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Quantum Invariance of Simple Flops

Hui-Wen Lin ∗

Abstract

This note is a supplementary reading for the joint paper [8]
with Yuan-Pin Lee and Chin-Lung Wang, entitled ”Flops, motives
and invariance of quantum rings”. In this note, I report our main
result by a conceptual description instead of giving logically strict
proofs. About the degeneration part which consists of complicated
induction procedures, I provide some examples to illustrate it. I
hope that readers can catch the key idea of our paper quickly
through this note.
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1. Motivation

If not specifically stated, the ground field is assumed to be the complex
numbers C. Two algebraic varieties are called birational if they have
an isomorphic Zariski open subset. The problem of classifying varieties
up to birational equivalence is usually the main interest of algebraic
geometers. One of the main goals in birational geometry is to find a good
geometric model that is convenient for the study of the given algebraic
variety or its function field.

For 1-dimensional case, there is a unique nonsingular projective
curve in a fixed birational equivalence class. For 2-dimensional case,
there are possibly many smooth surfaces in a fixed birational equivalence
class. At the beginning of the 20th century (c.f. [2]), Italian algebraic
geometers applied the Castelnuovo’s contraction theorem to a smooth
surface X repeatedly to obtain a minimal surface which contains no (-1)
rational curve. When κ(X) = −∞, that is Γ(X,Km

X ) = 0 for all m ∈ N,
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Enrique’s theorem says that X is birational to a ruled surface C × P1.
When κ(X) ≥ 0, that is Γ(X,Km

X ) 6= 0 for some m ∈ N, the minimal
model is unique.

In 1982, Mori proved the three dimensional generalization of Castel-
nuovo’s contraction theorem to continue the minimal model program.
The existence of minimal models has later been achieved in dimensions
three and four (c.f. [6] and the references therein). However, since min-
imal models in a fixed birational equivalence class are in general not
unique, one of the most important problem remaining is to find invari-
ants among birational minimal models.

For this purpose, C.-L. Wang raised the notion of K-equivalent va-
rieties to generalize the one of minimal models [19]. Two (Q-Gorenstein)
varieties X and X ′ are K-equivalent if there exist birational morphisms
φ : Y → X and φ′ : Y → X ′ with Y smooth

Y
φ

~~~~
~~

~~
~~ φ′

  A
AA

AA
AA

A

X X ′

such that
φ∗KX = φ′

∗
KX′ .

Two birational minimal models are automatically K-equivalent, so we
turn our attention to study K-equivalent varieties.

V. Batyrev [1] and C.-L. Wang [19] showed thatK-equivalent smooth
varieties have the same Betti numbers. However, the cohomology ring
structures are in general different. Two natural questions arise here:

1. Is there a canonical correspondence between the cohomology groups
of K-equivalent smooth varieties?

2. Is there a modified ring structure which is invariant under the K-
equivalence relation?

The following conjecture was advanced by Y. Ruan [18] and C.-
L. Wang [20] in response to these questions.

Conjecture 1 K-equivalent smooth varieties have canonically isomor-
phic quantum cohomology rings over the extended Kähler moduli spaces.

For threefolds this Conjecture was proved by A. Li and Y. Ruan
[10]. Our work is to study this conjecture in higher dimensional case.
In dimension three, by generalizing Kollár’s result [7], any K-equivalent
map can be connected by a finite sequence of algebraic surgeries called
flops. Roughly, each flop is obtained by removing one chain of rational
curves C in X with KX |C = 0 then gluing back C into the open space
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X\C in a different manner. Among them, the Atiyah P1 flop is the
simplest one.

For higher dimensions, the natural generalizations of the Atiyah
flop are called ordinary Pr flops. Ordinary flops are not only of the
simplest type, but also crucial to the general theory of minimal models
and K equivalence, so we make the choice to start with them.

Our main results in [8] answer the first question for general ordinary
Pr flops and the second question for simple Pr flops.

Theorem 2 For ordinary flops, the correspondence defined by the graph
closure gives equivalence of Chow motives and preserves the Poincaré
pairing.

While the ring structure is in general not preserved under this cor-
respondence, the quantum cohomology ring is, when the analytic con-
tinuation on the Novikov variables is allowed.

Theorem 3 The big quantum cohomology ring is invariant under simple
ordinary flops, after an analytic continuation over the extended Kähler
moduli space.

2. Cohomology correspondence

2.1. Ordinary Pr flops.

Let X be a smooth complex projective manifold and ψ : X → X̄ a
flopping contraction in the sense of minimal model theory, with ψ̄ : Z →
S the restriction map on the exceptional loci. Assume that

(i) ψ̄ equips Z with a Pr-bundle structure ψ̄ : Z = PS(F ) → S for
some rank r + 1 vector bundle F over a smooth base S,

(ii) NZ/X |Zs
∼= OPr (−1)⊕(r+1) for each ψ̄-fiber Zs, s ∈ S.

To construct the corresponding flops, we blow up X along Z to get
φ : Y → X and the exceptional divisor E is a Pr × Pr-bundle over S.
Then we can blow down E along another fiber direction to get φ′ : Y →
X ′, with exceptional loci ψ̄′ : Z ′ = PS(F ′) → S for F ′ being another rank
r + 1 vector bundle over S and also NZ′/X′ |ψ′−fiber

∼= OPr (−1)⊕(r+1).
We call f : X 99K X ′ constructed as above an ordinary Pr flop.

The various sets and maps are summarized in the following commutative
diagram.
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E = Z ×S Z ′

φ̄
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φ̄′
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� � j // Y

φ
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φ′

%%LLLLLLLLLLL

Z = PS(F )
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� � i // X

ψ ((QQQQQQQQQQQQQQQQ Z ′ = PS(F ′)

mmmm
mm

ψ̄′vvmmmmmmmm

� � i′ // X ′

ψ′yyrrrrrrrrrrrr

S
� �

j′
// X

When S consists of a point, we call f a simple Pr flop.

2.2. Equivalence of Chow motives

Instead of comparing special cohomology groups, we are devoted to the
universal cohomology theory, namely Grothendieck’s category of Chow
motives. General references of Chow motives can be found in [16].

LetM be the category of motives (over C). For each smooth variety
X, one associates an object X̂ in M. A morphism from X̂1 to X̂2 is a
correspondence U ∈ A∗(X1 ×X2) which has induced maps on T -valued
points Hom(T̂ , X̂i):

UT : A∗(T ×X1)
U◦−→A∗(T ×X2).

and the composition law is given by

V ◦ U = p13∗(p
∗
12U.p

∗
23V )

where U ∈ A∗(X1 ×X2), V ∈ A∗(X2 ×X3) and pij : X1 ×X2 ×X3 →
Xi ×Xj are the projection maps.

The basic tool in motives is Manin’s identity principle: Let U, V ∈
Hom(X̂, X̂ ′). Then U = V if and only if UT = VT for all T .

For a Pr flop f : X 99K X ′, to see that the graph closure [Γ̄f ] ∈
A∗(X × X ′) identifies the Chow motives X̂ of X and X̂ ′ of X ′, our
strategy is to apply the identity principle to show that F∗ ◦F = ∆X and
F ◦ F∗ = ∆X′ .

For any T , idT × f : T ×X 99K T ×X ′ is also an ordinary Pr flop.
Hence to prove that F∗ ◦ F = ∆X , we only need to show that F∗F = id
on A∗(X) for any ordinary Pr flop. The associated map on Chow groups
of the correspondence F is

F : A∗(X) → A∗(X ′); W 7→ p′∗(Γ̄f .p
∗W ) = φ′∗φ

∗W.

Let W̃ be the proper transform of W in Y and W ′ be the proper trans-
form of W in X ′. By the precise formulae for pull-back from the inter-
section theory ([4], Theorem 6.7) and dimensional consideration, we get
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φ∗W = W̃ and thus FW = W ′. By more delicate dimensional computa-
tion, we find that the error term of φ∗W and φ′∗W ′ contains both fibers
of φ as well as φ′ and thus F∗FW = W . By symmetry, FF∗W ′ = W ′.
Hence we have our first result:

Theorem 4 For an ordinary Pr flop f : X 99K X ′, the graph closure
F := [Γ̄f ] induces X̂ ∼= X̂ ′ via F∗ ◦ F = ∆X and F ◦ F∗ = ∆X′ .

