we get the connection matrix to be

(6.10) (ΨdΨ−1)i
j =

ξ
1
2 (j−i)

(r + 1)2

r

∑
µ=1

µξµ(j−i) d log q.

6.4. The first asymptotic matrix R1 and the final computation.
Now we identify the Kähler moduli coordinate t = t1. Recall the defin-

ing relation of R1:

(6.11) (ΨdΨ−1)i
j = R1

ij(dui − duj).
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The off-diagonal part of R1 is uniquely solvable from (6.11). Since the LHS
involves only d log q = dt and dui − duj = ∑r

k=0(pk
i − pk

j ) dtk, we get

(6.12) R1
ij =

(−1)rξ
1
2 (j−i)

(r + 1)2λ(ξ j − ξ i)
q

1
r+1 aiaj

r

∑
µ=1

µξµ(j−i).

Denote by

gk(ξ) :=
1

ξk − 1

r

∑
µ=1

µξµk
r

∑
µ=1

µξ−µk.

The diagonal part is determined by the flatness relation up to a constant:

(6.13) dR1
ii + ∑

j
R1

ijR
1
ji(dui − duj) = 0.

Hence by (6.10), (6.12) and writing out aiaj we get

dR1
ii = ∑

j 6=i

(−1)rq
1

r+1 aiaj

(r + 1)4λ(ξ j − ξ i)
dt

r

∑
µ=1

µξµ(j−i)
r

∑
µ=1

µξµ(i−j)

=
(−1)rξ−iq

1
r+1

(r + 1)4λ
dt

r

∑
k=1

gk(ξ) +
1

(r + 1)4λ
dt

r

∑
k=1

(ξk + 1)gk(ξ)

+
(−1)rξ iq−

1
r+1

(r + 1)4λ
dt

r

∑
k=1

ξkgk(ξ).

Lemma 6.10.
r

∑
k=1

(ξk + 1)gk(ξ) = 0.

Proof. Let f (ξ) be the expression, then f (ξ) = f (ξ−1) = − f (ξ). �

Let

Ξr :=
r

∑
k=1

gk(ξ).

By the lemma,

dR1
ii =

(−1)rΞr

(r + 1)4λ
(ξ−iq

1
r+1 − ξ iq−

1
r+1 ) dt.

So by integration in t,

R1
ii =

(−1)rΞr

(r + 1)3λ
(ξ−iq

1
r+1 + ξ iq−

1
r+1 ).
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Since we are only interested in the non-equivariant limit λ → 0, by (6.3)
the only terms remaining in ∑r

i=0 R1
ii dui is in the dt1 direction. Thus

r

∑
i=0

R1
ii dui =

Ξr

(r + 1)3λ

r

∑
i=0

(c−1
i + ci)

λ

ai
dt

=
Ξr

(r + 1)3

r

∑
i=0

(
(c−1

i + ci) ∏
j 6=i

aj

) dt
1 + (−1)rq−1 .

The sum can be computed as (using aj = 1 + cj and Lemma 6.6)
r

∑
i=0

(
(c−1

i − 1) ∏
j 6=i

aj + ∏ aj

)
=

r

∑
i=0

(
(c−1

i − 1)(1− ci + c2
i − · · ·+ (−1)rcr

i ) + (1 + (−1)rq−1)
)

= (r + 1)(−2 + 1 + (−1)rq−1),

and we get

(6.14)
r

∑
i=0

R1
ii dui =

Ξr

(r + 1)2
1− (−1)rq
1 + (−1)rq

dt.

So by (5.7), Proposition 6.3, Proposition 6.9 and (6.14),

dG =
{[

r
48

+
Ξr

2(r + 1)2

]
1− (−1)rq
1 + (−1)rq

− (−1)r(r + 1)2

24
q

1 + (−1)rq

}
dt.

Thus dG = (a + bf) dt for some a and b. In Givental’s formula a should
be ignored since dG has no constant terms. Nevertheless the constant Ξr
can be explicitly computed:

Lemma 6.11.

Ξr = − (r + 2)(r + 1)2r
24

.

We leave the interesting proof to the readers. With it, a simple substitu-
tion leads to the final result (a redundant constant −r(r + 1)/48 has been
removed):

Theorem 6.12.

dG =
[
(−1)r+1(r + 1)

24
q

1− (−1)r+1q

]
d log q.
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