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Quantum invariance under P1 flops of type (k + 2, k)
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Abstract.

In the joint paper [8] with Y.-P. Lee and C.-L. Wang, we have
shown that the big quantum ring is invariant under Pr flops of splitting
type, after an analytic continuation over the extended Kähler moduli
space. It is a generalization of our previous work for the case of simple
Pr flops [7]. In this note, I would like to outline the results and con-
centrate mainly on the detailed study of a simple type, called P1 flops
of type (k + 2, k).

§1. Introduction

To study topological problems arising from the non-uniqueness of
minimal models in higher dimensional birational geometry, C.-L. Wang
in 1998 raised the notion of K-equivalent varieties to generalize bira-
tional minimal models [14]. Two (Q-Gorenstein) varieties X and X ′

are K-equivalent if there exist birational morphisms φ : Y → X and
φ′ : Y → X ′ with Y smooth

Y
φ

����
��

��
�� φ′

���
��

��
��

�

X X ′

such that
φ∗KX = φ′∗KX′ .

Two birational minimal models are automatically K-equivalent, so we
turn our attention to study K-equivalent varieties.

V. Batyrev [1] and C.-L. Wang [14] showed that K-equivalent smooth
varieties have the same Betti numbers. However, the cohomology ring
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structures are in general different. Y. Ruan [13] and C.-L. Wang [15]
posed the following conjecture to modify this drawback.

Conjecture 1.1. K-equivalent smooth varieties have canonically
isomorphic quantum cohomology rings over the extended Kähler moduli
spaces.

For threefolds, this Conjecture was proved by A. Li and Y. Ruan
[11]. For higher dimensional case, we achieved the following result in [7].

Theorem 1.1. The big quantum cohomology ring is invariant under
simple ordinary flops, after an analytic continuation over the extended
Kähler moduli space.

Ordinary flops are the simplest type of flops and also crucial to the
general theory of minimal models and K-equivalence, so it is natural to
work on them first. We recall the definition and construction as follows.

Let X be a smooth complex projective manifold and ψ : X → X̄ a
flopping contraction in the sense of minimal model theory, with ψ̄ : Z →
S the restriction map on the exceptional loci. Assume that

(i) ψ̄ equips Z with a Pr-bundle structure ψ̄ : Z = PS(F ) → S for
some rank r + 1 vector bundle F over a smooth base S,

(ii) NZ/X |Zs
∼= OPr(−1)⊕(r+1) for each ψ̄-fiber Zs, s ∈ S.

Then there is another rank r + 1 vector bundle F ′ over S such that

NZ/X
∼= OPS(F )(−1) ⊗ ψ̄∗F ′.

We may blow up X along Z to get φ : Y → X . The exceptional divisor

E = PZ(NZ/X) ∼= PZ(ψ̄∗F ′) = ψ̄∗PS(F ′) = PS(F ) ×S PS(F ′)

is a Pr × Pr-bundle over S. We may then blow down E along another
fiber direction φ′ : Y → X ′ to get another contraction ψ′ : X ′ →
X̄ , with exceptional loci ψ̄′ : Z ′ = PS(F ′) → S and NZ′/X′ |ψ′-fiber

∼=
OPr(−1)⊕(r+1).

We call f : X ��� X ′ constructed as above an ordinary Pr flop. The
various sets and maps are summarized in the following commutative
diagram.
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E = Z ×S Z ′

φ̄
��������������

������

φ̄′

�������
�

� � j �� Y

φ
������������������

φ′

�������������

Z = PS(F )

ψ̄ ����������������
� � i �� X

ψ ������������������ Z ′ = PS(F ′)

����
��

ψ̄′����������

� � i′ �� X ′.

ψ′��												

S
� �

j′
�� X

When S consists of a point, we call f a simple Pr flop.
So far, we have completely solved the problem on the invariance

of Gromov–Witten theory under simple Pr flops, including the higher
genus case [9]. To be precise, the canonical correspondence is given by
the graph closure F = [Γ̄f ]. The crucial idea behind is to interpret F-
invariance in terms of analytic continuations in Gromov–Witten theory.

Analogous to the procedures used in our previous work [7], for a
Pr flop over general base, we have determined the defect formula for
3-point functions, shown that the 3-point extremal quantum corrections
exactly remedy the defect, and gotten functional equations for n ≥ 3
point extremal functions. For the invariance of big quantum product
on non-extremal curve classes, we still used degeneration to the nor-
mal cone [4] together with the degeneration formula [10] to perform
cohomology reduction to local models, which reduces the problem to the
double projective bundles. After that, we applied further reduction to
quasi-linearity via reconstruction and WDVV equation and finally pro-
vided a proof of quasi-linearity for split flops i.e. F =

⊕r
i=0 Li and

F ′ =
⊕r

i=0 L′
i where Li, L′

i are line bundles over S.
To complete the last step, we need to apply generalized mirror trans-

formations to relate I functions with J functions [8], [2], [3]. The proce-
dure is somehow quite complicated, so it is worthwhile to provide simple
examples which only involve classical mirror transformations so that the
proof in [8] becomes more transparent.

The purpose of this note is to give an introduction to [8] and to
give a complete proof of the last step for a series of examples, namely
ordinary P1 flops over base S = P1 with F = O ⊕ O(−(k + 2)) and
F ′ = O ⊕ O(k) for any k ∈ Z:

Theorem 1.2. Let f : X ��� X ′ be an ordinary P1 flop of type
(P1, O⊕O(−(k+2)), O⊕O(k)). The canonical correspondence F induces
an isomorphism of big quantum rings QH(X) and QH(X ′) in the sense
of analytic continuations over the extended Kähler moduli space.
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We refer to [7] for the basic definition of quantum cohomology and
the notion of analytic continuations over the Kähler moduli. In Section
2 and Section 3 we give a survey of part of the results in [8] without
proofs.

The detailed proof of Theorem 1.2 is given in Section 4.

§2. Functional equations for n-point extremal functions

2.1. Defect of the classical product
In [7], for a general Pr flop, we have established the canonical cor-

respondence between their cohomology groups.

Theorem 2.1. For an ordinary Pr flop f : X ��� X ′, the graph
closure F := [Γ̄f ] induces X̂ ∼= X̂ ′ via F∗ ◦ F = ΔX and F ◦ F∗ = ΔX′ .
Moreover, F preserves the Poincaré pairing, that is, if dimα1 +dimα2 =
dim X , then

(Fα1.Fα2) = (α1.α2).

In practice, the correspondence F associates a map on Chow groups:

F : A∗(X) → A∗(X ′); W 	→ p′∗(Γ̄f .p∗W ) = φ′
∗φ

∗W.

Let h = c1(OPS(F )(1)) and h′ = c1(OPS(F ′)(1)). For a simple Pr flop we
have the basic transformation formula

F(i∗hk) = (−1)r−ki′∗h
′k.

However, for a general Pr flop this does not hold anymore. We may
show, by induction on k, that for all k ∈ N,

F(i∗hk) = (−1)r−ki′∗(a0h
′k + a1h

′k−1 + · · · + ak) ∈ A∗(Z ′)

where a0 = 1 and ak ∈ A∗(S) are determined by the recursive relations:

c′k = ak − c1ak−1 + c2ak−2 + · · · + (−1)kck.

Here, we abuse notations to denote ci(F ), ψ̄∗ci(F ) and ψ̄′∗ci(F ) by the
same symbol ci. Similarly we denote ci(F ′), ψ̄∗ci(F ′) and ψ̄′∗ci(F ′) by
c′i. We use this abbreviation for any class in A∗(S).

The similar formula turns out to be achieved by replacing hk, h′k

with Hk, H ′
k.

