
Algebraic surfaces

Blowing-up and Blowing-down

Remark 0.1. The construction of blowing up can be found almost in any book.
(Some called it σ-process however). We refer [Beauville, complex algebraic surfaces,
chap. II]. However, Beauville only proved that the map h is a bijective morphism.
It would be a good exercise to prove that h indeed an isomorphism.

In this section, we introduce the important notion of blowing-up. This process
is essential in studying singularities and hence birational geometry in general.

We first introduce the local version. Let An be the affine space with coordinates
z0, ..., zn−1 and 0 ∈ An be the ”origin”. We construct a variety Y ⊂ An × Pn−1

by {ziXj = zjXi}i 6=j , where X0, ..., Xn are the homogeneous coordinates of Pn−1.
There is a natural morphism π : Y → An by projection. One sees that π−1(0) ∼=
Pn−1 and π : Y − π−1(0) ∼= An − {0}. We say Y is the blowing-up of An at 0 and
denoted Bl0(Y ).

In general, let x ∈ X be a point in a variety X. Pick an open affine neighborhood
U of x. We identify (U, x) with an open set (U ′, 0) ⊂ An. Then one has Ũ :=
π−1(U ′) → U ′ which is the blowing-up of U ′ at 0. Glue X −U and Ũ together, we
get πX : X̃ → X. Which is called the blowing-up of X at x. Note that one has
similarly that π−1

X (x) ∼= Pn−1 and πX : X̃−π−1
X (x) ∼= X−{x}. The divisor π−1

X (x)
is called the exceptional divisor, and usually denoted E.

Exercise 0.2. Let π : X = Blx(P2) → P2 be the blowing-up of P2 at a point x ∈ P2.
Prove that

KX = π∗KP2 + E

by local coordinate computation.

In fact, if dimX = 2, π : X̃ → X is a blowing-up at a point x ∈ X, then

KX̃ = π∗KX + E.

More generally, if dimX = n, and π : X̃ = Blx(X) → X is the blowing-up at x,
then

KX̃ = π∗KX + (n− 1)E.

Let’s play a little bit around the blowing-ups. Let’s restrict ourselves to surfaces.
One might expect that there are similar higher-dimensional formulation. Let X be
a surface, and C ⊂ X be a curve. Let f be the local equation of C around x. By
fixing local coordinates z1, z2, we can write

f = f(z1, z2) = fm + fm+1 + ...

with fm 6= 0. We define the multiplicity of C at x to be

mx(C) := m.

One can have an equivalent definition by vanishing order of partial differentials.
Hence one can check the mx(C) is well-defined.

We consider π : X̃ = Blx(X) → X. And let C be a curve passing through
x ∈ X. Then π−1(C) consists of irreducible components, E and the other part
maps onto C. The part maps onto C can be defined as

C̃ := π−1(C − {x}),
which is called the proper transform of C. Thus we have π−1(C) = C̃ ∪ E. More
precisely, by computing the equations, one has

π∗C = C̃ + mx(C)E,
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this is called the total transform of C.
We here collect some properties regarding the blowing-up on surface.

Proposition 0.3. Let π : X̃ = Blx(X) → X be the blowing-up at x ∈ X. Then
one has:

(1) There is a natural isomorphism Div(X) ⊕ ZE → Div(X̃) by (D,nE) 7→
π∗D + nE. And the isomorphism induces an isomorphism PicX ⊕ ZE →
PicX̃.

(2) Let D, D′ ∈ Div(X), then (π∗D).(π∗D′) = D.D′.
(3) Let D ∈ Div(X), then (π∗D).E = 0.
(4) E.E = −1.

Proof. It’s easy to check the isomorphism given in (1).
For (2) and (3), it follows by choosing ∆,∆′ which are linear equivalent to D, D′

respectively but not passing through x.
For (4), by adjunction formula and the fact the E ∼= P1,

−2 = deg(KE) = (KX̃ + E).E = (π∗KX + 2E).E = 2E.E.

¤

The blowing-up gives the first example of binational morphism.

Definition 0.4. By a rational map f : X 99K Y from X to Y , we mean a regular
function on a dense Zariski open (or simply non-empty Zariski open) set U ⊂ X.

More precisely, a rational map can be written as (U, f) where U ⊂ X is a dense
Zariski-open set and f : U → Y is regular.

We say (U, f) ∼ (V, g) if f = g on U ∩V . In fact, a precise definition of rational
map should be the equivalent class of the pairs (U, f). However, we usually abuse
the notation if no confusion is likely.

Definition 0.5. A rational map φ : X 99K Y is said to be birational if it admits
an inverse. That is, there is an ψ : Y 99K X such that ψ ◦ φ = idX , φ ◦ ψ = idY

Example 0.6. Let π : Y = Bl0(A2) → A2, take ψ : A2 − {0} → Y ⊂ A2 × P1

such that ψ(x, y) = ((x, y), [x, y]). Then ψ ◦ π = idY , π ◦ ψ = idX . Hence π is a
birational morphism.

Exercise 0.7. The following are equivalent:
(1) X and Y are birationally equivalent.
(2) there are non-empty open subset U ⊂ X and V ⊂ Y such that U, V are

isomorphic.
(3) K(X) ∼= K(Y ) as k-algebra.

Given a variety X, one can obtain various birational equivalent varieties

... → Xn → Xn−1 → ... → X1 → X

by successive blowing-ups. It’s also a natural question to ask if X is obtained by
blowing-ups? Another way to put it is if X minimal or not? The precise formulation
of minimal model in any dimension is quite subtle.

We start by working on contraction on surfaces. In order to produce a minimal
object, we need to tell whether a surface X is obtained from blowing-ups.