Using again the fact that the difference of φ∗αi and φ′∗Fαi has
positive fiber dimension in both the φ direction and the φ′ direction, it
follows that F preserves the Poincaré pairing.

Corollary 5 Let f : X 99K X ′ be a Pr flop. If dimα1+dimα2 = dimX,
then

(Fα1.Fα2) = (α1.α2).

Remark 6 (i) Since every geometric cohomology theory (a graded ring
functor H∗ with Poincaré duality, Künneth formula and a cycle map
A∗ → H∗ etc.) factors through M, the theorem also holds on such a
specialized theory.

(ii) However the ring structure, i.e. the cohomology product struc-
ture, is not preserved under the correspondence F (c.f. next section).
To investigate a general product structure ∗ on H∗(X), let {Ti} be a
cohomology basis and {T i} be the dual basis with (T i.Tj) = δij. Write

Ti ∗ Tj =
∑

k
cijkT

k.

We usually require that
∫
X
Ti∗Tj = (Ti.Tj). Then the structure constants

cijk = (Ti ∗ Tj .Tk) = (Ti ∗ Tj ∗ Tk).

Hence under the Poincaré pairing, ∗ is determined by its triple product.

2.3. The defect of triple products

In this section, I am going to determine the defect of triple products
under a simple ordinary flop.

Let f : X 99K X ′ be a simple Pr flop. Let h be the hyperplane class
of Z = Pr and h′ be the hyperplane class of Z ′. Let also x = φ̄∗h =
[h× Pr], y = φ̄′∗h′ = [Pr × h′] in E = Pr × Pr. First of all, we seek out
the correspondence of classes in Z and Z ′:

Lemma 7 For classes inside Z, we have

F[hk] = (−1)r−k[h′k].

In particular, F[C] = −[C ′] with C, C ′ being the line classes in Z, Z ′

respectively.
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Next we determine the difference of two pull-backs of α and Fα
with classes α in X. The proof given below is slightly more concise than
the original one in [8] from the structural viewpoint.

Lemma 8 For a class α ∈ H2k(X) with k ≤ r, let α′ = Fα in X ′.
Then

φ′∗α′ = φ∗α+ (α.hr−k) j∗
xk − (−y)k

x+ y
.

Proof. Since the difference φ′∗α′ − φ∗α has support in E, we may
write φ′∗α′ − φ∗α = j∗λ for some λ ∈ H2(k−1)(E). Then

(φ′∗α′)|E − (φ∗α)|E = j∗j∗λ = c1(NE/Y )λ = −(x+ y)λ.

By the Lefschetz hyperplane theorem, we have

λ = − 1
x+ y

((φ′∗α′)|E − (φ∗α)|E) = − 1
x+ y

(φ̄′∗(α′|Z′)− φ̄∗(α|Z))

= − 1
x+ y

(
φ̄′∗((α′.h′r−k)h′k))− φ̄∗((α.hr−k)hk)

)
.

Since F preserves the Poincaré pairing,

(α′.h′r−k) = (Fα.F((−1)khr−k)) = (−1)k(α.hr−k).

Hence we have

λ = −(α.hr−k)
φ̄′∗(−1)kh′k − φ̄∗hk

x+ y
= (α.hr−k)

xk − (−y)k

x+ y
.

�
These formulae allow us to compare the triple products of classes

in X and X ′. Besides I would like to simplify the proof in [8] a bit.

Proposition 9 For a simple Pr-flop f : X 99K X ′, let αi ∈ H2ki(X),
with ki ≤ r, k1 + k2 + k3 = dimX = 2r + 1. Then

(Fα1.Fα2.Fα3) = (α1.α2.α3) + (−1)r(α1.h
r−k1)(α2.h

r−k2)(α3.h
r−k3).

Proof. Since for all i = 1, 2, 3, φ′∗Fαi = φ∗αi + j∗λi with

λi = (αi.hr−ki) j∗
xki − (−y)ki

x+ y

which contains both fiber directions of φ̄ and φ̄′, we have

(Fα1.Fα2.Fα3) = (φ′∗Fα1.φ
′∗Fα2.(φ∗α3 + j∗λ3)) = (φ′∗Fα1.φ

′∗Fα2.φ
∗α3)

= ((φ∗α1 + j∗λ1).(φ∗α2 + j∗λ2).φ∗α3).
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Among the resulting terms, the first term is clearly equal to (α1.α2.α3).
For those terms with two pull-backs like φ∗α1.φ

∗α3, the intersection val-
ues are zero since the remaining part contains the φ fiber. The remaining
term contributes

φ∗α3.j∗
xk1 − (−y)k1

x+ y
.j∗
xk2 − (−y)k2

x+ y

= −φ∗α3.j∗
(
(xk1 − (−y)k1)(xk2−1 + xk2−2(−y) + · · ·+ (−y)k2−1)

)
times (α1.h

r−k1)(α2.h
r−k2). The terms with non-trivial contribution

must contain yr, hence there is only one such term, namely (notice that
k1 + k2 + k3 = 2r + 1)

−(−y)k1 × xk2−1−(r−k1)(−y)r−k1 = −(−1)rxr−k3yr

and the contribution is (−1)r(α1.h
r−k1)(α2.h

r−k2)(α3.h
r−k3). �

3. Quantum corrections

The theorem above on triple product suggests that one needs to correct
the product structure by some contributions from the extremal ray. In
this section we illustrate the reason why the quantum corrections at-
tached to the extremal ray exactly remedy the defect of the ordinary
product for simple ordinary flops.

3.1. Gromov-Witten invariants

We use [3] as our general reference on moduli spaces of stable maps,
Gromov-Witten theory and quantum cohomology.

Let β ∈ NE(X), the Mori cone of numerical classes of effective one
cycles. Let Mg,n(X,β) be the moduli space of n-pointed stable maps
f : (C;x1, . . . , xn) → X from a nodal curve C with arithmetic genus
g(C) = g and with degree [f(C)] = β. Let ei : Mg,n(X,β) → X be
the evaluation morphism f 7→ f(xi). The Gromov-Witten invariant for
classes αi ∈ H∗(X), 1 ≤ i ≤ n, is given by

〈α1, . . . , αn〉g,n,β :=
∫

[M̄g,n(X,β)]virt

e∗1α1 · · · e∗nαn.

The idea of Gromov-Witten invariants is that if we want to compute
the relation of classes in X via stable maps, then we may use these evalu-
ation morphisms to pull back the classes to the moduli space M̄g,n(X,β)
and take integration. There are something subtle here. Because the
moduli space usually does not have correct dimension, Li and Tian con-
structed the virtual moduli cycle [M̄g,n(X,β)]virt to have the expected
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dimension [12]. The virtual (expected) dimension of M̄g,n(X,β) is given
by

(c1(X).β) + dimX(1− g) + (3g − 3) + n.

In our case, ψ : X → X̄ is a simple Pr flopping contraction with
Z = Pr ⊂ X and NZ/X ∼= OPr (−1)⊕(r+1). If we deal with the case
of β = d` with ` = [C], the extremal ray contracted by ψ, then since
(KX .`) = 0, for g = 0, the virtual dimension of M̄0,n(X, d`) equals
2r + 1 + (n− 3).

In practice, we may represent [M̄0,n(X, d`)]virt by the Euler class
of the obstruction bundle

Ud = R1ρ∗e
∗
n+1NZ/X ,

where ρ : M̄0,n+1(Pr, d) → M̄0,n(Pr, d) is the forgetting morphism. Then∫
[M̄0,n(X,d`)]virt

e∗1α1 · · · e∗nαn =
∫
M̄0,n(Pr,d)

e∗1(α1|Pr ) · · · e∗n(αn|Pr ).e(Ud).

3.2. Quantum product

Let T =
∑
tiTi with {Ti} a cohomology basis and ti being formal vari-

ables. Let {T i} be the dual basis with (T i.Tj) = δij . The (genus zero)
pre-potential combines all n-point functions together:

Φ(T ) =
∑∞

n=0

∑
β∈NE(X)

1
n!
