Algebraic surfaces

BIRATIONAL MAPS ON SURFACES AND MINIMAL MODELS

Remark 0.1. Most of the material of this section can be found in

[Beauville]. The last example is called the elementary transform of
ruled surface. It can be found in [Ha, V.5, p.416]

We are going to study birational maps on surfaces and introduce the
notion of minimal models in this section.

Recall that by a rational map f : X --» Y we mean an equivalent
classes (U, f) of morphism f : U — Y. Roughly speaking, a ratio-
nal map is a map not everywhere defined. Sometimes the map can
be extended to a larger domain. For example, let (U, f) ~ (V,g) be
equivalent rational maps, i.e. f = gon U NV, then one can define a
map on U U V. Indeed, one can extend (U, f) to Uy := UyecV, where
C denotes the equivalent class. The point in X — Uy is called points of
indeterminacy.

Proposition 0.2. Let f : X --+ Y be a rational map to a projective
variety Y. Then point of indeterminacy X — Uy has codimension > 2.

In particular, if dimX = 2 then the set of points of indeterminacy is
finite.

Proof. Since Y is projective, we may assume that Y = P". Let H be
a hyperplane in P* and D = f*H. Let Z,.., Z, be the homogeneous
coordinates of P". Then div(Z; o f) gives a divisor F; € |D|.

The point of indeterminacy are exactly the common zero of Z; o f.
(Note that Z; o f is a section in H(X, O(D)), which is locally regular.
Thus we only need to worry about common zeros)

If W7 C X is a codimension 1 subvariety of point of indeterminacy.
Then W is the common zero hence W, < F; for all i. Let Dy = D—-W),
and s € H°(X,O(WW,)) a section defining Wy, i.e. div(s) = W;. One
sees that @ € H°(X,O(D;)) which are locally regular.

We consider the map f; : X --» P™ by [ZOTOf, ey Z"Tof] It’s clear that
fi = f on Uy. (Potentially, f; might have eliminated indeterminacy on
Wi). Thus f; can be extended to a larger defining domain.

By continuing this process, we get fi, fa,... associated to effective
divisors Dy > Dy > Ds.... Since effective divisor can have only finitely
many non-zero places, this process must terminate. That is, we reach
fn : X — P™ without point of indeterminacy of codimension 1. O

Indeed, we can eliminate those finite points of indeterminacy by
blowing-ups.

Theorem 0.3 (Elimination of indeterminacy). Let f : X --» Y be
a rational map from a surface to a projective variety Y. Then there
exists a morphism p : X' — X which is a composition of blowing-ups,
together with a morphism f': X' —Y such that f' ~ fop.

1



2

Proof. Since Y is projective, we may assume that Y = P". Let H be
a hyperplane in P* and D = f*H. Let Z,.., Z, be the homogeneous
coordinates of P*. Then div(Z; o f) gives a divisor F; € |D|.

The point of indeterminacy are exactly the common zero of Z; o f.
Suppose that x € X is a point of indeterminacy. We consider 7 : X; =
Bl,(X) — X. By composition, one has a map

flinﬁX——')]P)n

given by [Zyo fom,...,Z, o for|. Note that div(Z; o f o) now gives
divisors in |7*D|.

Recall that for each i, div(Z; o f) passes through x of multiplicity m;.
Let m = min,;—__, m;. It thus follows that div(Z;o for) > m£E for each
i. Let s € H'(X',Ox/(E) be the section defining E, i.e. div(s) = E.
We then consider the map (as in the previous Proposition)

f{ . X1 -—> Pn,
by [Z(’;ﬂ,io”, o Z";nfoﬂ]. One sees that f] extends f; and f{ is defined on
all but finite point on F.

If there is point of indeterminacy for f;, we then continue this process
to obtain f; : X --» P" inductively. It remains to show that this
process must stop.

Notice that we may assume that f : X --» P" is non-constant and
non-degenerate. Thus pick any two general hyperplane H;, Hy in P",
one has Hy.Hy.f(X) > 0. Thus f*H,.f*H, = D? > 0.

Notice that the divisor corresponds to f; is Dy := nm*D—mE, one has
D? = D? —m? > 0. By applying this observation to all f; : X; — P".
One has

D?*>D?>Dj3..>0.
Hence it must stop at some Dy, thus one has that f; : X, — P” has no
point of indeterminacy. Set X' := X, f' := fi then we are done. [

The following property is crucial in the study of birational map of
surfaces.

Proposition 0.4. Let f : X — Y be a birational morphism. Ify € Y

is a point of indeterminacy of {1, then f factors through m : Bl,(Y') —
Y. That is, there is a morphism f': X — Bl,(Y) such that f =mo f'.

