Algebraic surfaces

Minimal model program on surfaces

The previous result shows that a minimal model for surface always exists and that a surface X is minimal if and only if X has no (-1)curve. Hence we may and we usually do assume that X is minimal. However, the criterion by (-1) curve only valid for surface. We might prefer to have a criterion which is also valid for higher dimension.

If X has a (-1)-curve E, then $K_{X} \cdot E=-1<0$. Thus if K_{X} is nef then X has no (-1)-curve. Hence X is minimal. The minimal model program (or sometimes called Mori's program can be describe as a program to find minimal models. The important criterion is nefness of K_{X}. Let's start with a variety X, if K_{X} is nef, then we have a minimal model and stop here. If K_{X} is not nef, then there is a curve C such that $C . K_{X}<0$. Then one can produce a morphism $f: X \rightarrow Y$ contracting C (and possibly contracting more curves at the same time). If $\operatorname{dim} Y<\operatorname{dim} X$, then the morphism has some special structure which is called Mori's fibration. And the program stop here.

If $\operatorname{dim} X=\operatorname{dim} Y$ and f contracts a divisor (we called it divisorial contraction). Then $\rho(Y)<\rho(X):=\operatorname{rk}(N S(X))$. We replace X by Y and start the program over again. By looking at $\rho(X)$, it can't be an infinite loop, that is, the program must stop.

The remaining is the subtle one. If $\operatorname{dim} X=\operatorname{dim} Y$ and f contracts a subvariety of codimension ≥ 2. Then call it a small contraction. One needs flips to produce another birational model $f^{\prime}: X^{\prime} \rightarrow Y$. However, there is no infinite sequence of flips. Thus one must stop at somewhere $f: \tilde{X} \rightarrow \tilde{Y}$ which doesn't allow flips. Thus replacing X by \tilde{X} then it must go to other cases.

For surface, we don't need to worry about small contraction. Therefore, by running the minimal model program, the resulting products are surfaces with K_{X} nef and Mori fibration over a curve or a point.

Theorem 0.1. Let X be a minimal surface, then either K_{X} is nef or X is a ruled surface or \mathbb{P}^{2}. In fact, X is \mathbb{P}^{2} when $\rho(X)=1$ and X is ruled when $\rho(X) \geq 2$.

We need the following two highly non-trivial facts:
(1) If K_{X} is not nef, then there exists a rational curve $C \cong \mathbb{P}^{1}$ such that $C . K_{X}<0$.
(2) Fix an ample divisor H, there is a rational curve C with $K_{X} . C<$ 0 such that $\frac{-K_{X} \cdot C}{H . C}$ is maximal.
The point for the first fact is that if $K_{X} . C<0$ then by reduction to characteristic p, one sees that the curve C can be deformed (in char p). Thus one has a morphism $F: C \times \mathbb{A}^{1} \rightarrow X$. The morphism extends to a rational map $\bar{F}: C \times \mathbb{P}^{1} \rightarrow$. By rigidity lemma, one shows that
\bar{F} can't be a morphism, i.e. must have point of indeterminacy. We then eliminate the indeterminacy by blowing-ups to get a morphism $\tilde{F}: Y \rightarrow X$. The exceptional curve $E \cong \mathbb{P}^{1}$ then maps to a rational curve in X, we denote it by E. Moreover, $C \equiv C^{\prime}+E$, thus either $E . K_{X}<0$ or $C^{\prime} . K_{X}<0$. If $K_{X} . E<0$ then we are done, otherwise, we replace C by C^{\prime}. With arithmetic genus $p_{a}\left(C^{\prime}\right)<p_{a}(C)$, we must stop somewhere and get a rational curve.

The idea for proving the second fact is more subtle, it's basically the rationality theorem.

Before we get into the proof, we would like to define the arithmetic genus which will be useful in the sequel.

Definition 0.2. Let D be an effective divisor in a surface X, then we define the arithmetic genus

$$
p_{a}(D):=\frac{1}{2}\left(D^{2}+K_{X} \cdot D\right)+1 .
$$

Note that if D is a non-singular curve, then $p_{a}(D)=g(D)$.
Let $C \subset X$ be a possibly singular curve. By blowing-up on X along singularities of C, one has proper transform $\widetilde{C} \subset \widetilde{X} \rightarrow X$ which is nonsingular. We leave it as an exercise to show that $p_{a}(\widetilde{C}) \leq p_{a}(C)$ and $<$ holds if C is singular. Nevertheless, $p_{a}(\widetilde{C})=g(\widetilde{C}) \geq 0$. Therefore we have:

Proposition 0.3. Let $C \subset X$ be a possibly singular curve. Then $p_{a}(C) \geq 0$.