〈Tn〉β q

β ,

where
〈
Tn

〉
β

= 〈T, . . . , T 〉0,n,β . The big quantum product is defined by

Ti ∗ Tj =
∑

k
ΦijkT k

where

Φijk =
∂3Φ

∂ti∂tj∂tk
=

∑∞

n=0

∑
β∈NE(X)

1
n!
〈Ti, Tj , Tk, Tn〉β q

β .

The n = 0 part Φijk(0) gives the small quantum product, that is,

Ti ∗ Tj =
∑

k

∑
β∈NE(X)

〈Ti, Tj , Tk〉β q
βT k.

Let f : X 99K X ′ be a simple Pr flop. Since X and X ′ have
the same Poincaré pairing under F, in order to compare their quantum
products we only need to compare their n-point functions. For three-
point functions, write

〈α1, α2, α3〉 :=
∑

β∈NE(X)
〈α1, α2, α3〉0,3,β q

β

= (α1.α2.α3) +
∑

d∈N
〈α1, α2, α3〉d` q

d` +
∑

β 6∈Z`
〈α1, α2, α3〉β q

β .
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The difference (Fα1.Fα2.Fα3)−(α1.α2.α3) has already been determined.
The next step is to compute the middle term, namely quantum correc-
tions coming from the extremal ray ` = [C]. We will see that the three-
point functions attached to the extremal ray exactly remedy the defect
caused by the classical product. In the end, we will achieve that the re-
maining terms are invariant under a simple flop in the sense of analytic
continuation over the extended Kähler moduli space.

3.3. GW invariants attached to extremal rays

We derive a precise formula for this case.

Theorem 10 For all αi ∈ H2li(X) with 1 ≤ li ≤ r and
∑n
i=1 li =

2r + 1 + (n − 3), there are recursively determined universal constants
Nl1,...,ln , which are independent of d, such that for n ≤ 3, N∗ ≡ 1 and

〈α1, . . . , αn〉0,n,d = (−1)(d−1)(r+1)Nl1,...,lnd
n−3(α1.h

r−l1) · · · (αn.hr−ln).

Equivalently,∫
M̄0,n(Pr,d)

e∗1h
l1 · · · e∗nhln .e(Ud) = (−1)(d−1)(r+1)Nl1,...,lnd

n−3.

The proof consists of two main steps. The first step is to use the
theory on Euler data [13] to compute certain twisted Gromov-Witten
invariants of concave bundle spaces. Originally it was used to compute
invariants without marked points (i.e. no cohomology insertions), but
it works only for critical bundles and does not apply to our case. Yet,
through a closer study, the theory of Euler data does lead to the deter-
mination of one-point invariants with descendents (i.e. ψ classes).

The second step is to use the divisor relation on the genus zero
stable map moduli spaces [9] to reduce the multiple marked points in-
variants to the ones with fewer marked points. I will now sketch both
steps.

For step 1, we need two moduli spaces other than the original stable
map moduli:

Md = M̄0,0(P1 × Pr, (1, d)) π //

ϕ

��

M̄0,0(Pr, d)

Nd ∼= P(r+1)(d+1)−1

Here Md is the graph space and Nd is the linear sigma model. A
point in Nd is denoted by (zis)i=0,...r; s=0,...,d, which corresponds to the
map

(w0 : w1) 7→ (
∑

z0sw
s
0w

d−s
1 : · · · :

∑
zrsw

s
0w

d−s
1 ).
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The torus T = (C×)r+1 acts on Pr with weight λ0, . . . , λr and C×
acts on P1 by t(w0, w1) = (tw0, w1) with weight α, 0. The equivariant
cohomology of Nd is given by

H∗
G(Nd) = Q[α, λ0, . . . , λr][κ]/

∏
i,s

(κ− (λi + sα)),

where κ is the equivariant hyperplane class. Let

Qd = ϕ∗π
∗eT (Ud) ∈ HG(Nd),

Then Lian, Liu and Yau [13] show that

Qd = (−1)(d−1)(r+1)
∏d−1

m=1
(κ−mα)r+1.

For Id : Pr = N0 → Nd, (a0, · · · , ar) 7→ (a0w
d
1 , · · · , arwd1), the

Atiyah-Bott localization theorem implies that

I∗dQd =
∏r

j=0

∏d

m=1
(h− λj −mα).e1∗

(
eT (Ud)

α(α+ ψ1)

)
,

where ψ1 = cG1 (L1) and Li is the i-th cotangent line bundle. Recall〈
τk1(h

l1), · · · , τkn
(hln)

〉
d

:=
∫
M̄0,n(Pr,d)

(∏n

i=1
ψki
i e

∗
i h
li
)
.eT (Ud).

Then we combine the above two formulas of Qd to obtain:

Theorem 11 (One point invariants with ψ class) For l+k = 2r−
1, 〈

τk(hl)
〉
d

= (−1)(d−1)(r+1) (−1)k−(r+1)

dk+2
Ck+1
r .

Now we review step 2. Recall the divisor relation of Lee and Pand-
haripande [9]: For L ∈ Pic(X) and i 6= j,

e∗iL ∩ [M̄0,n(X,β)]virt

= (e∗jL+ (β.L)ψj) ∩ [M̄0,n(X,β)]virt −
∑

β1+β2=β

(β1.L)[Di,β1|j,β2 ]
virt

in A∗(M̄0,n(X,β)). That is, we may switch marked points if we can
handle boundary divisors and ψ classes. In fact we can do that and
obtain:

Theorem 12 (Two point invariants) The only non-trivial two point
invariant (without ψ classes) is given by

〈hr, hr〉d = (−1)(d−1)(r+1) 1
d
.
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Recall for the equivalent form we need to show: For all d ∈ N,∑n
i=1 li = 2r + 1 + (n− 3),

〈hl1 , . . . , hln〉d = (−1)(d−1)(r+1)Nl1,...,lnd
n−3.

For n ≥ 3 and for any 3 markings i, j and k, ψj = [Dik|j ]virt, the divisor
relation can be re-written as

e∗iL = e∗jL+
∑

β1+β2=β

((β2.L)[Dik,β1|j,β2 ]
virt − (β1.L)[Di,β1|jk,β2 ]

virt).

This leads to the

Theorem 13 (Final Reduction) The following reduction formula holds
for n ≥ 3:

〈hl1+1, hl2 , hl3 , . . .〉n,d
= 〈hl1 , hl2+1, hl3 , . . .〉n,d

+ d〈hl1+l3 , hl2 , . . .〉n−1,d − d〈hl1 , hl2+l3 , . . .〉n−1,d.

The desired formula then follows by induction.

3.4. Analytic continuations along extremal rays

Theorem 3.1, together with some algebraic manipulations, implies that
the quantum corrections attached to the extremal ray exactly remedy the
defect caused by the classical product and the big quantum products re-
stricted to exceptional curve classes are invariant under simple ordinary
flops. There are Novikov variables qβ involved in these transformations:

F(qβ) = qFβ .

To put the result into perspective, we interpret the change of vari-
ables in terms of analytic continuation over the extended complexified
Kähler moduli space.

The quantum cohomology is parameterized by the complexified
Kähler class ω = B + iH with qβ = exp(2πi(ω.β)), where B ∈ H1,1

R (X)
and H ∈ KX , the Kähler cone of X. For a simple Pr flop X 99K X ′, F

identifies H1,1, A1 and the Poincaré pairing (−,−) on X and X ′. Then
by applying Theorem 3.1, 〈α1, α2, α3〉X restricted to Z` converges in the
region

H1,1
+ = {ω | (H.`) > 0} ⊃ H1,1

R × iKX
and the corresponding geometric series equals

(α1.α2.α3) + (α1.h
r−l1)(α2.h

r−l2)(α3.h
r−l3)

e2πi(ω.`)

1 + (−1)re2πi(ω.`)
.
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This is a well-defined analytic function of ω on the whole H1,1, which
defines the analytic continuation of 〈α1, α2, α3〉X from H1,1

R × iKX to
H1,1.

Similarly, 〈Fα1,Fα2,Fα3〉X
′
restricted to Z`′ converges in

{ω | (H.`′) > 0} = {ω | (H.`) < 0} = H1,1
− ⊃ H1,1

R × iKX′ .