Proposition 2.1. For all positive integers k ≤ r,

F(i∗Hk) = (−1)r−ki′∗H
′
k

where Hk = hk + c1h
k−1 + · · · + ck and H ′

k = h′k + c′1h
′k−1 + · · · + c′k.
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Here, the discovery of Hk, H ′
k is crucial to the whole calculation

with a general base S. The most important fact is that we can express
the dual basis of the canonical basis {tki hj} in A∗(Z) in terms of Hk.

Lemma 2.1. The basis {tk−j
i hj}j≤min{k,r} of Ak(Z) has its dual

basis {t̂k−j
i Hr−j}j≤min{k,r} in Ar+s−k(Z) where {tki } is a basis of Ak(S)

and {t̂ki } in As−k(S) is its dual basis where s = dimS.

Through direct computation, we succeed in writing down the defect
of the triple products of classes in X and X ′:

Theorem 2.2. Let αi ∈ Aki(X) for i = 1, 2, 3 with k1 + k2 + k3 =
dimX = s + 2r + 1. Then

(Fα1.Fα2.Fα3)X′
= (α1.α2.α3)X + (−1)r×∑

(α1.t̂
k1−j1
i1

Hr−j1)
X(α2.t̂

k2−j2
i2

Hr−j2)
X(α3.t̂

k3−j3
i3

Hr−j3)
X

× (s̃j1+j2+j3−2r−1t
k1−j1
i1

tk2−j2
i2

tk3−j3
i3

)S ,

where the sum is over all possible i1, i2, i3 and j1, j2, j3 subject to con-
straint: 1 ≤ jp ≤ min{r, kp} for p = 1, 2, 3 and j1 + j2 + j3 ≥ 2r + 1.
Here

s̃i := si(F + F ′∗)

is the i-th Segre class of F + F ′∗.

2.2. Quantum corrections attached to the extremal ray
Let αi ∈ Aki(X), i = 1, . . . , n, with

n∑
i=1

ki = 2r + 1 + s + (n − 3).

Since

αi|Z =
∑
si

∑
ji≤min{ki,r}

(αi.t̂
ki−ji
si

Hr−ji)t
ki−ji
si

hji ,

we compute

〈α1, . . . , αn〉X0,n,d�

=
∑
�s,�j

∫
M0,n(Z,d�)

n∏
i=1

(
(αi.t̂

ki−ji
si

Hr−ji) e∗i (ψ̄
∗tki−ji

si
.hji)

)
.e(R1ft∗e

∗
n+1N)

=
∑
�s,�j

n∏
i=1

(αi.t̂
ki−ji
si

Hr−ji)

[
n∏

i=1

tki−ji
si

.Ψn∗

( n∏
i=1

e∗i h
ji .e(R1ft∗e

∗
n+1N)

)]
S

,
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with the sum over all �s = (s1. . . . , sn) and admissible �j = (j1, . . . , jn).
By the fundamental class axiom, we must have ji ≥ 1 for all i.

Here we make use of

[M0,n(X, d�)]virt = [M0,n(Z, d�)] ∩ e(R1ft∗e
∗
n+1N)

and the fiber bundle diagram over S

M0,n+1(Z, d�)
en+1

		��������������

ft





N = NZ/X




M0,n(Pr, d�) �� M0,n(Z, d�)

ei ��

Ψn





Z

ψ̄
������������������

S

as well as the fact that classes in S are constants among bundle mor-
phisms (by the projection formula applies to Ψn = ψ̄ ◦ ei for each i).

We must have
∑

(ki − ji) ≤ s to get nontrivial invariants. That is,

n∑
i=1

ji ≥ 2r + 1 + n − 3.

If the equality holds, then
∏n

i=1 tki−ji
si

is a zero dimensional cycle
in S and the invariant readily reduces to the corresponding one on any
fiber, namely the simple case, which is completely determined in [7]:

(tk1−j1
s1

· · · tkn−jn
sn

)S〈hj1 , . . . , hjn〉simple
0,n,d� = (

∏
tsi)

SN�j dn−3.

Generally, we can show that for a Pr flop with n = 3, when
∑3

i=1 ji =
2r+1+μ (μ ≤ r−1), there is a degree μ cohomology valued polynomial
WF,F ′

μ (d) =
∑μ

i=0 wμ,i(F, F ′) di with coefficients wμ,i ∈ Aμ(S)⊗Q such
that for any class t ∈ Ar−μ(S),

〈hj1 , hj2 , thj3〉d = (−1)(d−1)(r+1)(WF,F ′

μ (d).t)S .

For example, when μ = 1,

WF,F ′

1 (d) = (−c1 + c′1) − d(c1 + c′1) = s̃1 − d(c1(F + F ′)).

This implies that the 3-point extremal quantum corrections for X and
X ′ remedy the defect of classical cup product for the cases μ = 1.
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To see this, it is convenient to consider the basic rational function

f(q) :=
q

1 − (−1)r+1q
=

∑
d≥1

(−1)(d−1)(r+1)qd,

which is the 3-point extremal correction for the case μ = 0. It is clear
that

f(q) + f(q−1) = (−1)r.

Here, the class thj is regarded as α|Z for some α ∈ H∗(X), so
if j ≤ r, we have the familiar formula Fα|Z′ = (−1)jth′j and thus
F(thj) = (−1)jth′j for j ≤ r. Hence the geometric series on X

∑
d≥1

(−1)(d−1)(r+1)(s̃1.t)S qd� = (s̃1.t)Sf(q�)

together with its counterpart on X ′ exactly correct the classical term via

(s̃1.t)Sf(q�) − (−1)j1+j2+j3(s̃′1.t)
Sf(q�′)

= (s̃1.t)S(f(q�) + f(q−�)) = (−1)r(s̃1.t)S .

The new feature for μ = 1 is that we also have contributions involv-
ing the differential operator δh = q� ∂/∂q�, namely

−(c1(F + F ′).t)S
∑
d≥1

(−1)(d−1)(r+1)dqd� = −(c1(F + F ′).t)S δhf(q�).

Since δi
hf(q�) = (−δh′)i((−1)r − f(q�′)) = (−1)i+1δi

h′f(q�′), this higher
order term agrees with one on the X ′ side, as required.

For general μ, the 3-point extremal correction is given by

〈hj1 , hj2 , thj3〉+ :=
∑
d≥1

〈hj1 , hj2 , thj3〉d qd� = (WF,F ′

μ .t)S(δh)f(q�).

By using the divisor relation [6]

e∗i h = e∗jh +
∑

d1+d2=d

(d2[Dik,d1|j,d2 ]
virt − d1[Di,d1|jk,d2 ]

virt),

any invariants 〈t1hj1 , t2h
j2 , t3h

j3〉d with 1 ≤ ji ≤ r and
∑

ji = (2r +
1)+μ may be inductively switched into 〈hμ+1, hr, thr〉d with t = t1t2t3 ∈
As−μ(S). Define the extremal corrections Wμ := 〈hμ+1, hr, hr〉/S

+ =
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WF,F ′

μ (δh)f(q�). They turn out to be determined by the recursive for-
mula:

Wμ = sμf +
μ∑

j=1

Wμ−j

(
(−1)rcjf − (−1)r+jc′jf − cj

)
.

We can show that if W ′
μ is defined on X ′ side similarly, then they satisfy

the functional equation

Wμ − (−1)μ+1W ′
μ = (−1)rs̃μ

for 0 ≤ μ ≤ r − 1. That is, the classical defect is corrected, so the
following theorem follows.

