Algebraic surfaces

Blowing-up and Blowing-down

Remark 0.1. The construction of blowing up can be found almost in any book. (Some called it σ-process however). We refer [Beauville, complex algebraic surfaces, chap. II]. However, Beauville only proved that the map h is a bijective morphism. It would be a good exercise to prove that h indeed an isomorphism.

In this section, we introduce the important notion of blowing-up. This process is essential in studying singularities and hence birational geometry in general.

We first introduce the local version. Let \mathbb{A}^{n} be the affine space with coordinates z_{0}, \ldots, z_{n-1} and $0 \in \mathbb{A}^{n}$ be the "origin". We construct a variety $Y \subset \mathbb{A}^{n} \times \mathbb{P}^{n-1}$ by $\left\{z_{i} X_{j}=z_{j} X_{i}\right\}_{i \neq j}$, where X_{0}, \ldots, X_{n} are the homogeneous coordinates of \mathbb{P}^{n-1}. There is a natural morphism $\pi: Y \rightarrow \mathbb{A}^{n}$ by projection. One sees that $\pi^{-1}(0) \cong$ \mathbb{P}^{n-1} and $\pi: Y-\pi^{-1}(0) \cong \mathbb{A}^{n}-\{0\}$. We say Y is the blowing-up of \mathbb{A}^{n} at 0 and denoted $B l_{0}(Y)$.

In general, let $x \in X$ be a point in a variety X. Pick an open affine neighborhood U of x. We identify (U, x) with an open set $\left(U^{\prime}, 0\right) \subset \mathbb{A}^{n}$. Then one has $\widetilde{U}:=$ $\pi^{-1}\left(U^{\prime}\right) \rightarrow U^{\prime}$ which is the blowing-up of U^{\prime} at 0 . Glue $X-U$ and \widetilde{U} together, we get $\pi_{X}: \widetilde{X} \rightarrow X$. Which is called the blowing-up of X at x. Note that one has similarly that $\pi_{X}^{-1}(x) \cong \mathbb{P}^{n-1}$ and $\pi_{X}: \widetilde{X}-\pi_{X}^{-1}(x) \cong X-\{x\}$. The divisor $\pi_{X}^{-1}(x)$ is called the exceptional divisor, and usually denoted E.

Exercise 0.2. Let $\pi: X=B l_{x}\left(\mathbb{P}^{2}\right) \rightarrow \mathbb{P}^{2}$ be the blowing-up of \mathbb{P}^{2} at a point $x \in \mathbb{P}^{2}$. Prove that

$$
K_{X}=\pi^{*} K_{\mathbb{P}^{2}}+E
$$

by local coordinate computation.
In fact, if $\operatorname{dim} X=2, \pi: \widetilde{X} \rightarrow X$ is a blowing-up at a point $x \in X$, then

$$
K_{\tilde{X}}=\pi^{*} K_{X}+E .
$$

More generally, if $\operatorname{dim} X=n$, and $\pi: \widetilde{X}=B l_{x}(X) \rightarrow X$ is the blowing-up at x, then

$$
K_{\tilde{X}}=\pi^{*} K_{X}+(n-1) E .
$$

Let's play a little bit around the blowing-ups. Let's restrict ourselves to surfaces. One might expect that there are similar higher-dimensional formulation. Let X be a surface, and $C \subset X$ be a curve. Let f be the local equation of C around x. By fixing local coordinates z_{1}, z_{2}, we can write

$$
f=f\left(z_{1}, z_{2}\right)=f_{m}+f_{m+1}+\ldots
$$

with $f_{m} \neq 0$. We define the multiplicity of C at x to be

$$
m_{x}(C):=m
$$

One can have an equivalent definition by vanishing order of partial differentials. Hence one can check the $m_{x}(C)$ is well-defined.