After the change of variable replacing `′ by −` and the identification of
(Fαi.h′(r−li)) with (−1)li(αi.hr−li), it equals

(Fα1.Fα2.Fα3)− (α1.h
r−l1)(α2.h

r−l2)(α3.h
r−l3)

e−2πi(ω.`)

1 + (−1)re−2πi(ω.`)

which is the analytic continuation of the previous one from H1,1
+ to H1,1

− .
This illustrates that the three-point functions attached to the ex-

tremal ray exactly remedy the defect caused by the classical product.
For invariance of big quantum product restricted to exceptional

curve classes, we need to compare n = 3+k point invariants with k ≥ 1.
By Theorem 3.1 again, we get

〈α1, . . . , αn〉 = Nl1,...,ln(α1.h
r−l1) · · · (αn.hr−ln)

(
q`

d

dq`

)k (−1)r+1

1− (−1)r+1q`
.

Similarly, since (−1)
P
li = (−1)k+1, 〈Fα1, . . . ,Fαn〉 equals

(−1)k+1Nl1,...,ln(α1.h
r−l1) · · · (αn.hr−ln)

(
q`

′ d

dq`′

)k (−1)r+1

1− (−1)r+1q`′
.

Taking into account of

q−`
d

dq−`
= −q` d

dq`
and

1
1− (−1)r+1q−`

= 1− 1
1− (−1)r+1q`

we get 〈Fα1, . . . ,Fαn〉 = 〈α1, . . . , αn〉 for all k ≥ 1 (n ≥ 4).
It is conjectured that the total series ΦXijk, converges for B ∈ KX ,

at least for B large enough, hence the large radius limit goes back to
the classical cubic product. The Novikov variables {qβ}β∈NE(X) are
introduced to avoid the convergence issue.

Since KX ∩ KX′ = ∅ for non-isomorphic K-equivalent models, the
collection of Kähler cones among them form a chamber structure. The
conjectural canonical isomorphism

F : H∗(X) ∼= H∗(X ′)

assigns to each model X a coordinate system H∗(X) of the fixed H∗

and F serves as the (linear) transition function. The conjecture asserts
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that ΦX
′

ijk can be analytically continued from KX′ to KX and agrees with
ΦXijk. Equivalently, Φijk is well-defined on KX ∪ KX′ which verifies the
functional equation

FΦijk(ω, T ) ∼= Φijk(ω,FT ).

4. Degeneration analysis

To achieve the invariance of big quantum product, non-extremal curve
classes need to be analyzed.

4.1. Cohomology reduction to local models

The main purpose of this section is to reduce cohomology classes in
general X to cohomology classes in local models.

Given a Pr flop f : X 99K X ′, the deformations to the normal cone
on X is the blowing-up Φ : W → X × A1 along Z × {0}. Wt

∼= X
for all t 6= 0 and W0 = Y1 ∪ Y2 with ji : Yi ↪→ W0 the inclusion maps
for i = 1, 2. Here Y1 = Y with φ = Φ|Y : Y → X is the blowing-up
along Z and Y2 = Ẽ = PZ(NZ/X ⊕ O) where p = Φ|Ẽ : Ẽ → Z ⊂ X

is the compactified normal bundle. Y ∩ Ẽ = E = PZ(NZ/X) is the φ-
exceptional divisor which consists of the infinity part of Ẽ. Similarly we
have Φ′ : W ′ → X ′ × A1 and W ′

0 = Y ′ ∪ Ẽ′. By definition of ordinary
flops, Y = Y ′ and E = E′. In fact Ẽ ∼= Ẽ′ too, but they are glued into
Y in a different manner (up to a twist), thus W0 6∼= W ′

0.
Since the family W → A1 comes from a trivial family, all coho-

mology classes α ∈ H∗(X,Z)⊕n have global liftings and the restriction
α(t) on Wt is defined for all t. The class α(0) can be represented by
(j∗1α(0), j∗2α(0)) = (α1, α2) with αi ∈ A∗(Yi) such that

ι∗1α1 = ι∗2α2 and φ∗α1 + p∗α2 = α.

Such representatives are not unique. The flexibility on different choices
is of key importance. Actually for e being a class in E, if α(0) = (α1, α2)
then it can also be represented by

α(0) = (α1 − ι1∗e, α2 + ι2∗e).

We start with the representative (φ∗α, p∗(α|Z)) for α(0) and the
representative (φ′∗Fα, p′∗(Fα|Z′)) for Fα(0). Then we can modify the
choices φ∗α and φ′

∗
Fα by adding suitable classes in E to make them

equal. This is possible since

φ∗α− φ′∗Fα ∈ ι1∗H∗(E).
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Finally, we can show that for representatives α(0) = (α1, α2) and Fα(0) =
(α′1, α

′
2),

if α1 = α′1 then Fα2 = α′2.

Here we must mention that the ordinary flop f induces an ordinary flop

f̃ : Ẽ 99K Ẽ′

on the local model, so the graph closure F of f̃ also gives a correspon-
dence of H∗(Ẽ) and H∗(Ẽ′).

4.2. Degeneration formula

The degeneration formula expresses the absolute invariants ofX in terms
of the relative invariants of the two smooth pairs (Y1, E) and (Y2, E)
stated in §4.1.

We start with the formulation given by J. Li [11]. It reads:

〈α〉Xg,k,β =
∑

η
Cη

[
〈j∗1α(0)〉(Y1,E)

Γ1
. 〈j∗2α(0)〉(Y2,E)

Γ2

]
0
.

Here for given genus g, number of marked points k and β ∈ NE(X),
η = (Γ1,Γ2, I) with I = (IL, IR) runs through all equivalence classes of
admissible triples. Namely, each Γi is an admissible graph without edges
which consists of vertexes VΓi (connected components), legs LΓi (marked
points), roots RΓi

(gluing points), attaching map LΓi

∐
RΓi

→ VΓi
,

genus function gi : VΓi
→ N ∪ {0}, degree function βi : VΓi

→ NE(Yi),
ordering of marked points Ii : LΓi

→ {1, · · · , ki := |LΓi
|} and contact

order µi : RΓi → N.
The graph Γi is pre-connected in the sense that either vi := |VΓi | =

1 or RΓi
→ VΓi

is surjective. The two admissible graphs Γ1 and Γ2

glues together along roots via IR : RΓ1
∼= RΓ2 with µ1 = µ2 under the

identification. Two vertexes in the new graph Γ is assigned an edge
connecting them whenever they are related via roots. These data satisfy
ceratin compatibility identities. Namely k1 + k2 = k, the total ordering
IL : LΓ1

∐
LΓ2 → {1, · · · , k} preserves the ordering of I1 and I2 and

g − 1 =
∑
v∈VΓ1

(g1(v)− 1) +
∑
v∈VΓ2

(g2(v)− 1) + ρ, where ρ = |RΓi
| is

the number of roots.
The crucial condition is that Γ is connected. In particular, ρ = 0

if and only if that one of the Γi is empty. Also the total degree βi :=∑
v∈VΓi

βi(v) ∈ NE(Yi) satisfies the splitting relation

φ∗β1 + p∗β2 = β.

The constants Cη = m(µ)/|Aut η|, wherem(µ) =
∏
µi and Aut η =

{σ ∈ Sρ | ησ = η }. For each η there is a gluing morphism for moduli
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spaces of relative stable maps under prescribed constraints:

Φη : M̄Γ1(Y1, E)×Eρ M̄Γ2(Y2, E) → M̄g,k,β(W/A1),

which is finite étale of degree |Aut η| onto its image M̄η(W0).
Each moduli space has perfect obstruction theory. The virtual mod-

uli cycle of M̄g,k,β(W/A1) is flat over A1 and its zero fiber is made
up by fiber products of those virtual moduli cycles of M̄Γ1(Y1, E) and
M̄Γ2(Y2, E) via Φη. The relative invariants (i = 1, 2) are

〈j∗i α(0)〉(Yi,E)
Γi

≡ qi∗
(
ev∗i j

∗
i α(0) ∩ [MΓi

(Yi, E)]virt
)
∈ H∗(Eρ,Q),

where evi : MΓi(Yi, E) → Y ki
i and qi : MΓi(Yi, E) → Eρ are evaluation

maps on marked points and gluing points respectively. This formulation
will be used in dealing with examples at the end of this section.

