
Advanced Algebra I

transcendental extension

Before we move on to the transcendental extension. We first com-
plete the proof of the Corollary of last time.

Corollary 0.1. Let F/K be an algebraic extension with char(K) =
p 6= 0. We have

(1) If F/K is separable, then F = KF pn
for each n ≥ 1.

(2) If F/K is finite and F = KF p, then F/K is separable.
(3) In particular, u ∈ F is separable over K if and only if K(up) =

K(u).

Note that F p is not necessarily an extension over K. So is F pn
. But

we can take KF pn
, which is an extension over K.

Proof. We first suppose that F/K is finite, hence finitely generated.
Write F = K(u1, ..., ur). It’s clear that there is N ≥ 1 such that

upN ∈ S. Hence F pN ⊂ S, therefore, KF pN ⊂ S.
We claim that S = KF pN

. To see this, one notices that F is purely
inseparable over KF pN

, so is S purely inseparable over KF pN
. And

on the other hand, S is separable over K, so is over KF pN
. Hence

S = KF pN
.

For (1), if F/K is separable and finite, then we have F = KF pN
.

However, in the proof, one can choose N to be arbitrary large. More
precisely, one has F = KF pN

for all N ≥ N0. By looking at the
inclusion

F = KF pN ⊂ KF pN−1 ⊂ ... ⊂ KF p ⊂ F.

One has F = KF pn
for all n ≥ 1.

Suppose now that F/K is separable but not necessarily finite. For
any u ∈ F , we consider F0 := K(u) which is separable and finite over

K. Thus u ∈ F0 = KF pn

0 ⊂ KF pn
for all n ≥ 1. This proves (1).

We now prove (2). If F = KF p, then F = K(KF p)p = KF p2
.

Inductively, one has F = KF pn
for all n ≥ 1. Since we have show that

S = KF pN
, it follows that F = S.

Apply the statement to a single element. We consider F = K(u).
F p ⊂ Kp(up) ⊂ K(up) . Indeed, KF p = K(up). By (2), if K(u) =
K(up), then u is separable. By (1), if u is separable, then K(u) =
K(up). ¤

We now start our discussion on transcendental extension. The main
purpose is to show that the concept of transcendental degree, which is
the cardinality of transcendental basis, can be well-defined. Moreover,
transcendental degree is a good candidate for defining dimension.
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Definition 0.2. Let F/K be an extension. S ⊂ F is said to be al-
gebraically dependent (over K) if there is an n ≥ 1 and an f 6= 0 ∈
K[x1, ..., xn] such that f(s1, ..., sn) = 0 for some s1, ..., sn. Roughly
speaking, some element of S satisfy a non-zero algebraic relation f
over K.

S is said to be algebraically independent over K if it’s not alge-
braically dependent over K.

Example 0.3. For any u ∈ F , {u} is algebraically dependent over K
if and only if u is algebraic over K.

Example 0.4. In the extension K(x1, ..., xn)/K, S = {x1, ..., xn} is
algebraically independent over K.

The following theorem says that finitely generated purely transcen-
dental extension are just rational function fields.

Theorem 0.5. If {s1, ..., sn} ⊂ F is algebraically independent over K.
Then K(s1, ..., sn) ∼= K(x1, ..., xn).

Proof. We consider the homomorphism θ : K[x1, ..., xn] → K[s1, ..., sn].
θ is surjective by definition. It’s injective because {s1, ..., sn} ⊂ F is
algebraically independent. Then θ induces an isomorphism on quotient
fields. ¤

One notices that the notion of being algebraic independent is an
analogue of being linearly independent. Therefore, one can try to define
the notion of ”basis” and ”dimension” in a similar way.

Definition 0.6. S ⊂ F is said to be a transcendental basis of F/K if
S is a maximal algebraically independent set. In other words, for all
u ∈ F − S, S ∪ {u} is algebraically dependent.

We will then define the transcendental degree to be the cardinality of
a transcendental basis (in a analogue of dimension). In order to show
that this is well-defined. We need to work harder.

Proposition 0.7. Let S ⊂ F be an algebraically independent set over
K and u ∈ F −K(S). Then S∪{u} is algebraically independent if and
only if u is transcendental over K(S).