We consider $\pi: \widetilde{X}=B l_{x}(X) \rightarrow X$. And let C be a curve passing through $x \in X$. Then $\pi^{-1}(C)$ consists of irreducible components, E and the other part maps onto C. The part maps onto C can be defined as

$$
\widetilde{C}:=\overline{\pi^{-1}(C-\{x\})},
$$

which is called the proper transform of C. Thus we have $\pi^{-1}(C)=\widetilde{C} \cup E$. More precisely, by computing the equations, one has

$$
\pi^{*} C=\widetilde{C}+m_{x}(C) E
$$

this is called the total transform of C.
We here collect some properties regarding the blowing-up on surface.
Proposition 0.3. Let $\pi: \widetilde{X}=B l_{x}(X) \rightarrow X$ be the blowing-up at $x \in X$. Then one has:
(1) There is a natural isomorphism $\operatorname{Div}(X) \oplus \mathbb{Z} E \rightarrow \operatorname{Div}(\widetilde{X})$ by $(D, n E) \mapsto$ $\pi^{*} D+n E$. And the isomorphism induces an isomorphism $\operatorname{Pic} X \oplus \mathbb{Z} E \rightarrow$ $\operatorname{Pic} \widetilde{X}$.
(2) Let $D, D^{\prime} \in \operatorname{Div}(X)$, then $\left(\pi^{*} D\right) \cdot\left(\pi^{*} D^{\prime}\right)=D \cdot D^{\prime}$.
(3) Let $D \in \operatorname{Div}(X)$, then $\left(\pi^{*} D\right) \cdot E=0$.
(4) $E . E=-1$.

Proof. It's easy to check the isomorphism given in (1).
For (2) and (3), it follows by choosing Δ, Δ^{\prime} which are linear equivalent to D, D^{\prime} respectively but not passing through x.

For (4), by adjunction formula and the fact the $E \cong \mathbb{P}^{1}$,

$$
-2=\operatorname{deg}\left(K_{E}\right)=\left(K_{\tilde{X}}+E\right) \cdot E=\left(\pi^{*} K_{X}+2 E\right) \cdot E=2 E \cdot E .
$$

The blowing-up gives the first example of binational morphism.
Definition 0.4. By a rational map $f: X \rightarrow Y$ from X to Y, we mean a regular function on a dense Zariski open (or simply non-empty Zariski open) set $U \subset X$.

More precisely, a rational map can be written as (U, f) where $U \subset X$ is a dense Zariski-open set and $f: U \rightarrow Y$ is regular.

We say $(U, f) \sim(V, g)$ if $f=g$ on $U \cap V$. In fact, a precise definition of rational map should be the equivalent class of the pairs (U, f). However, we usually abuse the notation if no confusion is likely.

Definition 0.5. A rational map $\phi: X \rightarrow Y$ is said to be birational if it admits an inverse. That is, there is an $\psi: Y \rightarrow X$ such that $\psi \circ \phi=i d_{X}, \phi \circ \psi=i d_{Y}$
Example 0.6. Let $\pi: Y=B l_{0}\left(\mathbb{A}^{2}\right) \rightarrow \mathbb{A}^{2}$, take $\psi: \mathbb{A}^{2}-\{0\} \rightarrow Y \subset \mathbb{A}^{2} \times \mathbb{P}^{1}$ such that $\psi(x, y)=((x, y),[x, y])$. Then $\psi \circ \pi=i d_{Y}, \pi \circ \psi=i d_{X}$. Hence π is a birational morphism.

Exercise 0.7. The following are equivalent:
(1) X and Y are birationally equivalent.
(2) there are non-empty open subset $U \subset X$ and $V \subset Y$ such that U, V are isomorphic.
(3) $K(X) \cong K(Y)$ as k-algebra.

Given a variety X, one can obtain various birational equivalent varieties

$$
\ldots \rightarrow X_{n} \rightarrow X_{n-1} \rightarrow \ldots \rightarrow X_{1} \rightarrow X
$$

by successive blowing-ups. It's also a natural question to ask if X is obtained by blowing-ups? Another way to put it is if X minimal or not? The precise formulation of minimal model in any dimension is quite subtle.

We start by working on contraction on surfaces. In order to produce a minimal object, we need to tell whether a surface X is obtained from blowing-ups.