On the other hand, the following (equivalent) numerical form orig-
inally obtained by A. Li and Y. Ruan [10] will be used in our proof:

〈α〉Xg,n,β =
∑
I

∑
η∈Ωβ

Cη

〈
α1

∣∣∣ eI , µ〉•(Y1,E)

Γ1

〈
α2

∣∣∣ eI , µ〉•(Y2,E)

Γ2

where {ei} is a basis of H∗(E) with {ei} its dual basis and {eI} forms a
basis of H∗(Eρ) with dual basis {eI} where |I| = ρ, eI = ei1 ⊗ · · · ⊗ eiρ .

In this formulation, Γ = (g, n, β, ρ, µ) with µ = (µ1, . . . , µρ) ∈ Nρ
a partition of the intersection number (β.E) = |µ| :=

∑ρ
i=1 µi. For

A ∈ H∗(Y )⊗n and ε ∈ H∗(E)⊗ρ, the relative invariant of stable maps
with topological type Γ (i.e. with contact order µi in E at the i-th contact
point) is

〈A | ε, µ〉(Y,E)
Γ :=

∫
[MΓ(Y,E)]virt

e∗YA ∪ e∗Eε

where eY : MΓ(Y,E) → Y n, eE : MΓ(Y,E) → Eρ are evaluation maps
on marked points and contact points respectively.

If Γ =
∐
π Γπ, the relative invariants (with disconnected domain

curves)
〈A | ε, µ〉•(Y,E)

Γ :=
∏

π
〈A | ε, µ〉(Y,E)

Γπ

are defined to be the product of the connected components.
An admissible triples η = (Γ1,Γ2, Iρ) consists of (possibly discon-

nected) topological types

Γi =
∐|Γi|

π=1
Γπi

with the same contact order partition µ under the identification Iρ of
contact points. The gluing Γ1 +Iρ

Γ2 has type (g, n, β) and is connected.
We denote by Ω the equivalence class of all admissible triples, also by
Ωβ and Ωµ the subset with fixed degree β and fixed contact order µ
respectively.
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4.3. Reduction to relative local models

First notice that A1(Ẽ) = ι2∗A1(E) since both are projective bundles
over Z. We then have

φ∗β = β1 + β2

by regarding β2 as a class in E ⊂ Y .
For the n-point function 〈α〉X =

∑
β∈NE(X)〈α〉Xβ qβ we have

〈α〉X =
∑

β∈NE(X)

∑
η∈Ωβ

∑
I

Cη〈α1 | eI , µ〉•(Y1,E)
Γ1

〈α2 | eI , µ〉•(Y2,E)
Γ2

qφ
∗β

=
∑
µ

∑
I

∑
η∈Ωµ

Cη

(
〈α1 | eI , µ〉•(Y1,E)

Γ1
qβ1

) (
〈α2 | eI , µ〉•(Y2,E)

Γ2
qβ2

)
.

To simplify the generating series, we consider also absolute invari-
ants 〈α〉•X with possibly disconnected domain curves as before. Then
by comparing the order of automorphisms,

〈α〉•X =
∑
µ

m(µ)
∑
I

〈α1 | eI , µ〉•(Y1,E)〈α2 | eI , µ〉•(Y2,E)

where the generating series with possibly disconnected domain curves
are

〈A | ε, µ〉•(Ẽ,E) :=
∑

Γ;µΓ=µ

1
|Aut Γ|

〈A | ε, µ〉•(Ẽ,E)
Γ qβ

Γ
.

To compare F〈α〉•X and 〈Fα〉•X′
, by the cohomology reduction

we may assume that α1 = α′1 and α′2 = Fα2. By comparing with the
similar expression for 〈Fα〉•X′

, the relative terms for (Y,E) are identical.
It remains to compare

〈α2 | eI , µ〉•(Ẽ,E) and 〈Fα2 | eI , µ〉•(Ẽ
′,E).

We further split the sum into connected invariants.

〈A | ε, µ〉•(Ẽ,E) =
∑

P∈P (µ)

∏
π∈P

∑
Γπ

1
|Autµπ|

〈Aπ | επ, µπ〉(Ẽ,E)
Γπ qβ

Γπ

where Γπ is a connected part with contact order µπ induced from µ and
P (µ) is the set of all partitions P : µ =

∑
π∈P µ

π.
Notice that only βΓπ

can vary in the sum over Γπ and we may
denote the generating series of connected relative invariants as sum over
β2 ∈ NE(Ẽ). This reduces the problem to 〈Aπ | επ, µπ〉. We summarize
the result as follows.

Proposition 14 To prove F〈α〉X ∼= 〈Fα〉X′
, it is enough to show that

F〈A | ε, µ〉 ∼= 〈FA | ε, µ〉.
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4.4. Relative invariants to absolute invariants

Inspired by a method of Maulik and Pandharipande [17], we further
reduce the relative local cases to the absolute local cases with at most
descendent insertions along E.

Proposition 15 For simple ordinary flops Ẽ 99K Ẽ′, to prove

F〈A | ε, µ〉 ∼= 〈FA | ε, µ〉

for any A and (ε, µ), it is enough to show that

F〈A, τk1ε1, . . . , τkρ
ερ〉 ∼= 〈FA, τk1ε1, . . . , τkρ

ερ〉

for any possible insertions A ∈ H∗(Ẽ)⊕n, kj ∈ N∪{0} and εj ∈ H∗(E).

We apply the deformation to the normal cone for Z ↪→ Ẽ to get
W → A1. Then W0 = Y1 ∪ Y2 with Y1

∼= PE(OE(−1,−1) ⊕ O) a P1

bundle and Y2
∼= Ẽ. Denote E0 = E = Y1 ∩ Y2 and E∞ ∼= E the infinity

divisor of Y1.
Given a relative invariant 〈α1, . . . , αn | ε, µ〉 on (Ẽ, E), the idea is to

analyze the degeneration formula for 〈α1, . . . , αn, τµ1−1ε1, . . . , τµρ−1ερ〉Ẽ
and to use induction on the triple (|µ|, n, ρ) in the lexicographical order
with ρ in the reverse order. Since ρ ≤ |µ|, it is clear that there are
only finitely many triples of lower order. The proposition holds for those
cases by the induction hypothesis.

For β = d1` + d2γ ∈ NE(Ẽ), (c1(Ẽ).β) = d2(c1(Ẽ).γ), hence by
the virtual dimension counting d2 is uniquely determined for a given
generating series with fixed cohomology insertions.

Note that NE(Y1) = Z+δ+Z+γ+Z+γ̄ with γ, δ the two line classes
in E and γ̄ the fiber class of Y1 and NE(Y2) = Z+` ⊕ Z+γ. A curve
class β = d1`+ d2γ ∈ NE(Ẽ) is split into β1 = aδ + bγ + cγ̄ ∈ NE(Y1)
and β2 = d`+ eγ ∈ NE(Y2) which satisfy

a, b, c, d, e ≥ 0, a+ d = d1, c = d2

and the total contact order condition

e = (β2.E)Y2 = (β1.E)Y1 = −a− b+ c.

In particular, e ≤ d2 with e = d2 if and only if that a = b = 0. In this
case β1 = d2γ̄ and the invariants on (Y1, E) are fiber class integrals.

Since εi|Z = 0, one may choose the cohomology representative
εi(0) = (ι1∗ εi, 0). For a general cohomology insertion α ∈ H∗(Ẽ), the
representative can be chosen to be α(0) = (a, α) for some a.