Theorem 2.3. For any ordinary flop over a smooth base, we have

F〈α1, α2, α3〉X ∼= 〈Fα1, Fα2, Fα3〉X
′

modulo non-extremal curve classes.

By more complicated analysis, the above theorem extends to all
n ≥ 4. Namely

F〈α1, · · · , αn〉X ∼= 〈Fα1, · · · , Fαn〉X
′

modulo non-extremal curve classes.

§3. Degeneration analysis

Our next task is to compare the Gromov–Witten invariants of X and
X ′ for all genera and for curve classes other than the flopped curve. As in
[7], we use the degeneration formula [11], [10], [5] to reduce the problem
to local models. This has been achieved for simple ordinary flops in [7]
for genus zero invariants. In this section we extend the argument to the
general case.

3.1. Absolute invariants to relative local invariants
Given a Pr flop f : X ��� X ′, the deformations to the normal cone

on X is the blowing-up Φ : W → X × A1 along Z × {0}. Wt
∼= X

for all t �= 0 and W0 = Y1 ∪ Y2 with ji : Yi ↪→ W0 the inclusion maps
for i = 1, 2. Here Y1 = Y with φ = Φ|Y : Y → X is the blowing-up
along Z and Y2 = Ẽ = PZ(NZ/X ⊕ O) where p = Φ|Ẽ : Ẽ → Z ⊂ X

is the compactified normal bundle. Y ∩ Ẽ = E = PZ(NZ/X) is the φ-
exceptional divisor which consists of the infinity part of Ẽ. Similarly we
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have Φ′ : W ′ → X ′ × A1 and W ′
0 = Y ′ ∪ Ẽ′. By definition of ordinary

flops, Y = Y ′ and E = E′. In fact Ẽ ∼= Ẽ′ too, but they are glued into
Y in a different manner (up to a twist), thus W0 �∼= W ′

0.
Since the family W → A1 comes from a trivial family, all coho-

mology classes α ∈ H∗(X, Z)⊕n have global liftings and the restriction
α(t) on Wt is defined for all t. The class α(0) can be represented by
(j∗1α(0), j∗2α(0)) = (α1, α2) with αi ∈ A∗(Yi) such that

ι∗1α1 = ι∗2α2 and φ∗α1 + p∗α2 = α.

Such representatives are not unique. The flexibility on different choices
is of key importance. Actually for e being a class in E, if α(0) = (α1, α2)
then it can also be represented by

α(0) = (α1 − ι1∗e, α2 + ι2∗e).

We start with the representative (φ∗α, p∗(α|Z)) for α(0) and the
representative (φ′∗Fα, p′

∗(Fα|Z′ )) for Fα(0). Then we can modify the
choices φ∗α and φ′∗Fα by adding suitable classes in E to make them
equal. This is possible since

φ∗α − φ′∗Fα ∈ ι1∗H
∗(E).

Finally, we can show that for representatives α(0) = (α1, α2) and
Fα(0) = (α′

1, α
′
2),

if α1 = α′
1 then Fα2 = α′

2.

Here we must mention that the ordinary flop f induces an ordinary flop

f̃ : Ẽ ��� Ẽ′

on the local model, so the graph closure F of f̃ also gives a correspon-
dence of H∗(Ẽ) and H∗(Ẽ′).

The degeneration formula expresses the absolute invariants of X
in terms of the relative invariants of the two smooth pairs (Y1, E) and
(Y2, E):

〈α〉Xg,n,β =
∑

I

∑
η∈Ωβ

Cη

〈
j∗1α(0)

∣∣∣ eI , μ
〉•(Y1,E)

Γ1

〈
j∗2α(0)

∣∣∣ eI , μ
〉•(Y2,E)

Γ2

where {ei} is a basis of H∗(E) with {ei} its dual basis and {eI} forms
a basis of H∗(Eρ) with dual basis {eI}, |I| = ρ, eI = ei1 ⊗ · · · ⊗ eiρ .
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Here η = (Γ1, Γ2, Iρ) is an admissible triple which consists of (pos-
sibly disconnected) topological types

Γi =
∐|Γi|

π=1
Γπ

i

with the same partition μ of contact order under the identification Iρ of
contact points. The gluing Γ1 +Iρ Γ2 has type (g, n, β) and is connected.
In particular, ρ = 0 if and only if that one of the Γi is empty. The
total genus gi, total number of marked points ni and the total degree
βi ∈ NE(Yi) satisfy the splitting relations

g − 1 =
∑|Γ1|

π=1
(g1(π) − 1) +

∑|Γ2|

π=1
(g2(π) − 1) + ρ

= g1 + g2 − |Γ1| − |Γ2| + ρ,

n = n1 + n2,

β = φ∗β1 + p∗β2.

(The first one is the arithmetic genus relation for nodal curves.)
The constants Cη = m(μ)/|Aut η|, where m(μ) =

∏
μi and Aut η =

{ σ ∈ Sρ | ησ = η }. We denote by Ω the set of equivalence classes of
all admissible triples; by Ωβ and Ωμ the subset with fixed degree β and
fixed contact order μ respectively.

Define the generating series for genus g (connected) invariants

〈A | ε, μ〉(Ẽ,E)
g :=

∑
β2∈NE(Ẽ)

1
|Autμ| 〈A | ε, μ〉(Ẽ,E)

g,β2
qβ2

and the similar one with possibly disconnected domain curves

〈A | ε, μ〉•(Ẽ,E) :=
∑

Γ; μΓ=μ

1
|Aut Γ| 〈A | ε, μ〉•(Ẽ,E)

Γ qβΓ
κgΓ−|Γ|.

For connected invariants of genus g we assign the κ-weight κg−1,
while for disconnected ones we simply assign the product weights.

To compare F〈α〉•X and 〈Fα〉•X′
, by the cohomology reduction we

may assume that α1 = α′
1 and α′

2 = Fα2, so the relative terms for (Y, E)
are identical. It remains to compare

〈α2 | ε, μ〉•(Ẽ,E) and 〈Fα2 | ε, μ〉•(Ẽ′,E).

Proposition 3.1. To prove F〈α〉Xg ∼= 〈Fα〉X′

g for all α up to genus
g ≤ g0, it is enough to show that

F〈A | ε, μ〉(Ẽ,E)
g

∼= 〈FA | ε, μ〉(Ẽ
′,E)

g
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for all A, ε, μ and g ≤ g0.

3.2. Relative local back to absolute local
Now let X = Ẽ. We shall further reduce the relative cases to the

absolute cases with at most descendent insertions along E. This has
been done in [7] for genus zero invariants under simple flops. Here we
extend the argument to ordinary flops over any smooth base S and to
all genera.

The local model

p̄ := ψ̄ ◦ p : Ẽ
p→Z

ψ̄→S

as well as the flop f : Ẽ ��� Ẽ′ are all over S, with each fiber isomorphic
to the simple case. Thus the map on numerical one cycles

p̄∗ : N1(Ẽ) → N1(S)

has kernel spanned by the p-fiber line class γ and ψ̄-fiber line class �,
which is the flopping log-extremal ray. Notice that for general S the
structure of NE(Z) could be complicated and NE(Ẽ) is in general larger
than i∗NE(Z)⊕ Z+γ. For β = βZ + d2(β)γ ∈ NE(Ẽ), it could happen
that βZ is not effective or d2(β) is non-positive. At least the following
is true:

Lemma 3.1. The correspondence F is compatible with N1(S).
Namely

N1(Ẽ)
F ��

d2⊕p̄∗ ������������
N1(Ẽ′)

d′
2⊕p̄′

∗��										

Z ⊕ N1(S)

is commutative.