Definition 0.8. Let $C \subset X$ be a curve on X, we say that C is a (-1)-curve if $C \cong \mathbb{P}^{1}$ and $C^{2}=-1$

We seen that we can have a (-1)-curve by blowing-up. In fact we will prove that any (-1)-curve comes from blowing-ups.

Theorem 0.9 (Caltelnuovo). Let X be a surface (non-singular complex projective surface) with $E \subset X a(-1)$-curve. Then there is a morphism $\pi: X \rightarrow X^{\prime}$ with X^{\prime} non-singular such that π is the blowing-up of X^{\prime} with exceptional divisor E.

Proof. The idea is to construct a morphism which is identical at E but isomorphic outside E.

First pick H^{\prime} any very ample divisor on X, Let $k:=H . E>0$. We consider $H^{\prime}=H+k E$, then $H^{\prime} . E=0$. Notice that the restriction map

$$
H^{0}\left(X, \mathcal{O}\left(H^{\prime}\right)\right) \rightarrow H^{0}\left(E, \mathcal{O}\left(\left.H^{\prime}\right|_{E}\right)=\mathcal{O}_{E}\right) \cong H^{0}\left(\mathbb{P}^{1}, \mathcal{O}\right) \cong \mathbb{C}
$$

Hence the map $\varphi_{H^{\prime}}$ produce by $\left|H^{\prime}\right|$ is constant on E. We need to refine H so that $\varphi_{H^{\prime}}$ is isomorphic outside E.

To this end, we first pick any very ample H_{0}. It's clear that $n H_{0}$ is very ample for all $n>0$. On the other hand, H_{0} is ample, one can arrange that $H:=n H_{0}$ is very ample with $H^{1}(X, \mathcal{O}(H))=0$.

Consider the exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(H+(i-1) E) \rightarrow \mathcal{O}_{X}(H+i E) \rightarrow \mathcal{O}_{E}\left(H+\left.i E\right|_{E}\right)=\mathcal{O}_{E}(k-i) \rightarrow 0
$$

Claim. $H^{1}(X, \mathcal{O}(H+i E))=0$ for all $1 \leq i \leq k$.
Grant this for the time being, then one has an exact sequence
$0 \rightarrow H^{0}\left(X, \mathcal{O}_{X}(H+(i-1) E)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(H+i E)\right) \rightarrow H^{0}\left(E, \mathcal{O}_{E}(k-i)\right) \rightarrow 0$.
Note that $H^{0}\left(E, \mathcal{O}_{E}(k-i)\right)$ is of dimension $k-i+1$, let $a_{i, 0}, \ldots, a_{i, k-i} \in$ $H^{0}(X, \mathcal{O}(H+i E))$ be the lifting of a basis in $H^{0}(E, \mathcal{O}(k-i))$.

Remark. Before we move on, we would like to remark the difference between $H^{0}(X, \mathcal{O}(D))$ and $\mathcal{L}(D)$. It actually comes from two possible definition of $\mathcal{O}(D)$. If we define the sheaf $\mathcal{O}(D)$ as $\mathcal{O}(D)(U)=\left\{f \in K(X)|\operatorname{div}(f)+D|_{U} \geq 0\right.$ on $\left.U\right\}$. Then $H^{0}(X, \mathcal{O}(D))=\mathcal{L}(D)$. However, another way to look at the sheaf $\mathcal{O}(D)$ is to consider it as the sheaf of sections line bundle associate to D. Then under this consideration, for $s \in H^{0}(X, \mathcal{O}(D))$, $\operatorname{div}(s)$ gives an effective divisor D_{s} linearly equivalent to D. To view it as $\mathcal{L}(D)$ is the classical treatment. The Modern viewpoint tends to think it as section of line bundles. We take the convention that $H^{0}(X, \mathcal{O}(D))$ represents the global section of line bundle of D from now on.