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As before the relative invariants on (Y1, E) can be regarded as con-
stants under F. Let (ε1, . . . , ερ) = eI = (ei1 , . . . , eiρ). Then

〈α1, . . . , αn, τµ1−1ei1 , . . . , τµρ−1eiρ〉•Ẽ =
∑
µ′

m(µ′)×

∑
I′

〈τµ1−1ei1 , . . . , τµρ−1eiρ | eI
′
, µ′〉•(Y1,E)〈α1, . . . , αn | eI′ , µ′〉(Ẽ,E) +R,

where R denotes the remaining terms which either have total contact
order smaller than d2 or have number of insertions fewer than n on the
(Ẽ, E) side or the invariants on (Ẽ, E) are disconnected ones.

The crucial point is that we can show that the highest order term
in the sum consists of the single term

C(µ)〈α1, . . . , αn | eI , µ〉(Ẽ,E)

where C(µ) 6= 0. Then the induction hypothesis for R together with the
absolute cases with at most descendent insertions along E give us the
desired relative case.

4.5. Examples

I would like to illustrate the degeneration formula by treating a slightly
more general case which includes simple (r, r′) flips. Consider (ψ, ψ̄) :
(X,Z) → (X̄, S) a log-extremal contraction as before. ψ is an ordinary
(r, r′) flipping contraction if

(i) Z = PS(F ) for some rank r + 1 vector bundle F over S,
(ii) NZ/X |Zs

∼= OPr (−1)⊕(r′+1) for each ψ̄-fiber Zs, s ∈ S.

The construction of the (r, r′) flip f : X 99K X ′ is the same as the Pr
flop case.

We will consider simple (r, r′) flips with KX nef. If β = d` then the
invariant depends only on Z, α|Z and NZ/X . In particular 〈α〉Xg,n,d` =

〈p∗(α|Z)〉Ẽg,n,d`. For other curve classes, we will see that the invariants
degenerate cleanly. For odd dimensional classes they must contribute on
Y1 since H∗(Y2) has only algebraic classes, for the purpose of comparing
GW invariants we thus consider only αi ∈ H2li(X). Because of the
divisor axiom, we require also that li ≥ 2 for all i.

The following proposition works for more general setup:

Proposition 16 Let φ : Y → X be the blow-up of X along a smooth
center Z of dimension r and codimension r′ + 1 with KX nef and r ≤
r′ + 1. Then

(1) Cη 6= 0 only if g1 = 0, v1 = µ = ρ 6= 0 and µ1 ≡ 1, v2 = 1.
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(2) If r ≤ 2 then

〈α〉Xg,n,β = 〈α̃〉Yg,n,φ∗β +
∑

η, ρη 6=0

Cη 〈−〉(Y,E)
Γ1

. 〈p∗(α|Z)〉(Ẽ,E)
Γ2

.

The sum over η is trivial for r = 1. For r = 2 (so li = 2 for all
i), the relative invariants are zero dimensional on (Y,E) and top
dimensional on (Ẽ, E).

(3) Let f : X 99K X ′ be a simple (2, r′) flip with KX nef (so r′ ≥ 2).
Let β 6∈ Z`. If β2 = λ`+µγ ∈ NE(Ẽ) = R+`⊕R+γ with γ the fiber
line class of Ẽ → Z, then the only possible values for (g, n, λ, r′)
with non-trivial sum are

(0, 0, 2, 4), (0, 0, 3, 3), (0, 1, 2, 3), (0, 2, 1, r′), (0, 2, λ, 2) and (1, 0, λ, 2).

Proof. For η = (Γ1,Γ2, I) associated to the topological type (g, n, β),
let d, dΓ1 and dΓ2 be the virtual dimension (without marked points) of
stable morphisms into X and relative stable morphisms into (Y1, E),
(Y2, E) of corresponding admissible graph respectively. We have l1 +
· · ·+ ln = d+ n. Moreover, since dimE = r+ r′, the gluing structure of
virtual moduli cycles implies that d = dΓ1 + dΓ2 − (r + r′)ρ.

We assume that the summand given by η is not zero. Since β 6= d`
and A1(Y2) is spanned by ` and a fiber line γ, we see that β1 6= 0
and Γ1 6= ∅. If ρ = 0 then Γ2 = ∅ by the connectedness of graph,
and this gives the first term of the formula. So we assume that ρ 6= 0.
By reordering, we may assume that in the degeneration expression αi
appears in the Y1 part for 1 ≤ i ≤ m and αi appears in the Y2 part for
m + 1 ≤ i ≤ n. By transversality, the corresponding relative invariant
is non-trivial only if 2 ≤ li ≤ r for m + 1 ≤ i ≤ n. If r = 1 this simply
means that all αi’s appear in Y1.

For each v ∈ VΓ1 , the virtual dimension dΓ1(v) is given by

c1(Y ).β1(v)+(r+r′+1)(1−g1(v))+(3g1(v)−3)+
∑

w∈RΓ1 , w 7→v

(1−µ1(w)).

Denote by ρv, µv and nv the number of roots, the total contact order
and the number of marked points along v respectively.

¿From c1(Y ) = −KY = −φ∗KX − r′E and (E.β1(v))Y1 = µv, we
get

dΓ1(v) = −(KY .β1(v)) + (1− g1(v))(r + r′ − 2) + ρv − µv

= −(KX .φ∗β1(v))− (r′ + 1)µv + (r + r′ − 2) + ρv − g1(v)(r + r′ − 2).

The relative invariant on Y1 along v is non-trivial only if

2nv ≤
∑

w∈LΓ1 , w 7→v

lI1(w) ≤ dΓ1(v) + nv.
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In particular, we must have dΓ1(v) ≥ nv ≥ 0.
We claim that ρv = µv = 1 for all v. Indeed if µv ≥ 2 then the

nefness of KX implies dΓ1(v) ≤ −(µv−ρv)−(µv−2)r′+(r−r′−2) ≤ −1
which leads to a contradiction. Thus µv = 1, which implies that ρv = 1
and

dΓ1(v) ≤ −(KX .φ∗β1(v)) + (r − 2)− (r + r′ − 2)g1(v).

Since KX is nef, for any r it is clear that g1(v) ≥ 1 leads to dΓ1(v) <
0, hence g1(v) = 0. By the connectedness of Γ1+Γ2, we must have v2 = 1,
g2 = g and the contact order for each root is one. This proves (1).

For r = 1, the above formula leads to dΓ1 < 0. This contradicts to
m ≥ 0, so the case ρ 6= 0 does not occur.

If r = 2 and Cη 6= 0 then (KX .φ∗β1(v)) = 0 too. Moreover, dΓ1 = 0,
m = 0 and li = 2 for all 1 ≤ i ≤ n. In this case 2n = d+ n⇒ d = n. So

dΓ2 = n+ (r′ + 2)ρ and (dΓ2 + n)−
∑n

i=1
li = (r′ + 2)ρ = dimEρ.

That is, the relative invariants are of the said dimensions. This proves
(2).

For (3), it remains to classify the cases with nontrivial sum over η.
In the case of (2, r′) flips it gives c1(Y2) = (r′ + 2)E − (r′ − 2)p∗h.

Since (E.β2)Y2 = µ and (h̃.β2)Y2 = λ for β2 = λ`+ µγ, we get

dΓ2 = c1(Ẽ).β2 + (r′ + 3)(1− g) + 3g − 3
= (r′ + 2)µ− (r′ − 2)λ+ r′(1− g).

This holds if and only if that (dΓ2 +n)−2n = (r′+2)µ, that is n+(r′−
2)λ = r′(1− g). For any given (g, n, β), this equation for λ has at most
one solution if r′ 6= 2. If r′ > 2 then since λ > 0 we must have g = 0. So
λ = (r′ − n)/(r′ − 2) and then n ≤ 2. If r′ = 2 then λ is free.

¿From this, it is straightforward to write down all such (g, n, λ, r′)
as listed and the proof is completed. �

Remark 17 Case (1) of the proposition is exactly Proposition 4.13 in
[8] (where the proof was left to the readers). In fact it applies to situa-
tions other than simple flips. For example it applies to (r − s, r′) flips
over an s dimensional base S. If r = r′ + 1, it applies to Pr′ flops over
an one dimensional base.

5. GW invariants on local models

The basic strategy here is similar to the proof of Theorem 3.1. We
start with one point invariants on toric varieties and then use induction
together with reconstruction procedure to achieve our final result.



