
Algebraic surfaces

Minimal model program on surfaces

The previous result shows that a minimal model for surface always
exists and that a surface X is minimal if and only if X has no (−1)-
curve. Hence we may and we usually do assume that X is minimal.
However, the criterion by (−1) curve only valid for surface. We might
prefer to have a criterion which is also valid for higher dimension.

If X has a (−1)-curve E, then KX .E = −1 < 0. Thus if KX is nef
then X has no (−1)-curve. Hence X is minimal. The minimal model
program (or sometimes called Mori’s program can be describe as a
program to find minimal models. The important criterion is nefness
of KX . Let’s start with a variety X, if KX is nef, then we have a
minimal model and stop here. If KX is not nef, then there is a curve
C such that C.KX < 0. Then one can produce a morphism f : X → Y
contracting C (and possibly contracting more curves at the same time).
If dimY < dimX, then the morphism has some special structure which
is called Mori’s fibration. And the program stop here.

If dimX = dimY and f contracts a divisor (we called it divisorial
contraction). Then ρ(Y ) < ρ(X) := rk(NS(X)). We replace X by Y
and start the program over again. By looking at ρ(X), it can’t be an
infinite loop, that is, the program must stop.

The remaining is the subtle one. If dimX = dimY and f contracts a
subvariety of codimension ≥ 2 . Then call it a small contraction. One
needs flips to produce another birational model f ′ : X ′ → Y . However,
there is no infinite sequence of flips. Thus one must stop at somewhere
f : X̃ → Ỹ which doesn’t allow flips. Thus replacing X by X̃ then it
must go to other cases.

For surface, we don’t need to worry about small contraction. There-
fore, by running the minimal model program, the resulting products
are surfaces with KX nef and Mori fibration over a curve or a point.

Theorem 0.1. Let X be a minimal surface, then either KX is nef or
X is a ruled surface or P2. In fact, X is P2 when ρ(X) = 1 and X is
ruled when ρ(X) ≥ 2.

We need the following two highly non-trivial facts:

(1) If KX is not nef, then there exists a rational curve C ∼= P1 such
that C.KX < 0.

(2) Fix an ample divisor H, there is a rational curve C with KX .C <
0 such that −KX .C

H.C
is maximal.

The point for the first fact is that if KX .C < 0 then by reduction to
characteristic p, one sees that the curve C can be deformed (in char p).
Thus one has a morphism F : C × A1 → X. The morphism extends
to a rational map F̄ : C × P1 99K. By rigidity lemma, one shows that
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F̄ can’t be a morphism, i.e. must have point of indeterminacy. We
then eliminate the indeterminacy by blowing-ups to get a morphism
F̃ : Y → X. The exceptional curve E ∼= P1 then maps to a rational
curve in X, we denote it by E. Moreover, C ≡ C ′ + E, thus either
E.KX < 0 or C ′.KX < 0. If KX .E < 0 then we are done, otherwise,
we replace C by C ′. With arithmetic genus pa(C

′) < pa(C), we must
stop somewhere and get a rational curve.

The idea for proving the second fact is more subtle, it’s basically the
rationality theorem.

Before we get into the proof, we would like to define the arithmetic
genus which will be useful in the sequel.

Definition 0.2. Let D be an effective divisor in a surface X, then we
define the arithmetic genus

pa(D) :=
1

2
(D2 + KX .D) + 1.

Note that if D is a non-singular curve, then pa(D) = g(D).

Let C ⊂ X be a possibly singular curve. By blowing-up on X along

singularities of C, one has proper transform C̃ ⊂ X̃ → X which is non-

singular. We leave it as an exercise to show that pa(C̃) ≤ pa(C) and <

holds if C is singular. Nevertheless, pa(C̃) = g(C̃) ≥ 0. Therefore we
have:

Proposition 0.3. Let C ⊂ X be a possibly singular curve. Then
pa(C) ≥ 0.

And if pa(C) = 0, then C is non-singular and C ∼= P1.

proof of the theorem. Assume those facts, we have a a rational curve
C with KX .C < 0 such that −KX .C

H.C
is maximal, where H is a fixed

very ample divisor. Let q
p

be the maximal value. Let D := pKX + qH,

it’s clear that D.C = 0 and D.C ′ ≥ 0 for any irreducible curve C ′. In
particular, D is nef.
Remark. If D is a nef divisor on a surface, then D.C ≥ 0 for all curves
and D2 ≥ 0.

We first take care of the case that ρ(X) ≥ 2.
Claim 1. h0(X,OX(mD)) > 0 for m À 0.
Claim 2. |mD| is base point free for m À 0.

Grant these for the time being, we then fix an m0 À 0 such that
|m0D| is free. We have a morphism

ϕm0D : X → ϕ(X) =: Y ⊂ Pn.

Note that the restriction

H0(X,O(m0D)) → H0(C,O(m0D|C) = O) ∼= C,
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gives constant functions. One concludes that the morphism ϕ maps C
to a point.
Facts we need. Another fact we need is that Y is non-singular for
m À 0. Then by minimality of X, dimY < dimX. If ρ(X) ≥ 2, then
one can conclude that there is a curve C ′ with D.C ′ > 0.
Claim 3. We may assume that the restriction

H0(X,O(mD)) → H0(C ′,O(mD|C′))
is non-constant.
As a result, the restriction of ϕ to C ′ is not constant and so ϕ is
not constant. Hence dimY ≥ 1. So dimY = 1. We may assume
that ϕ : X → Y is a fibration, i.e. surjective with connected fibers.
Moreover, a general fiber is a non-singular curve.

