Algebraic surfaces

LINEAR SERIES AND MAPS TO PROJECTIVE SPACES

Fix a non-singular variety X and a divisor $D \in Div(X)$. One can define

 $\mathcal{L}(D) := \{ f \in K(X) | div(f) + D \ge 0 \},\$

and

 $|D| = \{D' \in Div(X) | D' \sim D, D' \ge 0\}.$

Moreover there is a map $\pi : \mathcal{L}(D) - \{0\} \to |D|$ by sending f to div(f) + D. Such |D| is called the complete linear series of D. One can also consider a vector subspace $V \subset \mathcal{L}(D)$ and then produce a subseries $|V| \subset |D|$.

Another remark is that π maps the punctured space to a projective space. Thus $\dim |D| = \dim \mathcal{L}(D) - 1$.

Suppose now that $\mathcal{L}(D) \neq \{0\}$, one can define a map $X \to \mathbb{P}^n$. To start with, we pick a basis $f_0, f_1, ..., f_n$ of $\mathcal{L}(D)$ and consider the local equation of D, denoted $\{(f_\alpha, U_\alpha)\}$. For $x \in U_\alpha$, we define $\varphi_\alpha : x \mapsto [f_0 f_\alpha(x), f_1 f_\alpha(x), ..., f_0 n f_\alpha(x)]$.

One notice that on U_{α} , $div(f_i) + D|_{U_{\alpha}} = div(f_i f_{\alpha}) \ge 0$. Hence $f_i f_{\alpha}$ is indeed a regular function on U_{α} . It turns out the φ_{α} is undefined only at the common zero of $f_i f_{\alpha}$.

If $x \in U_{\alpha} \cap U_{\beta}$, then $f_{\alpha}f_{\beta}^{-1}(x)$ is a non-zero constant, hence $\varphi_{\alpha}(x) = \varphi_{\beta}(x)$. All these maps patch together to give $\varphi_D : X \dashrightarrow \mathbb{P}^n$. Let Bs|D| the the locus where φ_D is undefined. Then Bs|D| can be described as

$$Bs|D| = \{x \in X | f_i f_\alpha(x) = 0 \quad \forall i, \text{ for some } U_\alpha \ni x\}$$
$$= \{x \in X | f f_\alpha(x) = 0, \quad \forall f \in \mathcal{L}, \text{ for some } U_\alpha \ni x\}$$
$$= \{x \in X | x \in Supp(D'), \quad \forall D' \in |D|\}.$$

The set Bs|D| is call the base locus of |D|.

Definition 0.1. |D| (or D) is said to be base point free if $Bs|D| = \emptyset$. In this case, φ_D is a morphism.

|D| (or D) is said to be very ample if φ_D is a embedding.

Example 0.2. Consider $X = \mathbb{P}^2$ and $D = (XY - Z^2 = 0) \in Div(X)$. Then $\mathcal{L}(D)$ has a basis $f_0 := \frac{XY}{XY - Z^2}, f_1 := \frac{YZ}{XY - Z^2}, f_2 := \frac{ZX}{XY - Z^2}, f_3 := \frac{X^2}{XY - Z^2}, f_4 := \frac{Y^2}{XY - Z^2}, f_5 := \frac{Z^2}{XY - Z^2}$

If we consider the subspace $V = \langle f_0, f_1, f_2 \rangle$, then $\varphi_{|V|} : X \to \mathbb{P}^2$ by $[a_0, a_1, a_2] \mapsto [a_0a_1, a_1a_2, a_2a_0]$. One finds that $Bs|V| = \{[1, 0, 0], [0, 1, 0], [0, 0, 1]\}.$

If we consider the complete linear series |D|, then $\varphi_D : X \to \mathbb{P}^5$ by $[a_0, a_1, a_2] \mapsto [a_0a_1, a_1a_2, a_2a_0, a_0^2, a_1^2, a_2^2]$ without any base point. Hence |D| is base point free. In fact, it's very ample.