This leads to the following key observation, which applies to both
absolute and relative invariants:

Proposition 3.2. Functional equation of a generating series 〈A〉
over Mori cone on local models f : Ẽ ��� Ẽ′ is equivalent to functional
equations of its various subseries (fiber series) 〈A〉d2,βS labelled by Z ⊕
NE(S). The fiber series is a sum over the affine ray β ∈ (d2γ + ψ̄∗βS +
Z�) ∩ NE(Ẽ).

Given insertions A = (α1, . . . , αn) ∈ H∗(Ẽ)⊕n and weighted par-
tition (ε, μ) = {(ε1, μ1), . . . , (ερ, μρ)}, the genus g relative invariant
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〈A | ε, μ〉g is summing over classes β = βZ + d2γ ∈ NE(Ẽ) with

n∑
j=1

deg αj +
ρ∑

j=1

deg εj = (c1(Ẽ).β) + (dim Ẽ − 3)(1 − g) + n + ρ − |μ|.

In this case d2 = (E.β) = |μ| is already fixed and non-negative.

Proposition 3.3. For an ordinary flop Ẽ ��� Ẽ′, to prove

F〈A | ε, μ〉g,βS
∼= 〈FA | ε, μ〉g,βS

for any A, βS ∈ NE(S) and (ε, μ) up to genus g ≤ g0, it is enough to
show that

F〈A, τk1ε1, . . . , τkρερ〉Ẽg,d2,βS
∼= 〈FA, τk1ε1, . . . , τkρερ〉Ẽ

′

g,d2,βS

for any A ∈ H∗(Ẽ)⊕n, kj ∈ N ∪ {0}, εj ∈ H∗(E) and d2 ≥ 0, βS ∈
NE(S) up to genus g ≤ g0.

3.3. Analysis on local models
In this section, X is the local model

X = Ẽ = PZ(NZ/X ⊕ O).

To get the invariance of quantum rings under ordinary Pr flop, the re-
maining job we need to do is the following theorem.

Theorem 3.1. For any α = (α1, . . . , αn) with αi ∈ H∗(X) ∪
τ•H

∗(E), if βS �= 0 in NE(S), then

F〈α〉X0,d2,βS
∼= 〈Fα〉X′

0,d2,βS
.

We will prove the theorem by induction on (d2, βS), n and then m
which is the number of insertions not coming from base classes. This is
based on the following observations: (1) By the analysis in Proposition
3.2, we just need to take care of the subseries with some fixed d2 and
fixed βS each time (2) Under divisor relations the degree β is either
preserved or split into effective classes β = β1 + β2 (3) When summing
over β ∈ (d2γ + ψ̄∗βS + Z�) ∩ NE(X), the splitting terms can usually
be written as the product of two generating series with no more marked
points in a manner which will be clear in each context during the proof.

For the excluded case (d2, βS) = (0, 0), since ξ|Z = 0 and the ex-
tremal curves will always stay in Z, we get trivial invariant if one of the
insertions involves ξ. Hence by the general form of Theorem 2.3, the
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statement in the theorem holds for this initial case except for the unique
case 〈t1hr, t2h

r〉. In this case, by the divisor axiom

δh〈t1hr, t2h
r〉 = 〈h, t1h

r, t2h
r〉+,

which will satisfy the functional equation up to analytic continuation
only after incorporated with classical defect. Thus we may base our
induction on (d2, βS) = (0, 0) with special care to treat this case.

Let βS �= 0. The case n = 1 is covered by the following Conjecture
which has been proved by us for the case of the vector bundles F, F ′

being split into line bundles and the genus g = 0. Here we refer to [3]
for the definition of J function.

Conjecture 3.1. (Quasi-linearity)
(1) If d2 < 0, then

FJX
β = JX′

Fβ

term-wise. And for any α ∈ H∗(X), ti ∈ H∗(S),

〈t1, . . . , tn−1, τkα〉Xβ = 〈t1, . . . , tn−1, τkFα〉X
′

Fβ .

(2) If there is no restriction on d2, then

F(JX
β .ξ) ∼= JX′

Fβ .ξ′.

And thus for any α ∈ H∗(X), ti ∈ H∗(S),

〈t1, . . . , tn−1, τkα.ξ〉Xβ ∼= 〈t1, . . . , tn−1, τkFα.ξ′〉X′

Fβ .

Let n ≥ 2 here. First we handle the case of ξ appearing in some αi.
For d2 �= 0, if not, then, there will be no descendent insertions and we
may write

〈α1, . . . , αn〉 = 〈α1, . . . , αn, ξ〉/d2

by the divisor axiom. By reordering we may assume that αn = τsξa,
s ≥ 0. Write α1 = t1τkhlξj . The induction procedure is to move divisors
in α1 into αn in the order of ψ, h and ξ. That is we use induction on
the following six ingredients in the alphabetical order:

((d2, βS), n, m, k, l, j).

By applying the induction process, we can reduce the invariants to
be of the form 〈t1, . . . , tn−1, τkα.ξ〉Xd2,βS

which are also taken care of in
Conjecture 3.1.
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Up to now we show that Theorem 3.1 holds for either ξ appearing
in the insertion classes or d2 �= 0 by using induction hypothesis on all
cases.

The final remaining cases are twisted extremal functions of the form

(3.1) 〈t1, . . . , tnhj〉XβS ,d2=0

with βS �= 0. The analytic continuations of them from X to X ′ are solved
by induction on Mori cone βS ∈ NE(S), using Birkhoff factorizations
and generalized mirror maps. As this step is rather technical, it would
be helpful to give explicit proofs in some simple examples.

§4. P1 flops of type (k + 2, k)

4.1. The toric geometric setup

We study the local model of a non-simple ordinary flop with base
S = P1. The data consists of two vector bundles F → S and F ′ → S. By
the Grothendieck Lemma, we may assume that F and F ′ are of splitting
type.

We consider the case

(4.1) F = O ⊕ O(−(k + 2)), F ′ = O ⊕ O(k)

for some k ∈ Z. For symmetric reason we may assume that k ≥ −1. In
this case O(−(k + 2)) is a negative line bundle. In order to make our
discussions consistent we further assume that k ≥ 0. The remaining case
k = −1 corresponding to F = O⊕O(−1), F ′ = O⊕O(−1) can be treated
in essentially the same (in fact much simpler) way and is postponed till
the end of this section.

Here, Z = PS(F )
ψ̄→S and Z ′ = PS(F ′)

ψ̄′

→S. By Leray–Hirsch, the
cohomology algebras are given by

H(Z) = H(S)[h] = Z[p][h], h2 − (k + 2)hp = 0,

H(Z ′) = H(S)[h′] = Z[p][h′], h′2 + kh′p = 0,
(4.2)

where h = c1(OZ(1)) and h′ = c1(OZ′(1)).
Also X = PZ(N ⊕ O) where N = NZ/X = ψ̄∗F ′ ⊗ OZ(−1). The

Chern roots of N are given by −h and kp − h, thus

H(X) = H(Z)[ξ] = Z[p, h][ξ],

ξ3 + (kp − 2h)ξ2 + 2hpξ = 0.
(4.3)
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Similarly, X ′ = PZ′(N ′⊕O) where N ′ = NZ′/X = ψ̄′∗F ⊗OZ′(−1) with
Chern roots −h′ and −(k + 2)p − h′ and

H(X ′) = H(Z ′)[ξ′] = Z[p′, h′][ξ′],

ξ′3 − ((k + 2)p + 2h′)ξ′2 + 2h′pξ′ = 0.
(4.4)

The induced ordinary P1 flop f : X ��� X ′ is given by blowing up
φ : Y = BlZX → X followed by the blowing down map φ′ : Y → X ′

which contracts the divisor E ∼= PZ(N) (a P1 ×P1 bundle over S) to Z ′

along the ψ̄-fiber direction. We call this flop of type (P1, O ⊕ O(−(k +
2)), O ⊕ O(k)), abbreviated as type (k + 2, k).