And if $p_{a}(C)=0$, then C is non-singular and $C \cong \mathbb{P}^{1}$.
proof of the theorem. Assume those facts, we have a a rational curve C with $K_{X} . C<0$ such that $\frac{-K_{X} . C}{H . C}$ is maximal, where H is a fixed very ample divisor. Let $\frac{q}{p}$ be the maximal value. Let $D:=p K_{X}+q H$, it's clear that $D . C=0$ and $D . C^{\prime} \geq 0$ for any irreducible curve C^{\prime}. In particular, D is nef.
Remark. If D is a nef divisor on a surface, then $D . C \geq 0$ for all curves and $D^{2} \geq 0$.

We first take care of the case that $\rho(X) \geq 2$.
Claim 1. $h^{0}\left(X, \mathcal{O}_{X}(m D)\right)>0$ for $m \gg 0$.
Claim 2. $|m D|$ is base point free for $m \gg 0$.
Grant these for the time being, we then fix an $m_{0} \gg 0$ such that $\left|m_{0} D\right|$ is free. We have a morphism

$$
\varphi_{m_{0} D}: X \rightarrow \varphi(X)=: Y \subset \mathbb{P}^{n}
$$

Note that the restriction

$$
H^{0}\left(X, \mathcal{O}\left(m_{0} D\right)\right) \rightarrow H^{0}\left(C, \mathcal{O}\left(\left.m_{0} D\right|_{C}\right)=\mathcal{O}\right) \cong \mathbb{C}
$$

gives constant functions. One concludes that the morphism φ maps C to a point.
Facts we need. Another fact we need is that Y is non-singular for $m \gg 0$. Then by minimality of $X, \operatorname{dim} Y<\operatorname{dim} X$. If $\rho(X) \geq 2$, then one can conclude that there is a curve C^{\prime} with $D . C^{\prime}>0$.
Claim 3. We may assume that the restriction

$$
H^{0}(X, \mathcal{O}(m D)) \rightarrow H^{0}\left(C^{\prime}, \mathcal{O}\left(\left.m D\right|_{C^{\prime}}\right)\right)
$$

is non-constant.
As a result, the restriction of φ to C^{\prime} is not constant and so φ is not constant. Hence $\operatorname{dim} Y \geq 1$. So $\operatorname{dim} Y=1$. We may assume that $\varphi: X \rightarrow Y$ is a fibration, i.e. surjective with connected fibers. Moreover, a general fiber is a non-singular curve.

It remains to analyze the structure of φ. Especially, we wish to prove that the fiber is $\cong \mathbb{P}^{1}$. We need the famous
Zariski Lemma. Let $\pi: X \rightarrow B$ be a fibration from a surface to a curve. Let $F_{s}=\sum_{i} n_{i} C_{i}$ be a fiber and $D=\sum_{i} m_{i} D_{i}$ with $m_{i} \geq 0$ for all i. Then $D^{2} \leq 0$. In particular, $C_{i}^{2} \leq 0$ for all i.

Let's look at the fibration $\varphi: X \rightarrow Y$. We hope to prove that every fiber $F_{s} \cong \mathbb{P}^{1}$. Let $C_{0} \subset F_{s}$ be an irreducible component. As we have seen, the curve C_{0} contains in a fiber if and only if $D . C_{0}=0$. Hence $K_{X} . C_{0}<0$. Moreover, by Zariski Lemma, $C_{0}^{2} \leq 0$. By adjunction formula,

$$
-2 \leq 2 p_{a}\left(C_{0}\right)-2=K_{X} \cdot C_{0}+C_{0} \cdot C_{0}<0
$$

The only possibility is $C_{0}^{2}=0, K_{X} . C_{0}=-2$ since X has no (-1)-curve.
Let $F_{s}:=\varphi^{*}(s)=\sum_{i} n_{i} C_{i}$ be a fiber of φ. It's clear that $F_{s}^{2}=0$. And we have seen that $C_{i}^{2}=0$. It follows that

$$
0=F_{s}^{2}=2 \sum_{i \neq j} n_{i} n_{j} C_{i} C_{j} \geq 0
$$

Since F_{s} is connected, if there are more than two components in F_{s}, then $C_{i} . C_{j}>0$ for some $i \neq j$ which is a contradiction. Therefore F_{s} is irreducible, i.e. say $F_{s}=n_{s} C_{s}$.