Definition 0.8. Let C ⊂ X be a curve on X, we say that C is a (−1)-curve if
C ∼= P1 and C2 = −1

We seen that we can have a (−1)-curve by blowing-up. In fact we will prove that
any (−1)-curve comes from blowing-ups.
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Theorem 0.9 (Caltelnuovo). Let X be a surface (non-singular complex projective
surface) with E ⊂ X a (−1)-curve. Then there is a morphism π : X → X ′ with X ′

non-singular such that π is the blowing-up of X ′ with exceptional divisor E.

Proof. The idea is to construct a morphism which is identical at E but isomorphic
outside E.

First pick H ′ any very ample divisor on X, Let k := H.E > 0. We consider
H ′ = H + kE, then H ′.E = 0. Notice that the restriction map

H0(X,O(H ′)) → H0(E,O(H ′|E) = OE) ∼= H0(P1,O) ∼= C.

Hence the map ϕH′ produce by |H ′| is constant on E. We need to refine H so
that ϕH′ is isomorphic outside E.

To this end, we first pick any very ample H0. It’s clear that nH0 is very ample
for all n > 0. On the other hand, H0 is ample, one can arrange that H := nH0 is
very ample with H1(X,O(H)) = 0.

Consider the exact sequence

0 → OX(H + (i− 1)E) → OX(H + iE) → OE(H + iE|E) = OE(k − i) → 0.

Claim. H1(X,O(H + iE)) = 0 for all 1 ≤ i ≤ k.
Grant this for the time being, then one has an exact sequence

0 → H0(X,OX(H + (i− 1)E)) → H0(X,OX(H + iE)) → H0(E,OE(k − i)) → 0.

Note that H0(E,OE(k − i)) is of dimension k − i + 1, let ai,0, ..., ai,k−i ∈
H0(X,O(H + iE)) be the lifting of a basis in H0(E,O(k − i)).

Remark. Before we move on, we would like to remark the difference between
H0(X,O(D)) and L(D). It actually comes from two possible definition of O(D).
If we define the sheaf O(D) as O(D)(U) = {f ∈ K(X)|div(f) + D|U ≥ 0 on U}.
Then H0(X,O(D)) = L(D). However, another way to look at the sheaf O(D) is
to consider it as the sheaf of sections line bundle associate to D. Then under this
consideration, for s ∈ H0(X,O(D)), div(s) gives an effective divisor Ds linearly
equivalent to D. To view it as L(D) is the classical treatment. The Modern
viewpoint tends to think it as section of line bundles. We take the convention that
H0(X,O(D)) represents the global section of line bundle of D from now on.

Let me describe the correspondence in more detail. Given a divisor D, one has a
system of local equations (Uifi). The basic idea behind the notion of line bundle is
instead of looking at functions, we look at local functions satisfying given patching
conditions. The correspondence is given as

L(D) → H0(X,O(D)),

f 7→ (Ui, ffi) = s.

And the correspondence between their divisor is given by

div(s) = div(f) + D,

which is an effective divisor Ds ∈ |D|.
Turning back to the proof, let s ∈ H0(X,O(E)) be a section such that div(s) =

E. Then the map H0(X,OX(H + (i − 1)E)) → H0(X,OX(H + iE)) is given by
multiplying s. Therefore, by working on the sequence inductively, one can have a
basis of H0(X,O(H + kE)), given as

{s0s
k, ..., snsk, a1,0s

k−1, ..., a1,k−1s
k−1, ..., ak−1,0s, ak−1,1s, ak}.

We consider the map ϕH′ : X → PN given by the above basis. Note that
ak ∈ H0(X,O(H ′)) whose restriction to E is a non-zero constant. Hence one has
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ϕ is well-defined along E and ϕ(E) = [0, ..., ak] = [0, ..., 1]. Moreover, for x 6∈ E,
s(x) 6= 0, hence

[s0s
k(x), ..., snsk(x)] = [s0(x), ..., sn(x)] = ϕH(x).

Since H is very ample, ϕH defines an embedding on X and hence on X − E. One
sees that the first n + 1 coordinate of ϕH′ gives an embedding on X − E already,
so it follows that ϕH′ gives an embedding on X − E.

It remains to show that X ′ := ϕH′(X) is non-singular. Let U ⊂ X be the open
subset defined by ak 6= 0. It’s clear that E ⊂ U . We want to identify U with an
open set V ⊂ Ã2 ⊂ A2 × P1. This can be achieved by considering

h : U → A2 × P1,

x 7→ (
(
ak−1,0s

ak
(x),

ak−1,1s

ak
(x)), [ak−1,0(x), ak−1,1(x)]

)
.

We might need to shrink U so that ak−1,0(x) and ak−1,1(x) are not simultaneously
vanishing. It’s obvious that h factor through Ã2. Let V = h(U) ⊂ Ã2. Moreover,
one has the commutative diagram

U
h−−−−→ Ã2

ϕH′
y π

y

ϕH′(U) h̄−−−−→ A2,

where h̄ = (ak−1,0s
ak

,
ak−1,1s

ak
) is a rational map on PN defined on ϕH′(U). Another

remark is that h clearly map E ⊂ U onto E ⊂ Ã2. It suffices to show that h : U → V
is an isomorphism. Because, the induced map h̄ is an isomorphism . Therefore,
ϕH′(U) is non-singular at ϕH′(E), which is the only possible singularity.

However, to show that h is an isomorphism is not trivial. One can first prove
that it’s a hemeomorphism, hence in particular, bijective. Then one prove the h
induces isomorphism on all local rings. (cf. [Ha. Ex I.3.2, I.3.3]) ¤