Proof. The proof is straightforward. ¤
Corollary 0.8. S is a transcendental basis of F/K if and only if
F/K(S) is algebraic.

Proof. Suppose that S is a transcendental basis of F/K. If u ∈ F −
K(S), then S ∪ {u} is not algebraically independent. Thus, u is alge-
braic over K(S) by the Proposition.

On the other hand, suppose that F/K(S) is algebraic. Then for all
u ∈ F − S, u is algebraic over K(S). By the Proposition, S ∪ {u}
is algebraically dependent if u ∈ F − K(S). In fact, it’s easy to see
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directly that S ∪ {u} is algebraically dependent if u ∈ K(S). Thus S
is a maximal algebraically independent set. ¤
Corollary 0.9. Let S ⊂ F be an subset over such that F/K(S) is
algebraic. Then S contains a transcendental basis.

Proof. By Zorn’s Lemma, there exists a maximal algebraically inde-
pendent subset S ′ ⊂ S. Then K(S) is algebraic over K(S ′) and hence
F is algebraic over K(S ′). ¤
Theorem 0.10. Let S, T be transcendental bases of F/K. If S is finite,
then |T | = |S|.
Proof. Let S = {s1, ..., sn} and S ′ := {s2, ..., sn}. We first claim that
there is an element t ∈ T , say t = t1 such that {t1, s2, ..., sn} is a
transcendental basis.

to see this, if every element of T is algebraic over K(S ′), then F is
algebraic over K(T ) hence over K(S ′) which is a contradiction. Thus,
there is an element t ∈ T , say t = t1 such that t1 is transcendental over
K(S ′). And hence T ′ := {t1, s2, ..., sn} is algebraically independent.

By the maximality of S, one sees that s1 is algebraic over K(T ′).
It follows that F is algebraic over K(t1, s1, ..., sn) and hence algebraic
over K(T ′). Therefore, T ′ is a transcendental basis.

By induction, one sees that there is a transcendental basis {t1, ..., tn} ⊂
T . Thus T = {t1, ..., tn}. ¤
Theorem 0.11. Let S, T be transcendental bases of F/K. If S is
infinite, then |T | = |S|.
Proof. By the previous theorem, we have |T | is infinite.

For each s ∈ S, s is algebraic over K(T ). There is a finite subset
Ts 6= ∅ ⊂ T containing all coefficients of the minimal polynomial of s.
And hence s is algebraic over K(Ts). Let T ′ := ∪s∈STs. Since every
u ∈ F is algebraic over K(S) and hence algebraic over K(T ′). It follows
that T ′ = T as T ′ ⊂ T .

Finally, one shows that

|T | = | ∪s∈S | ≤ |S||N| = |S|.
Since one can similarly have |S| ≤ |T |. We are done. ¤

With the above two theorem, we can have a well-defined notion of
transcendental degree.

Definition 0.12. Let F/K be an extension. The transcendental degree
of F/K, denoted tr.d.F/K, is the cardinal number |S|, where S is a
transcendental basis.

Theorem 0.13. If F/E and E/K are extensions, then

tr.d.F/K = tr.d.F/E + tr.d.E/K.
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Proof. Let S be a transcendental basis of E/K and T be a transcen-
dental basis of F/E. It clear that T ∩ E = ∅, thus T ∩ S = ∅. It’s
enough to show that S ∪ T is a transcendental basis of F/K.

Note that E is algebraic over K(S), so E is algebraic over K(S∪T ).
It follows that E(T ) is algebraic over K(S ∪ T ). Together with the
fact that F is algebraic over E(T ). One sees that F is algebraic over
K(S ∪ T ).

It suffices to show that S ∪ T is algebraically independent. If f is
a non-trivial algebraic relation, i.e. f(s1, ..., sn, t1, ..., tm) = 0 for some
si ∈ S, tj ∈ T . ¤
Corollary 0.14. Let F1/K1 and F2/K2 are extensions and F1, F2 are
algebraically closed. Then every isomorphism between K1 and K2 can
be extended to an isomorphism between F1 and F2 if tr.d.F1/K1 =
tr.d.F2/K2