The purpose of this section is to achieve the invariance of quantum
product for flops of type (k + 2, k).

Theorem 4.1. (= Theorem 1.2) Let f : X ��� X ′ be an ordinary
P1 flop of type (k + 2, k). The canonical correspondence F induces an
isomorphism of big quantum rings QH(X) and QH(X ′) in the sense of
analytic continuations over the extended Kähler moduli space.

Notice that we will only need to consider genus zero n-point fiber
functions of the form

(4.5) 〈t1, . . . , tnhj〉XβS ,d2=0

where ti ∈ A∗(S), j ≤ r and β = βS +d�+d2γ. By the virtual dimension
count

(4.6) dv = c1(X).β + dim X + n − 3 =
∑

|ti| + j.

Since dimX = 4 and c1(X).β = (c1 + c′1 + c1(S)).β = 0, we get
n + 1 =

∑
|ti|+ j. The only possibility is that ti = p and j = 1, that is,

the only such invariant is 〈p, . . . , p, hp〉βS,0 where p ∈ Adim S(S) is the
point class.

The analytic continuation is induced by F on the 1-cycles of X and
X ′:

(4.7) qβ 	→ qFβ .

The log-extremal flopping contractions ψ : X → X̄ and ψ′ : X ′ → X̄
are given by contracting the P1 rulings Z → S and Z ′ → S respectively.
Denote the ruling class (extremal ray) of ψ (resp. ψ′) by � (resp. by �′).

The contraction ray of φ is the ruling of φ̄ : E → Z whose class is
denoted by γ. Similarly we have the ruling class γ′ of φ̄′ : E → Z ′ for
φ′.
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Denote by b = [S] the fundamental (curve) class of the base S. Then

N1(X) = Zb ⊕ Z� ⊕ Zγ,

N1(X ′) = Zb ⊕ Z�′ ⊕ Zγ′,
(4.8)

where the 1-cycle b ∈ N1(X) is understood as the canonical lifting
ψ̄∗b.H1 = [Z].(h1 + c1(F )) = h − (k + 2)p, followed by the inclusion
i : Z ↪→ X . Since (h − (k + 2)p).h = h2 − (k + 2)ph = 0, we see that
b = h−(k+2)p is the zero section S ↪→ Z of the bundle O(−(k+2)) → S.

As a toric variety, the Mori cones (effective cycles) admits a slightly
involved description. Yet by a general reduction result, we only need to
consider the class

(4.9) β = sb + d� + d2γ ∈ NE(X).

In the case of d2 = 0, we have

Lemma 4.1. β = sb + d� ∈ NE(X) if and only if s, d ≥ 0.

Proof. Both b and � are effective classes, so β = sb + d� ∈ NE(X)
if s, d ≥ 0.

Conversely since the bundle O(−(k + 2)) → S is negative, we know
that NE(Z) = Z≥0b ⊕ Z≥0�. If β = sb + d� ∈ NE(X), then under the
bundle projection map p : X → Z, β = p∗β ∈ NE(Z) and we must have
s, d ≥ 0. Q.E.D.

Similarly,

Lemma 4.2. β′ = sb + d�′ ∈ NE(X ′) if and only if s ≥ 0 and
d ≥ −ks.

Proof. Instead of using the zero section b, now we should use the
infinity section S∞ ∼ h′ of Z ′ → S to form the generator of the Mori
cone NE(Z ′) since NS∞/Z′ = O(−k) while NS/Z′ = O(k). (If k = 0,
then these two choices are equivalent.)

Since b = h′ + kp and p ∼ �′ in Z ′, by the same proof as above, we
get

(4.10) β′ = sb + d�′ = sh′ + (d + ks)�′ ∈ NE(X ′)

if and only if s, (d + ks) ≥ 0. Q.E.D.

Lemma 4.3. F(sb + d�) = sb − d�′ for all s, d ∈ Z.

Proof. The fact that T � = −�′ is well known. For Fb, recall that
FHj = (−1)r−jH ′

j , so for r = 1, FH1 = H ′
1. Also F is H(S)-linear,

hence

(4.11) Fψ̄∗b.H1 = ψ̄′∗b.FH1 = ψ̄′∗b.H ′
1,
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as expected. Q.E.D.

We always identify divisors with their pull backs.

Lemma 4.4. PicX = Zp ⊕ Zh ⊕ Zξ. In fact, {p, h, ξ} is the dual
basis of {b, �, γ}.

Proof. First of all, we have that b.p = 1 by the projection formula.
b.h = (ψ̄∗b.H1).h = ψ̄∗b.(h2 + c1h) = 0 by the Chern relation. b.ξ = 0
since b is disjoint from ξ.

For the extremal ray �, �.p = 0 is clear. �.h = 1 since h is the class
of relative O(1). �.ξ = 0 since � is in Z which is disjoint from ξ.

For the fiber class γ, γ.p = 0 = γ.h since γ can be made disjoint
from p and h. Also γ.ξ = 1 since ξ is the class of relative O(1). Q.E.D.

So far the discussions extend easily to the general ordinary flops of
splitting type. The special choice of type (k + 2, k) has the consequence
that ”X is Calabi–Yau in the base direction”. Recall that

(4.12) c1(X) = (r + 2)ξ + (c1(F ) + c1(F ′) + c1(S)).

Our special choice leads to c1(X)|Z = 0.

4.2. The hypergeometric I function
For a projective bundle of splitting type P = PB(V ) with c(V ) =∏

i(1+λi), we associate the hypergeometric I factor for each β ∈ NE(P )
as

(4.13) I
P/B
β (z−1) =

rkV∏
i=1

1∏β.(h+λi)
m=0 (h + λi + mz)

with h = c1(OP/B(1)).
The product in m ∈ Z is directed in the sense that

(4.14)
s∏

m=0

≡
s+∏

m=0+

:=
s∏

m=−∞
/

0∏
m=−∞

.

Thus for each i with β.(h + λi) ≤ −1, the corresponding subfactor is
understood as in the numerator. The subfactor is 1 if β.(h + λi) = 0
since there is no such m.

If β.(h + λi) ≤ −1 for all i, then I
P/B
β = 0 since it contains the

Chern polynomial factor
∏

i(h + λi) = 0. Notice that I
P/B
β is regarded

as a cohomology valued Laurent formal power series in z−1. That is,
I

P/B
β has the upper bounded degree in z.
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The above I factor is a relative object since it takes care of the fiber
direction only. If we have a tower of projective bundles P = Pm →
Pm−1 → · · · → P1 → P0 = S of splitting type in each step pj : Pj →
Pj−1, then we form the I factor

(4.15) I
P/S
β := I

Pm/Pm−1
β I

Pm−1/Pm−2
β · · · IP1/P0

β

for each β ∈ NE(P ). The Pj/Pj−1 factor depends only on p(j+1)∗ ◦ · · · ◦
pm∗β ∈ NE(Pj), and the factor is identified with its pull back on P .

The (relative) I function over βS ∈ NE(S) is the fiber generating
series

(4.16) I
P/S
βS

:=
∑

β 	→βS

I
P/S
β qβ−βS .

Remark 4.1. The I function can be introduced for varieties with
large group actions like toric varieties or Grassmannian/flag varieties.
In these cases, I comes from the localization data in the equivariant co-
homology. The above discussion can be extended to bundles of splitting
type with fibers being toric or flag manifolds.