Let me describe the correspondence in more detail. Given a divisor D, one has a system of local equations $\left(U_{i} f_{i}\right)$. The basic idea behind the notion of line bundle is instead of looking at functions, we look at local functions satisfying given patching conditions. The correspondence is given as

$$
\begin{aligned}
\mathcal{L}(D) & \rightarrow H^{0}(X, \mathcal{O}(D)), \\
f & \mapsto\left(U_{i}, f f_{i}\right)=s .
\end{aligned}
$$

And the correspondence between their divisor is given by

$$
\operatorname{div}(s)=\operatorname{div}(f)+D
$$

which is an effective divisor $D_{s} \in|D|$.
Turning back to the proof, let $s \in H^{0}(X, \mathcal{O}(E))$ be a section such that $\operatorname{div}(s)=$ E. Then the map $H^{0}\left(X, \mathcal{O}_{X}(H+(i-1) E)\right) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(H+i E)\right)$ is given by multiplying s. Therefore, by working on the sequence inductively, one can have a basis of $H^{0}(X, \mathcal{O}(H+k E))$, given as

$$
\left\{s_{0} s^{k}, \ldots, s_{n} s^{k}, a_{1,0} s^{k-1}, \ldots, a_{1, k-1} s^{k-1}, \ldots, a_{k-1,0} s, a_{k-1,1} s, a_{k}\right\}
$$

We consider the map $\varphi_{H^{\prime}}: X \rightarrow \mathbb{P}^{N}$ given by the above basis. Note that $a_{k} \in H^{0}\left(X, \mathcal{O}\left(H^{\prime}\right)\right)$ whose restriction to E is a non-zero constant. Hence one has
φ is well-defined along E and $\varphi(E)=\left[0, \ldots, a_{k}\right]=[0, \ldots, 1]$. Moreover, for $x \notin E$, $s(x) \neq 0$, hence

$$
\left[s_{0} s^{k}(x), \ldots, s_{n} s^{k}(x)\right]=\left[s_{0}(x), \ldots, s_{n}(x)\right]=\varphi_{H}(x)
$$

Since H is very ample, φ_{H} defines an embedding on X and hence on $X-E$. One sees that the first $n+1$ coordinate of $\varphi_{H^{\prime}}$ gives an embedding on $X-E$ already, so it follows that $\varphi_{H^{\prime}}$ gives an embedding on $X-E$.

It remains to show that $X^{\prime}:=\varphi_{H^{\prime}}(X)$ is non-singular. Let $U \subset X$ be the open subset defined by $a_{k} \neq 0$. It's clear that $E \subset U$. We want to identify U with an open set $V \subset \widetilde{\mathbb{A}^{2}} \subset \mathbb{A}^{2} \times \mathbb{P}^{1}$. This can be achieved by considering

$$
\begin{gathered}
h: U \rightarrow \mathbb{A}^{2} \times \mathbb{P}^{1}, \\
x \mapsto\left(\left(\frac{a_{k-1,0} s}{a_{k}}(x), \frac{a_{k-1,1} s}{a_{k}}(x)\right),\left[a_{k-1,0}(x), a_{k-1,1}(x)\right]\right) .
\end{gathered}
$$

We might need to shrink U so that $a_{k-1,0}(x)$ and $a_{k-1,1}(x)$ are not simultaneously vanishing. It's obvious that h factor through $\widetilde{\mathbb{A}^{2}}$. Let $V=h(U) \subset \widetilde{\mathbb{A}^{2}}$. Moreover, one has the commutative diagram

where $\bar{h}=\left(\frac{a_{k-1,0} s}{a_{k}}, \frac{a_{k-1,1} s}{a_{k}}\right)$ is a rational map on \mathbb{P}^{N} defined on $\varphi_{H^{\prime}}(U)$. Another remark is that h clearly map $E \subset U$ onto $E \subset \widetilde{\mathbb{A}^{2}}$. It suffices to show that $h: U \rightarrow V$ is an isomorphism. Because, the induced map \bar{h} is an isomorphism . Therefore, $\varphi_{H^{\prime}}(U)$ is non-singular at $\varphi_{H^{\prime}}(E)$, which is the only possible singularity.

However, to show that h is an isomorphism is not trivial. One can first prove that it's a hemeomorphism, hence in particular, bijective. Then one prove the h induces isomorphism on all local rings. (cf. [На. Ex I.3.2, I.3.3])

