Algebraic surfaces

LINEAR SERIES AND MAPS TO PROJECTIVE SPACES

Fix a non-singular variety X and a divisor $D \in \operatorname{Div}(X)$. One can define

$$
\mathcal{L}(D):=\{f \in K(X) \mid \operatorname{div}(f)+D \geq 0\}
$$

and

$$
|D|=\left\{D^{\prime} \in \operatorname{Div}(X) \mid D^{\prime} \sim D, D^{\prime} \geq 0\right\}
$$

Moreover there is a map $\pi: \mathcal{L}(D)-\{0\} \rightarrow|D|$ by sending f to $\operatorname{div}(f)+D$. Such $|D|$ is called the complete linear series of D. One can also consider a vector subspace $V \subset \mathcal{L}(D)$ and then produce a subseries $|V| \subset|D|$.

Another remark is that π maps the punctured space to a projective space. Thus $\operatorname{dim}|D|=\operatorname{dim} \mathcal{L}(D)-1$.

Suppose now that $\mathcal{L}(D) \neq\{0\}$, one can define a map $X \rightarrow \mathbb{P}^{n}$. To start with, we pick a basis $f_{0}, f_{1}, \ldots, f_{n}$ of $\mathcal{L}(D)$ and consider the local equation of D, denoted $\left\{\left(f_{\alpha}, U_{\alpha}\right)\right\}$. For $x \in U_{\alpha}$, we define $\varphi_{\alpha}: x \mapsto\left[f_{0} f_{\alpha}(x), f_{1} f_{\alpha}(x), \ldots, f_{0} n f_{\alpha}(x)\right]$.

One notice that on $U_{\alpha}, \operatorname{div}\left(f_{i}\right)+\left.D\right|_{U_{\alpha}}=\operatorname{div}\left(f_{i} f_{\alpha}\right) \geq 0$. Hence $f_{i} f_{\alpha}$ is indeed a regular function on U_{α}. It turns out the φ_{α} is undefined only at the common zero of $f_{i} f_{\alpha}$.

If $x \in U_{\alpha} \cap U_{\beta}$, then $f_{\alpha} f_{\beta}^{-1}(x)$ is a non-zero constant, hence $\varphi_{\alpha}(x)=\varphi_{\beta}(x)$. All these maps patch together to give $\varphi_{D}: X \rightarrow \mathbb{P}^{n}$. Let $B s|D|$ the the locus where φ_{D} is undefined. Then $B s|D|$ can be described as

$$
\begin{aligned}
& B s|D|=\left\{x \in X \mid f_{i} f_{\alpha}(x)=0 \quad \forall i, \text { for some } U_{\alpha} \ni x\right\} \\
& =\left\{x \in X \mid f f_{\alpha}(x)=0, \quad \forall f \in \mathcal{L}, \text { for some } U_{\alpha} \ni x\right\} \\
& =\left\{x \in X\left|x \in \operatorname{Supp}\left(D^{\prime}\right), \quad \forall D^{\prime} \in\right| D \mid\right\} .
\end{aligned}
$$

The set $B s|D|$ is call the base locus of $|D|$.
Definition 0.1. $|D|$ (or D) is said to be base point free if $B s|D|=\emptyset$. In this case, φ_{D} is a morphism.
$|D|$ (or D) is said to be very ample if φ_{D} is a embedding.
Example 0.2. Consider $X=\mathbb{P}^{2}$ and $D=\left(X Y-Z^{2}=0\right) \in \operatorname{Div}(X)$. Then $\mathcal{L}(D)$ has a basis $f_{0}:=\frac{X Y}{X Y-Z^{2}}, f_{1}:=\frac{Y Z}{X Y-Z^{2}}, f_{2}:=\frac{Z X}{X Y-Z^{2}}, f_{3}:=\frac{X^{2}}{X Y-Z^{2}}, f_{4}:=$ $\frac{Y^{2}}{X Y-Z^{2}}, f_{5}:=\frac{Z^{2}}{X Y-Z^{2}}$

If we consider the subspace $V=<f_{0}, f_{1}, f_{2}>$, then $\varphi_{|V|}: X \rightarrow \mathbb{P}^{2}$ by $\left[a_{0}, a_{1}, a_{2}\right] \mapsto$ $\left[a_{0} a_{1}, a_{1} a_{2}, a_{2} a_{0}\right]$. One finds that $B s|V|=\{[1,0,0],[0,1,0],[0,0,1]\}$.

If we consider the complete linear series $|D|$, then $\varphi_{D}: X \rightarrow \mathbb{P}^{5}$ by $\left[a_{0}, a_{1}, a_{2}\right] \mapsto$ $\left[a_{0} a_{1}, a_{1} a_{2}, a_{2} a_{0}, a_{0}^{2}, a_{1}^{2}, a_{2}^{2}\right]$ without any base point. Hence $|D|$ is base point free. In fact, it's very ample.