To encode the combinatorial data needed for the Gromov–Witten
invariants on P , in general we need to consider the weighted J function
on S with weight on each JS

βS
to be I

P/S
βS

.
In the special case when IS = IS/pt is defined, say for S being a

projective space, we can also consider the (absolute) I function

(4.17) IP =
∑

β∈NE(P )

IP
β qβ

where IP
β = I

P/pt
β , by regarding the base to be a point. For P1 flops

with base S = P1 as in the main theorem, both X → Z → S → pt and
X ′ → Z ′ → S → pt are in this special case. In particular, we have

Lemma 4.5. Let f : X ��� X ′ be a flop of type (k + 2, k). Then
for β = sb + d� ∈ NE(X), that is, s, d ≥ 0,
(4.18)

Is,d := IX
β =

1
s∏
0

(p + mz)2

0∏
−d

(ξ − h + mz)
0∏

−d+ks

(ξ − h + kp + mz)

d∏
0

(h + mz)
d−(k+2)s∏

0

(h − (k + 2)p + mz)

.
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For β′ = sb + d�′ ∈ NE(X ′), that is, s ≥ 0, d ≥ −ks,
(4.19)

I ′s,d :=
1

s∏
0

(p + mz)2

0∏
−d

(ξ′ − h′ + mz)
0∏

−d−(k+2)s

(ξ′ − h′ − (k + 2)p + mz)

d∏
0

(h′ + mz)
d+ks∏

0
(h′ + kp + mz)

.

If z and all divisors are of degree one, then Is,d (resp. I ′s,d) is ho-
mogeneous of degree −β.c1(X) (resp. −β′.c1(X ′)), which is zero if β
(resp. β′) has no γ (resp. γ′) component.

Proof. The rational expression follows directly from

IX
β = I

X/Z
β I

Z/S
β IS

β .

By (4.13), it has degree −β.((r + 1)h + c1(F )) − β.((r + 2)ξ + c1(N))−
β.c1(S). Since c1(N) = c1(F ′)−(r+1)h, the degree is −β.c1(X) = −(r+
2)β.ξ, which is zero in our special case and special choice of β. Q.E.D.

The products in the above formulae are not always polynomials. To
put them in the correct position, we introduce the following notion:

Definition 4.1. A class β ∈ N1(X) is called F-effective (or in the
unstable range) if both β ∈ NE(X) and Fβ ∈ NE(X ′).

It is easy to get the following lemma.

Lemma 4.6. A class β = sb + d� is F-effective if and only if s ≥ 0
and 0 ≤ d ≤ ks. In this unstable range, the I factors can be written as
rational expressions of polynomial products as
(4.20)

Is,d =
1

s∏
0
(p + mz)2

0∏
−d

(ξ − h + mz)
0∏

d−(k+2)s

(h − (k + 2)p + mz)

d∏
0

(h + mz)
−d+ks∏

0
(ξ − h + kp + mz)

,

(4.21)

I ′s,−d =
1

s∏
0
(p + mz)2

0∏
−d

(h′ + mz)
0∏

d−(k+2)s

(ξ′ − h′ − (k + 2)p + mz)

d∏
0

(ξ′ − h′ + mz)
−d+ks∏

0
(h′ + kp + mz)

.

In the stable (= not unstable) range, (4.18) and (4.19) give the
corresponding rational expressions of polynomial products except in the
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initial range ks < d < (k + 2)s where the product
∏d−(k+2)s

0 (h − (k +
2)p + mz) in (4.18) should appear in the numerator as

∏0
d−(k+2)s.

Definition 4.2. We call the initial range ks < d < (k +2)s the gap
range. It is only defined on the X side. There is no gap range on the
X ′ side.

Since deg Is,d = 0, we may expand it into series in z−1 as

(4.22) Is,d = Is,d;0 +
Is,d;1

z
+

Is,d;2

z2
+

Is,d;3

z3
+

Is,d;4

z4
.

Here deg Is,d;j = j. Hence the higher terms vanish by dimension reason.
We will also use the notations

(4.23) Ĩs :=
∑

d

Is,d qd�, Is;j :=
∑

d

Is,d;j qd�.

And thus Ĩs =
∑

j Is;j/zj.
For our purpose, we have to study Is;j in details for j = 0, 1, 2 and

for all s ≥ 0 in order to perform the change of variables needed in next
section.

Lemma 4.7. In the stable range, Is,d = O(z−2) and I ′s,d = O(z−2).
In fact, in the gap range ks < d < (k +2)s, we even have Is,d = O(z−3).

In the unstable range, Is,d = O(z−2) except for d = 0 where I0,0 = 1
and Is,0 = O(z−1) for s > 0. The same holds for I ′s,d.

Proof. This follows easily from (4.18) and (4.20) by noticing that
deg I = 0 and each polynomial product in the numerator will loss one
z degree corresponding to m = 0. For example, in the gap range, there
are three products in the numerator while if d = 0 the product

∏0
−d will

disappear and should not be counted. Q.E.D.

More precisely,

Lemma 4.8. For d ≥ 1, all I0,d, I ′0,d are in the stable range and

Ĩ0 = 1 +
∑
d≥1

1
d2

(ξ − h)(ξ − h + kp)
z2

qd� + O(z−3),

Ĩ ′0 = 1 +
∑
d≥1

1
d2

(ξ′ − h′)(ξ′ − h′ − (k + 2)p)
z2

qd�′ + O(z−3).
(4.24)
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Remark 4.2. For the local model of simple Pr flops with extremal
curve class d�, d ≥ 1, it is well known that

(4.25) I0,d =
(−1)(r+1)(d+1)

(h + dz)r+1
.

From (4.18), Ĩ0 reduces to it by setting p = 0 and ξ = 0.

Lemma 4.9. For s ≥ 1,

Is,0 = (−1)s−1 ((k + 2)s − 1)!
(s!)2(ks)!

(h − (k + 2)p)
z

×

[
1 − 1

z

(
(h − (k + 2)p)

(k+2)s−1∑
j=1

1
j

+ 2p

s∑
j=1

1
j

+ (ξ − h + kp)
ks∑

j=1

1
j

)]

+ O(z−3).

(4.26)

Similarly,

I ′s,0 = (−1)s−1 ((k + 2)s − 1)!
(s!)2(ks)!

(ξ′ − h′ − (k + 2)p)
z

×

[
1 − 1

z

(
(ξ′ − h′ − (k + 2)p)

(k+2)s−1∑
j=1

1
j

+ 2p

s∑
j=1

1
j

+ (h′ + kp)
ks∑

j=1

1
j

)]

+ O(z−3).

(4.27)

Lemma 4.10. In the unstable range with d �= 0,

Is,d = (−1)s (−d + (k + 2)s − 1)!
(s!)2d(−d + ks)!

(ξ − h)(h − (k + 2)p)
z2

+ O(z−3),

I ′s,−d = (−1)s (−d + (k + 2)s − 1)!
(s!)2d(−d + ks)!

h′(ξ′ − h′ − (k + 2)p)
z2

+ O(z−3).

(4.28)

Lemma 4.11. In the stable range, namely Is,d for d ≥ ks + 1 and
I ′s,d for d ≥ 1,

Is,d = (−1)s (d − ks − 1)!
(s!)2d(d − (k + 2)s)!

(ξ − h)(ξ − h + kp)
z2

+ O(z−3),

I ′s,d = (−1)s (d + (k + 2)s − 1)!
(s!)2d(d + ks)!

(ξ′ − h′)(ξ′ − h′ − (k + 2)p)
z2

+ O(z−3).