Quantum Invariance of Simple Flops 21

5.1. One-point functions on local models

Following Givental, we define a generating function of one point invari-
ants with descendents

JX := JX(q, z−1) :=
∑

β∈NE(X)

qβJX(β, z−1) ∈ H∗(X)[[z−1]][[q]]

:=
∑

β∈NE(X)

qβeX1∗

(
1

z(z − ψ)
∩ [M0,1(X,β)]virt

)
.

The toric data for the local model X = PPr (O(−1)⊕(r+1) ⊕ O) allows
us to apply the known results of [5] [14] directly. For an effective curve
class β = d1`+ d2γ,

JX(β, z−1) = Pβ :=

0∏
m=−∞

(ξ − h+mz)r+1

d1∏
m=1

(h+mz)r+1
d2−d1∏
m=−∞

(ξ − h+mz)r+1
d2∏
m=1

(ξ +mz)

without change of variables (“mirror transformation”) due to the unique-
ness theorem and the fact that Pβ = O(1/z2) in 1/z power series expan-
sion.

The cohomology (Chow ring) is given by

H∗(X) = A∗(X) = Z[h, ξ]/(hr+1, (ξ − h)r+1ξ)

where h is the pull-back of the hyperplane class in Z and ξ is the infinity
divisor of X. We have that F` = −`′, Fγ = `′ + γ′, Fξ = ξ′ and
Fh = ξ′ − h′.

The key observation on Pβ is that if d2 − d1 < 0 then the middle
factor in the denominator of Pβ goes to the numerator instead which has
a factor (ξ − h)r+1. Thus it vanishes after multiplication by ξ.

For d2 ≥ d1, since JX =
∑
β∈NE(X) q

βPβ , we can get by direct
computation

F(JXξ.α) = JX′ξ′.Fα

and hence the important functional equation

F 〈τkξ.α〉X = 〈τkξ′.Fα〉
X′

.

This together with the functional equation for extremal rays form the two
generators of the general functional equations discussed in next section.

Note that the virtual dimension of an n-point invariants in degree
β = d1` + d2γ is given by Dn,β = (r + 2)d2 + 2r + n − 2, so for a
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fixed set of cohomology insertions there could be at most one d2 sup-
porting non-trivial invariants and for the corresponding n-point function
the summation over d2 is unnecessary. Here we find that 〈τkξα〉 is a fi-
nite sum and F 〈τkξ.α〉 = 〈τkξ′.Fα〉 holds without the need of analytic
continuation.

5.2. The functional equations in general

The compatibility of functional equations under the reconstruction pro-
cedure is proved with help from operators δH ’s which generalize q`d/dq`,
the one used in the proof for invariance of big quantum product restricted
to exceptional curve classes.

For a power series f =
∑
β aβ q

β and a divisor H, we define the
operator

δHf :=
∑
β

(H.β)aβ qβ =
(
(H.`)q`

∂

∂q`
+ (H.γ)qγ

∂

∂qγ

)
f.

We can formalizes the argument in the proof of §3.4 as follows.
The differential operator δH is F equivariant. That is,

F ◦ δH = δFH ◦ F.

In particular, if F〈α〉 ∼= 〈Fα〉 then FδH〈α〉 ∼= δFH〈Fα〉 too.
Write β = d1`+d2γ. If d2 = 0, the whole setting on Gromov-Witten

invariants goes back to quantum corrections attached to the extremal ray
Z`. For general d2, the following theorem is our final result.

Theorem 18 Let 〈α〉 = 〈α1, . . . , αn〉 with αi ∈ H∗(X) ∪ τ•H∗(E). If
d2 6= 0 then

F〈α〉 ∼= 〈Fα〉.

One basic fact worth mentioning once more is that by the virtual
dimension count, each set of insertions can support at most one d2. Let
d2 ≥ 1 and n ≥ 2. We may and will make one more assumption that ξ
appears in some αi. If not, then there will be no descendent insertions
and by the divisor axiom, we may write

〈α1, . . . , αn〉 = 〈α1, . . . , αn, ξ〉/d2.

Also, by reordering we may assume that αn = τsξa, s ≥ 0. Write
α1 = τkh

lξj . The induction procedure is to move divisors in α1 into αn
in the order of ψ, h and ξ. That is we use induction on the following
five numbers in the alphabetical order:

(d2, n, k, l, j).
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Step1. For ψ we use equation ψ1 = −ψn + [D1|n]virt. If k ≥ 1 then
j 6= 0 and we get

〈τkhlξj , . . . , τsξa〉 = −〈τk−1h
lξj , . . . , τs+1ξa〉

+
∑
i

〈τk−1h
lξj , . . . , Ti〉〈T i, . . . , τsξa〉.

For each i, if one of dL2 and dR2 is zero then since both terms contain ξ
classes the splitting term must vanish. So we may assume that dL2 < d2

and dR2 < d2 and these terms are done by the induction hypothesis. By
performing this procedure to α1, . . . , αn−1 we may assume that the only
descendent insertion is αn.
Step 2. For h, if l ≥ 2 or l = 1 but j 6= 0 we use the divisor relation to
get

〈hlξj , . . . , τsξa〉 = 〈hl−1ξj , . . . , τsξah〉+ δh〈hl−1ξj , . . . , τs+1ξa〉

−
∑
i

δh〈hl−1ξj , . . . , Ti〉〈T i, . . . , τsξa〉.

The only case for the splitting term to have one factor to have the
same d2 and n is of the form

δh〈hl−1ξj , Ti〉〈T i, α2, . . . , αn−1, τsξa〉,

where the two-point invariant has dL2 = 0. But then l − 1 < r forces it
to vanish.

By induction we are left with the case α1 = h. The divisor axiom
implies that

〈h, . . . , τsξa〉 = δh〈. . . , τsξa〉+ 〈. . . , τs−1ξah〉.

Since both terms have one less marked points, they are done by induc-
tion.
Step 3. For ξ, the argument is entirely similar. For j ≥ 2, the divisor
relation says that

〈ξj , . . . , τsξa〉 = 〈ξj−1, . . . , τsξ
2a〉+ δξ〈ξj−1, . . . , τs+1ξa〉

−
∑
i

δξ〈ξj−1, . . . , Ti〉〈T i, . . . , τsξa〉.

We then have dL2 < d2 and dR2 < d2 as before. If j = 1 we get

〈ξ, . . . , τsξa〉 = δξ〈. . . , τsξa〉+ 〈. . . , τs−1ξ
2a〉

and both terms have fewer marked points. The result follows.
Practically the above inductive procedure leads to explicit deter-

mination of GW invariants, though the computations are somewhat te-
dious. In the end, I would like to give an example which consists of all
precise computations and guides readers through the difficulties.
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5.3. A typical example

Descendent invariants for simple P2 flop with d2 = 1 and n = 3. The
virtual dimension is D3,β = (2 + 2)× 1 + 2× 2 + 3− 2 = 9.
1. To determine 〈h2, h2, τ4ξ〉:

Recall the divisor relation

e∗iL = e∗jL+
∑

β1+β2=β

((β2.L)[Dik,β1|j,β2 ]
virt − (β1.L)[Di,β1|jk,β2 ]

virt).

For simplicity, we write 〈h2, h2, τ4ξ〉d1,d2 instead of 〈h2, h2, τ4ξ〉d1`+d2γ .
Then

〈h2, h2, τ4ξ〉d1,1 =
∑
d

(d1 − d)〈h, τ4ξ, Ti〉d,1〈T i, h2〉d1−d,0

− d〈h, Ti〉d,0〈T i, h2, τ4ξ〉d1−d,1.

Note that for the first term any addition to the power of e∗2h
2 leads to

zero and for d2 = 0, since ξ|Z = 0 we get trivial invariant if one of the
insertions involves ξ. Now we fix a cohomology basis {Ti} and its dual
basis {T i} as follows.

{(Ti, T i)} = {(X,h2ξ3), (ξ, h2ξ2), (ξ2, h2ξ), (ξ3, h2), (h, hξ3 − 3h2ξ2),

(hξ, hξ2 − 3h2ξ), (hξ3, h), (h2, ξ3 + 3h2ξ − 3hξ2),

(h2ξ, ξ2 + 3h2 − 3hξ), (h2ξ2, ξ − 3h), (h2ξ3, X)}

Here h3 = 0 and (ξ − h)3ξ = 0.