Proof. The proof is pretty long so that we will not include it here.
Please see [Beauville] for the detail. O

Corollary 0.5. Let f : X — Y be a birational morphism, then there is
T 2 Y — Y which s composition of blowing-ups and an isomorphism
€: X — Yy such that f = 7 oe.

Proof. If f is an isomorphism then nothing to prove. It f is not an
isomorphism, then there must be a point y € Y such that f~! is unde-

fined at y. One has X — Y; := Bl,(Y) — Y. One can continue this
process unless we have an isomorphism.
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It remains to show that this process must terminate. We need to
find an invariant to control the termination. A naive approach is try-
ing to count points of indeterminacy at each step. However, this does
not behave well because from Y --» X to Y; --» X, we eliminate the
undefining point y but there might have some more point of indeter-
minacy on £ C Y;. Thus we need a more refined invariant.

We consider the rank of Neron-Severi group. Recall that the Neron-
Severi group is the algebraic equivalent classes of divisors. It seems
difficult to understand what it is. But anyway, it’s an finitely generated
abelian group. Moreover,

NS(BIl, (X)) = NS(X) @ Z[E].
In particular,
rk(NS(Bl,(X)) =rk(NS(X)) + 1.

(Remark: If X is defined over C, then NS(X) = im(H'(X,0%) —
H?(X,7Z)) which is of course of finite rank).
Now one has

rk(NS(X))... > rk(NS(Ya)) > rk(NS(Y)) = rk(NS(Y)).

It’s clear that the process of producing Y7, Ys... must terminate at Y}
for some k since rk(NS(X)) is finite. Hence one has X = Y} cause
otherwise one can produce Y, ;. This completes the proof. Il

The corollary says that a birational morphism of surfaces is basi-
cally composition of blowing-ups and isomorphism. Together with the
theorem on elimination of indeterminacy, we have the following:

Corollary 0.6. Let f : X --» Y be a birational map of surfaces. Then
there is a surface Z and morphisms g : Z — X, h : Z — 'Y such that
h ~ fog , where g, h are composition of blowing-ups and isomorphisms.

Let X be a smooth surface, we can consider Bir(X) to be the bi-
rational equivalent class of smooth surfaces which are birational to
X. We have seen that any two surfaces in Bir(X) are connected by
blowing-ups and isomorphisms.

In what follows, we would like to consider Bir(X)? to be the bira-
tional equivalent class modulo isomorphism. Then there is a natural
partial ordering on Bir(X)° by [X;] > [X5] if there is a birational mor-
phism f : X; — Xs, where [X;]| denotes the isomorphic class of Xj.
We have seen that [Bl,(X)] > [X] and if [X] > [Y] then [X] = [Y}] for
some composition of blowing up Y, — Y.

Our next goal is to show that there exist a minimal element in
Bir(X)°, which we call it a minimal model of X.

Definition 0.7. A non-singular surface X is minimal if for any mor-
phism f: X — Y to a non-singular surface, f is an isomorphism.

(i.e. if [X] > [Y], then [X] = [Y] in Bir(X)°).
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Theorem 0.8. Let X be a non-singular surface, then there exist a
minimal surface X' together with a birational morphism f : X — X'.
In other words, minimal model exists.

Proof. If X is not minimal, then there is an surface Y and a birational
morphism f : X — Y. Since f is composition of isomorphism and
blowing-ups. We may assume that there is an X; and X = BI(X)).

If X, is minimal then we are done, otherwise, one has Xy and X; =
BIl(X5) similarly. Thus one has sequence of surfaces

X — Xl — X2

However, rk(NS(Xi11)) = rk(NS(X;) — 1. Thus the sequence must
stop at a minimal model. Il

An convenience way to check minimality for surface is the following:

Theorem 0.9. Let X be a non-singular surface. then X is minimal if
and only if X has no (—1)-curves.

Proof. 1If X has an (—1)-curve, then by CAstelnuovo’s contraction theo-
rem, there is a contraction X — X’ contracting the (—1)-curve. Hence
X is not minimal.

On the other hand, if X is not minimal, then as we have seen above,
X = BI(X;) for some X;. In particular, there the exceptional divisor
is an (—1)-curve. O

However, minimal model is not always unique.

Example 0.10. Let X = C x P, where C is a curve of genus > 2. X
1s a ruled surface by considering w: X — C.

Recall that by a ruled surface, we mean a surface X together with a
morphism 7 : X — B to a curve B such that each fiber F, := n=1(b) =
P

Fiz now a point x € X lying over b € C. We consider Z = Bl,(X).
And there is a composition map 7wy : Z — C. Now over b € C,
7,4 (b) = F,+E. Easy computation show that F, is a (—1)-curve on Z.
One can contract Fy, and obtained a surface Y. Thereis amy : Y — C.
But one can prove that Y %2 C x P! = X

However, both X and Y are minimal model of Z. Hence minimal
model is not unique.