(4.29)
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On X , Is,d;2 = 0 precisely in the gap range. Moreover, in the stable
range, the leading scalar coefficient of Is,d equals

(−1)s (d − (ks + 1))(d − (ks + 2)) · · · (d − ((k + 2)s − 1))
(s!)2d

,(4.30)

and the leading scalar coefficient of I ′s,d equals

(−1)s (d + ((k + 2)s − 1))(d + ((k + 2)s − 2)) · · · (d + (ks + 1))
(s!)2d

.(4.31)

These two formal expressions are symmetric under d 	→ −d.

For later use, we define

(4.32) G(s, d) :=
1

(s!)2

(k+2)s−1∏
j=ks+1

(d + j).

4.3. From I to the geometric J function by mirror map
The one point J function is defined to be

(4.33) Jβ = evir
1∗

1
z(z − ψ)

=
Jβ,2

z2
+

Jβ,3

z3
+ · · ·

where e1 : M0,1(X, β) → X is the evaluation map. Thus Jβ,2+k calculate
the k-th descendent invariants through the Poincaré pairing

(4.34) 〈τkα〉β = (Jβ;2+k.α)X .

We are only interested in the case k = 0 in this section, so we need only
to study the z−2 term: J2 =

∑
β Jβ;2 qβ . We formally set J0 = 1, J1 = 0

and J =
∑

i≥0 Ji/zi.
The mirror theorem states that J and I are related by some change

of variables. We also write I =
∑

i≥0 Ii/zi. Here, I0 = 1 and deg Ii = i.
In this case, the change of variables is particularly easy to describe. Let
Di’s be a cohomology basis of divisor classes with dual curve class basis
βi’s. Let also D =

∑
i tiDi be a general divisor with coordinates ti’s.

We use the following formal identification

(4.35) qβi = eti .

Then the mirror theorem says that

(4.36) eD/zJ = eD/zI
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after the change of variables (mirror map)

(4.37) M : ti 	→ ti + (βi.I1)

on the J side. First of all, this makes sense as I1 is a divisor-valued
power series in qβi = eti . More importantly this equates the z−1 term
on both sides. Indeed

(4.38) D =
∑

i

tiDi 	→
∑

tiDi + (βi.I1)Di = D + I1.

After the mirror map on eD/zJ and by removing the common eD/z, we
get

(4.39) eI1/zJM = I.

And then

1 +
JM

2

z2
+

JM
3

z3
+ · · ·

=
(
1 +

I1

z
+

I2

z2
+ · · ·

)(
1 − I1

z
+

1
2

I2
1

z2
− · · ·

)
= 1 +

1
z2

(
I2 −

1
2
I2
1

)
+ · · · .

(4.40)

We may write (4.37) as

(4.41) M : qβi 	→ qβie(βi.I1).

Then the z−2 term in (4.40) takes the form

(4.42)
∑

β

Jβ;2 qβe(β.I1) =
∑

β

Iβ;2 qβ − 1
2
I2
1 .

We will use it to compare J2.hp and J ′
2.Fhp = J ′

2.(ξ
′ − h′)p.

4.4. Analytic continuations
More precisely, we are going to prove the following theorem.

Theorem 4.2. For s �= 0, we have analytic continuations under F:

(4.43) 〈hp〉Xsb
∼= 〈(ξ′ − h′)p〉X′

sb .

Proof. By Lemma 4.9, we have

I1 = g(q)(h − (k + 2)p), I ′1 = g(q)(ξ′ − h′ − (k + 2)p)(4.44)
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where

g(q) = g(qb) :=
∑
s≥1

(−1)s−1 ((k + 2)s − 1)!
(s!)2(ks)!

qsb

= (k + 1)qb − (2k + 1)(2k + 2)(2k + 3)
4

q2b + · · ·
(4.45)

depends only on qb, hence is constant in F and FI1 = I ′1. Notice that in
terms of G(s, d), we have g(qb) =

∑
s≥1(−1)s−1G(s, 0) qsb.

Moreover for any d ∈ Z (or more accurately s ≥ 0 and d ≥ 0 for X
and d ≥ −ks for X ′), (4.42) implies that

∑
s≥0

Js,d;2 qsbe(d−(k+2)s)g(q) =
∑
s≥0

Is,d;2 qsb − δd,0
1
2
g2(q)(h − (k + 2)p)2,

∑
s≥0

J ′
s,d;2 qsbe(−d−(k+2)s)g(q) =

∑
s≥0

I ′s,d;2 qsb − δd,0
1
2
g2(q)(ξ′ − h′ − (k + 2)p)2.

(4.46)

For simplicity, we denote

Î = (I.hp)X , Ĵ = (J.hp)X ,

Î ′ = (I ′.(ξ′ − h′)p)X′
, Ĵ ′ = (J ′.(ξ′ − h′)p)X′

.
(4.47)

Then Ĵ and Î are related by∑
s≥0

Ĵs,d;2 qsbe(d−(k+2)s)g(q) =
∑
s≥0

Îs,d;2 qsb,

∑
s≥0

Ĵ ′
s,d;2 qsbe(−d−(k+2)s)g(q) =

∑
s≥0

Î ′s,d;2 qsb + δd,0
1
2
g2(q),

(4.48)

since (h−(k+2)p)p = 0 and (ξ′−h′−(k+2)p)2(ξ′−h′)p = ξ′3p−3ξ′2h′p =
−1.

For β = sb + d� in the unstable range (0 ≤ d ≤ ks), by Lemma 4.9
and Lemma 4.10, we have Îs,d;2 = 0.

On the other hand if β = sb + d� is in the stable range d ≥ ks + 1,
then by Lemma 4.11, we may formally define

(4.49) Î ′s,−d := −Îs,d

since

(ξ − h)(ξ − h)hp = ξ2hp = 1,

(ξ′ − h′)(ξ′ − h′ − (k + 2)p)(ξ′ − h′)p = ξ′3p − 3ξ′2h′p = −1.
(4.50)
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Then the two recursive relations in (4.48) can be merged into a single
relation on the X ′ side for d ∈ Z.

Lemma 4.12. Let ws(d) := Ĵ ′
s,d;2 for d �= 0. Then we have w0(d) =

Ĵ ′
0,d;2 = Î ′0,d,2 = −1/d2. For s ≥ 1, the function ws(d) is a polynomial

in d of degree 2(s − 1).

Proof. The first statement is clear. For the second statement we
fix a d �= 0. We start by writing out the first few relations explicitly to
explain the general structure. Up to q2b, we compute

e−(d+(k+2)s)g(q) = 1 − (d + (k + 2)s)G(1, 0) qb

+ (d + (k + 2)s)
(
G(2, 0) +

G(1, 0)2

2
(d + (k + 2)s)

)
q2b + · · · .

(4.51)

Then by looking at the qb terms in (4.48), we get

(4.52) w1(d) − G(1, 0)dw0(d) = Î ′1,d;2.

By Lemma 4.11, we find Î ′s,d;2 = (−1)s−1G(s, d)/d (which is NOT a
polynomial in d) and this reads as

(4.53) w1(d) + G(1, 0)d
1
d2

=
G(1, d)

d
=

d + G(1, 0)
d

.

Thus

(4.54) w1(d) = 1, ∀ d �= 0.

By looking at the q2b terms, we get

w2(d) − (d + (k + 2))G(1, 0)w1(d) + d
(
G(2, 0) +

G(1, 0)2

2
d
)
w0(d)

= Î ′2,d;2 = −G(2, d)
d

.

(4.55)

Since w1(d) is a polynomial (= 1 indeed), the only trouble to forbid
w2(d) to be a polynomial comes from dG(2, 0)w0(d) = −G(2, 0)/d.