If d1 − d = 0, then the only possible non-trivial term is

〈h, hξ3〉0,0〈h, h2, τ4ξ〉0,1.

However in this case, the coefficient d = 0.
For d1 − d > 0, the only non-trivial contribution for 〈T i, h2〉d1−d,0

is
〈h2, h2〉d1−d,0 = (−1)(d1−d−1)(2+1) 1

d1 − d

and the corresponding term for 〈h, τ4ξ, Ti〉d,1 is

〈h, τ4ξ, ξ3 + 3h2ξ − 3hξ2〉d,1 = d〈τ4ξ, ξ3 + 3h2ξ − 3hξ2〉d,1
+ 〈τ3ξh, ξ3 + 3h2ξ − 3hξ2〉d,1

by divisor axiom. Each term of the right side is determined as follows.

〈ξ3, τ4ξ〉d,1 = 〈ξ2, τ4ξ2〉d,1 + 〈ξ2, τ5ξ〉d,1 −
∑

〈ξ2, Ti〉d,0〈T i, τ4ξ〉0,1
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and 〈ξ2, Ti〉d,0 = 0, so 〈ξ3, τ4ξ〉d,1 = 〈ξ2, τ4ξ2〉d,1 + 〈ξ2, τ5ξ〉d,1. Similarly

〈ξ3, τ4ξ〉d,1 = 〈ξ, τ4ξ3〉d,1 + 〈ξ, τ5ξ2〉d,1 + 〈ξ, τ5ξ2〉d,1 + 〈ξ, τ6ξ〉d,1
= 〈τ4ξ3〉d,1 + 〈τ3ξ4〉d,1 + 2〈τ5ξ2〉d,1 + 2〈τ4ξ3〉d,1

+ 〈τ6ξ〉d,1 + 〈τ5ξ2〉d,1

In §5.1, we have introduced a recipe to compute one-point descendent
invariants. On one hand, (only non-trivial for d2 ≥ d1)

JX(β, z−1) ξ.α =
ξα

d1∏
m=1

(h+mz)r+1
d2−d1∏
m=1

(ξ − h+mz)r+1
d2∏
m=1

(ξ +mz)

.

In this case,

JX(d`+ γ, z−1) ξ.α =
ξα

(ξ + z)
d∏

m=1

(h+mz)r+1
1−d∏
m=1

(ξ − h+mz)r+1

.

On the other hand, by the definition of JX(d`+ γ, z−1),

JX(d`+ γ, z−1)ξ.α =
∑
k≥0

〈τkξα〉d,1
zk+2

.

For d = 0, the expansion of JX(d`+ γ, z−1) is

1
z4

+
−4ξ + 3h

z5
+

10ξ2 − 15ξh+ 6h2

z6
+
−20ξ3 + 45ξ2h− 36ξh2 + 10h3

z7

+
35ξ4 − 105ξ3h+ 126ξ2h2 − 70ξh3 + 15h4

z8
+O(1/z9).

By comparing the coefficients of
1
z5

, we obtain

〈τ3ξ4〉0,1 = (−4ξ + 3h)ξ4 = (−4ξ + 3h)(3ξ3h− 3ξ2h2)

= −12(3ξ3h− 3ξ2h2)h+ 12 + 9 = −15.

Similarly we can determine all involved one point invariants and get

〈ξ3, τ4ξ〉0,1 = 〈τ4ξ3〉0,1 + 〈τ3ξ4〉0,1 + 2〈τ5ξ2〉0,1 + 2〈τ4ξ3〉0,1
+ 〈τ6ξ〉0,1 + 〈τ5ξ2〉0,1

= 21 + (−15) + 2× (−21) + 2× 21 + 21− 21 = 6.
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For d = 1, the expansion of JX(d`+ γ, z−1) is

1
z4

+
−3h− ξ

z5
+

6h2 + (3h+ ξ)ξ
z6

+
−10h3 + (−6h2 − 3ξh− ξ2)ξ

z7

+
15h4 + (10h3 + 6ξh2 + 3ξ2h+ ξ3)ξ

z8
+O(1/z9).

By comparing the coefficients of
1
z8

, we obtain

〈τ6ξ〉1,1 = (6ξh2 + 3ξ2h+ ξ3)ξ2 = 6 + 9 + 6 = 21.

Similarly we can determine all involved one point invariants and get

〈ξ3, τ4ξ〉1,1 = 〈τ4ξ3〉1,1 + 〈τ3ξ4〉1,1 + 2〈τ5ξ2〉1,1 + 2〈τ4ξ3〉1,1
+ 〈τ6ξ〉1,1 + 〈τ5ξ2〉1,1

= 21 + (−15) + 2× (−21) + 2× 21 + 21− 21 = 6.

Repeating the same procedure, we get

〈h2ξ, τ4ξ〉0,1 = 6, 〈h2ξ, τ4ξ〉1,1 = 0;

〈hξ2, τ4ξ〉0,1 = 6, 〈hξ2, τ4ξ〉1,1 = 0;

〈ξ3, τ3ξh〉0,1 = 6, 〈ξ3, τ3ξh〉1,1 = −3;

〈h2ξ, τ3ξh〉0,1 = 0, 〈h2ξ, τ3ξh〉1,1 = 0;

〈hξ2, τ3ξh〉0,1 = 3, 〈hξ2, τ3ξh〉1,1 = 0.

and thus

〈h, τ4ξ, ξ3 + 3h2ξ − 3hξ2〉0,1 = 6− 9 = −3,

〈h, τ4ξ, ξ3 + 3h2ξ − 3hξ2〉1,1 = 6− 3 = 3.

Consequently,

〈h2, h2, τ4ξ〉d1,1 =
∑
d

(d1 − d)〈h, τ4ξ, Ti〉d,1〈T i, h2〉d1−d,0

= d1 × (−3)× (−1)3(d1−1)

d1
+ (d1 − 1)× 3× (−1)3(d1−1−1)

d1 − 1
= (−1)d1 × 6 (for d1 > 1)

and equals −3 for d1 = 1. Hence let q1 = q` and q2 = qγ . We have

〈h2, h2, τ4ξ〉 = −3q1q2 +
∑
d1>1

(−1)d1 × 6qd11 q2

= 3q1q2 − 6
q1q2

1 + q1
.
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2. Applying the same recipe as above, we can obtain

〈ξ2, ξ2, τ4ξ〉 = 9q2 + 9q1q2,

〈hξ, hξ, τ4ξ〉 = 〈h2, ξ2, τ4ξ〉 = 3q2,

〈hξ, h2, τ4ξ〉 = 0, 〈hξ, ξ2, τ4ξ〉 = 6q2 + 3q1q2.

3. To show F〈h2, h2, τ4ξ〉 ∼= 〈Fh2,Fh2,Fτ4ξ〉.
On one hand,

F〈h2, h2, τ4ξ〉 = 3q′−1
1 (q′1q

′
2)− 6

q′−1
1 (q′1q

′
2)

1 + q′−1
1

= 3q′2 −
6q′1q

′
2

1 + q′1
.

Here we use the correspondence F` = −`′ and Fγ = `′ + γ′.
On the other hand,

〈Fh2,Fh2,Fτ4ξ〉 = 〈(ξ′ − h′)2, (ξ′ − h′)2, τ4ξ′〉
= 〈ξ′2, ξ′2, τ4ξ′〉+ 4〈ξ′h′, ξ′h′, τ4ξ′〉+ 〈h′2, h′2, τ4ξ′〉

− 4〈ξ′h′, h′2, τ4ξ′〉 − 4〈ξ′h′, ξ′2, τ4ξ′〉+ 2〈ξ′2, h′2, τ4ξ′〉

=
(
9 + 9q′1 + 12 + 3q′1 − 6

q′1
1 + q′1

− 24− 12q′1 + 6
)
q′2

=
(
3− 6

q′1
1 + q′1

)
q′2 = 3q′2 −

6q′1q
′
2

1 + q′1
.

Here we use the correspondence Fξ = ξ′ and Fh = ξ′− h′. Similarly, we
have the simpler verifications on the other five cases.
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