It remains to analyze the structure of ϕ. Especially, we wish to prove
that the fiber is ∼= P1. We need the famous
Zariski Lemma. Let π : X → B be a fibration from a surface to a
curve. Let Fs =

∑
i niCi be a fiber and D =

∑
i miDi with mi ≥ 0 for

all i. Then D2 ≤ 0. In particular, C2
i ≤ 0 for all i.

Let’s look at the fibration ϕ : X → Y . We hope to prove that every
fiber Fs

∼= P1. Let C0 ⊂ Fs be an irreducible component. As we have
seen, the curve C0 contains in a fiber if and only if D.C0 = 0. Hence
KX .C0 < 0. Moreover, by Zariski Lemma, C2

0 ≤ 0. By adjunction
formula,

−2 ≤ 2pa(C0)− 2 = KX .C0 + C0.C0 < 0.

The only possibility is C2
0 = 0, KX .C0 = −2 since X has no (−1)-curve.

Let Fs := ϕ∗(s) =
∑

i niCi be a fiber of ϕ. It’s clear that F 2
s = 0.

And we have seen that C2
i = 0. It follows that

0 = F 2
s = 2

∑

i6=j

ninjCiCj ≥ 0.

Since Fs is connected, if there are more than two components in Fs,
then Ci.Cj > 0 for some i 6= j which is a contradiction. Therefore Fs

is irreducible, i.e. say Fs = nsCs.
For s 6= t ∈ B,

−2ns = Fs.KX = Ft.KX = −2nt.

It turns out that ns = nt for all s, t ∈ B. However, for general fiber F
is a non-singular curve. One has ns = 1 for all s. This completes the
proof of the case that ρ(X) ≥ 2.

proof of the claims. In order to prove the claims, we need
Kodaira Vanishing Theorem. Let X be a non-singular projective
variety over C. Let L be an ample divisor, then

H i(X,OX(KX + L)) = 0 ∀i > 0.
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To prove the Claim 1, we consider

mD −KX = (mp− 1)KX + mqH ≡ mp− 1

p
D + (mq − (mp− 1)q

p
)H.

Since D is nef and H is ample. It’s clear that ”nef+ample is ample”.
Hence mD−KX is ample for all m > 0. By Kodaira vanishing theorem,
one has

χ(X,O(mD)) = h0(X,O(mD)).

By Riemann-Roch,

h0(X,O(mD)) = χ(X,OX) +
1

2
(mD −KX).mD.

It suffices to prove that D.H > 0 for any ample divisor since mD−KX

is ample.
Suppose on the contrary that D.H = 0, (recall that D.C ′ > 0 for

some C ′, so D 6≡ 0.) By Hodge Index Theorem, D2 < 0. This contra-
dicts to D being nef. (D is nef implies that D2 ≥ 0.) This completes
the proof of Claim 1.

To prove the Claim 2. We remark that the following conditions are
equivalent.

(1) x is a base point of |D|.
(2) Every section of H0(X,O(D)) vanishing at x.
(3) The evaluation map H0(X,O(D)) → C(p) is zero.
(4) The natural mao H0(X,O(D)⊗Ix) → H0(X,O(D)) is an iso-

morphism.
(5) H1(X,O(D)⊗Ix) 6= 0

Where Ix denotes the ideal sheaf of x and O(D)⊗Ix is obtained by
considering sections in O(D) vanishing along x. Therefore, in order to
prove the base point freeness, it’s enough to prove that H1(X,O(mD)⊗Ix) =
0. One might want to apply Kodaira vanishing theorem to prove
H1 = 0, however, it only works for divisor. Therefore, we consider
π : X ′ = Blx(X) → X. It’s not too difficult (but not trivial) to see
that

H1(X ′,O(π∗mD − E)) ∼= H1(X,O(mD)⊗Ix).

Consider now Lm := π∗mD − E −KX′ = π∗(mD −KX)− 2E. We
leave it as an exercise to show that Lm is ample for m À 0. Then by
Kodaira vanishing theorem, we are done.

To prove the last claim, it suffices to prove that |mD| separate two
general points on C ′. To this end, we first fixed x ∈ C ′ ⊂ X. We con-
sider the linear series |mD⊗Ix| which is a subseries of |mD| consisting
of those divisors passing through x. As long as dim|mD⊗Ix| ≥ 1 then
Bs|mD⊗Ix| is finite. We pick any y 6∈ Bs|mD⊗Ix|. Therefore, a
general member D′ ∈ |mD⊗Ix| passing through x but not y. Hence
the corresponding section s ∈ H0(X,O(mD)) has the property that
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s(x) = 0, s(y) 6= 0. In particular, we have proved that Claim 3. It
follows that ϕ(x) 6= ϕ(y). ¤

The remaining case is to show that a minimal surface with ρ(X) = 1
is P2. This might require some characterization of P2 which we will
prove later. ¤