However, this is exactly cancelled out from the singular part from
the right hand side. This proves that w2(d) is a polynomial in d. Since
G(s, d) has degree (k + 2)s − 1 − ks = 2s − 1, it is clear that w2(d) has
degree 2 × 2 − 1 − 1 = 2 in d.
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By induction, suppose that the statement is proved up to s − 1.
Then by looking at the coefficients of the qsb terms, we get

ws(d) − (d + (k + 2)(s − 1))G(1, 0)ws−1(d) + · · ·
+ (−1)sd(G(s, 0) + dp(d))w0(d)

= Î ′s,d;2 = (−1)s−1 G(s, d)
d

(4.56)

for some polynomial p(d). Here the coefficient of w0(d) is the degree qsb

term in

e−dg(q) = 1 − dg +
d2g2

2!
− · · ·

= 1 − d
∑
k≥1

(−1)k−1G(k, 0) qkb + d2(· · · ).
(4.57)

Again since w0(d) = −1/d2, the only singular term (−1)s−1G(s, 0)/d
in (4.56) cancels out from both sides. Hence ws(d) is a polynomial in
d. It is also clear that the highest d-degree term comes from G(s, d)/d
which is

(4.58)
d2(s−1)

(s!)2
.

This completes the proof of the lemma. Q.E.D.

The remaining proof is based on the following idea: Consider the
formal expression

(4.59) E(q) :=
∞∑

d=−∞
qd = · · · + q−2 + q−1 + 1 + q + q2 + · · · .

If we denote f(q) = q/(1 − q), then the analytic continuation

(4.60) f(q) + f(q−1) = −1

simply means the formal assignment E(q) = 0. For any polynomial
w(d), we have

(4.61)
∞∑

d=−∞
w(d) qd = w(δ)E(q)

where δ = q∂/∂q. Thus we may establish the analytic continuation
result on Ĵs;2 if we show that Ĵ ′

s,d;2 is polynomial in d for all d ∈ Z.
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By the lemma, such a polynomial ws(d) is obtained for d �= 0. Hence
it remains to show that Ĵ ′

s,0;2 = ws(0).
By (4.48), we have for d = 0,

(4.62)
∑
s≥1

Ĵ ′
s,0;2 qsbe−(k+2)sg =

∑
s≥1

Î ′s,0;2 qsb +
1
2
g2,

while for d �= 0 it is

(4.63)
∑
s≥0

Ĵ ′
s,d;2 qsbe(−d−(k+2)s)g =

∑
s≥0

Î ′s,d;2 qsb.

In order to compare these two relations, let Is,d be the regular (poly-
nomial) part of Î ′s,d;2. Namely

(4.64) Is,d := I ′s,d;2 − (−1)s−1 G(s, 0)
d

.

Then (4.63) may be rewritten as

(4.65)
∑
s≥1

Ĵ ′
s,d;2 qsbe(−d−(k+2)s)g − 1

d2
e−dg =

∑
s≥1

Is,d qsb +
g

d
− 1

d2
.

Since

(4.66)
1
d2

(e−dg − 1 + dg) =
1
2
g2 + dQ

for some Q ∈ Q[d][[qb]], (4.65) may be arranged to

(4.67)
∑
s≥1

Ĵ ′
s,d;2 qsbe(−d−(k+2)s)g =

∑
s≥1

Is,d qsb +
1
2
g2 + dQ.

Now by (4.27) and noticing that (ξ′−h′−(k+2)p)(h′+kp)(ξ′−h′)p =
1, we get

(4.68) Î ′s,0;2 = (−1)s−1 ((k + 2)s − 1)!
(s!)2(ks)!

(k+2)s−1∑
j=ks+1

1
j
.

This is precisely the degree zero term (constant term) of

(4.69) Î ′s,d;2 = (−1)s−1 G(s, d)
d

= (−1)s−1 1
(s!)2d

(k+2)s−1∏
j=ks+1

(d + j),

hence also the constant term of the polynomial Is,d.
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Now it is clear that the relation (4.67) specializes to (4.62) in the
special value d = 0. Hence Ĵ ′

s,d;2 = ws(d) must specializes to Ĵ ′
s,0;2 when

d = 0.
This is exactly what we want and the proof of the theorem is com-

plete. Q.E.D.

4.5. The remaining symmetric case k = −1
In the case k = −1, the flop is of type

(4.70) (S, F, F ′) = (P1, O ⊕ O(−1), O⊕ O(−1)).

Thus most of the formulae involved will be symmetric in X and X ′.
The proof on analytic continuations proceeds in the same way with

the following modifications. First of all, since both the canonical liftings
of b in Z and Z ′ have the negative normal bundle O(−1), we have that
β = sb+d� ∈ NE(X) if and only if s, d ≥ 0 and β′ = sb+d�′ ∈ NE(X ′)
if and only if s, d ≥ 0 as well. Since F(sb + d�) = sb− d�′, β = sb + d� is
in the unstable range if and only if d = 0. That is, for any fixed s, there
is essentially no unstable range.

The I function can be determined by the same formula with k = −1.
In fact, I = 1 + O(z−2):

Lemma 4.13. For s, d ≥ 0,
(4.71)

Is,d := IX
β =

1
s∏
0
(p + mz)2

0∏
−d

(ξ − h + mz)
0∏

−d−s

(ξ − h − p + mz)

d∏
0

(h + mz)
d−s∏
0

(h + p + mz)
.

For s > 0 and d = 0,

(4.72) Is,0 =
1
s2

(h − p)(ξ − h − p)
z2

+ O(z−3).

For 1 ≤ d ≤ s − 1, Is,d = O(z−3).
For d ≥ s or d ≥ 1 if s = 0,

(4.73) Is,d = (−1)s (d + (s − 1))!
(s!)2d(d − s)!

(ξ − h)(ξ − h − p)
z2

+ O(z−3).

In particular, no mirror map is needed and we have Js,d = Is,d for
all s, d ≥ 0.

The above lemma applies to X ′ as well. As before we set

(4.74) Ĵ = (J.hp)X , Ĵ ′ = (J ′.(ξ′ − h′)p)X′
.
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By straightforward intersection calculations, we get

Lemma 4.14. For s > 0 and d = 0,

(4.75) Ĵs,0;2 = 0, Ĵ ′
s,0;2 =

1
s2

.

For 1 ≤ d ≤ s − 1, Ĵs,d;2 = 0 = Ĵ ′
s,d;2.

For d ≥ s or d ≥ 1 if s = 0,
(4.76)

Ĵs,d;2 = (−1)s (d + (s − 1))!
(s!)2d(d − s)!

, Ĵ ′
s,d;2 = (−1)s−1 (d + (s − 1))!

(s!)2d(d − s)!
.

For each s ≥ 1 we define the even polynomial function

(4.77) ws(d) := (−1)s−1 (d + (s − 1))(d + (s − 2)) · · · (d − (s − 1))
(s!)2d

.

Notice that ws(d) is a polynomial in d of degree 2(s − 1) since the
numerator contains the factor d. It has zeros at d = ±1, · · · ,±(s − 1)
and ws(0) = 1/s2.

We will prove that for s > 0

(4.78) FĴs;2
∼= Ĵ ′

s;2

up to analytic continuations.
By Lemma 4.14, for d ≥ 1 we may formally define

(4.79) Ĵ ′
s,−d;2 = −Ĵs,d;2.

Notice that for d = 0 we have Ĵ ′
s,0;2 = 1/s2 = ws(0). Thus

(4.80) Ĵ ′
s,d;2 = ws(d)

for all d ∈ Z. By (4.61), this leads to the result on analytic continuations.
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