For $s \neq t \in B$,

$$
-2 n_{s}=F_{s} \cdot K_{X}=F_{t} \cdot K_{X}=-2 n_{t} .
$$

It turns out that $n_{s}=n_{t}$ for all $s, t \in B$. However, for general fiber F is a non-singular curve. One has $n_{s}=1$ for all s. This completes the proof of the case that $\rho(X) \geq 2$.
proof of the claims. In order to prove the claims, we need
Kodaira Vanishing Theorem. Let X be a non-singular projective variety over \mathbb{C}. Let L be an ample divisor, then

$$
H^{i}\left(X, \mathcal{O}_{X}\left(K_{X}+L\right)\right)=0 \quad \forall i>0
$$

To prove the Claim 1, we consider
$m D-K_{X}=(m p-1) K_{X}+m q H \equiv \frac{m p-1}{p} D+\left(m q-\frac{(m p-1) q}{p}\right) H$.
Since D is nef and H is ample. It's clear that "nef+ample is ample". Hence $m D-K_{X}$ is ample for all $m>0$. By Kodaira vanishing theorem, one has

$$
\chi(X, \mathcal{O}(m D))=h^{0}(X, \mathcal{O}(m D))
$$

By Riemann-Roch,

$$
h^{0}(X, \mathcal{O}(m D))=\chi\left(X, \mathcal{O}_{X}\right)+\frac{1}{2}\left(m D-K_{X}\right) \cdot m D
$$

It suffices to prove that $D . H>0$ for any ample divisor since $m D-K_{X}$ is ample.

Suppose on the contrary that $D \cdot H=0$, (recall that $D \cdot C^{\prime}>0$ for some C^{\prime}, so $D \not \equiv 0$.) By Hodge Index Theorem, $D^{2}<0$. This contradicts to D being nef. (D is nef implies that $D^{2} \geq 0$.) This completes the proof of Claim 1.

To prove the Claim 2. We remark that the following conditions are equivalent.
(1) x is a base point of $|D|$.
(2) Every section of $H^{0}(X, \mathcal{O}(D))$ vanishing at x.
(3) The evaluation map $H^{0}(X, \mathcal{O}(D)) \rightarrow \mathbb{C}(p)$ is zero.
(4) The natural mao $H^{0}\left(X, \mathcal{O}(D) \otimes \mathcal{I}_{x}\right) \rightarrow H^{0}(X, \mathcal{O}(D))$ is an isomorphism.
(5) $H^{1}\left(X, \mathcal{O}(D) \otimes \mathcal{I}_{x}\right) \neq 0$

Where \mathcal{I}_{x} denotes the ideal sheaf of x and $\mathcal{O}(D) \otimes \mathcal{I}_{x}$ is obtained by considering sections in $\mathcal{O}(D)$ vanishing along x. Therefore, in order to prove the base point freeness, it's enough to prove that $H^{1}\left(X, \mathcal{O}(m D) \otimes \mathcal{I}_{x}\right)=$ 0 . One might want to apply Kodaira vanishing theorem to prove $H^{1}=0$, however, it only works for divisor. Therefore, we consider $\pi: X^{\prime}=B l_{x}(X) \rightarrow X$. It's not too difficult (but not trivial) to see that

$$
H^{1}\left(X^{\prime}, \mathcal{O}\left(\pi^{*} m D-E\right)\right) \cong H^{1}\left(X, \mathcal{O}(m D) \otimes \mathcal{I}_{x}\right)
$$

Consider now $L_{m}:=\pi^{*} m D-E-K_{X^{\prime}}=\pi^{*}\left(m D-K_{X}\right)-2 E$. We leave it as an exercise to show that L_{m} is ample for $m \gg 0$. Then by Kodaira vanishing theorem, we are done.

To prove the last claim, it suffices to prove that $|m D|$ separate two general points on C^{\prime}. To this end, we first fixed $x \in C^{\prime} \subset X$. We consider the linear series $\left|m D \otimes \mathcal{I}_{x}\right|$ which is a subseries of $|m D|$ consisting of those divisors passing through x. As long as $\operatorname{dim}\left|m D \otimes \mathcal{I}_{x}\right| \geq 1$ then $B s\left|m D \otimes \mathcal{I}_{x}\right|$ is finite. We pick any $y \notin B s\left|m D \otimes \mathcal{I}_{x}\right|$. Therefore, a general member $D^{\prime} \in\left|m D \otimes \mathcal{I}_{x}\right|$ passing through x but not y. Hence the corresponding section $s \in H^{0}(X, \mathcal{O}(m D))$ has the property that
$s(x)=0, s(y) \neq 0$. In particular, we have proved that Claim 3. It follows that $\varphi(x) \neq \varphi(y)$.

The remaining case is to show that a minimal surface with $\rho(X)=1$ is \mathbb{P}^{2}. This might require some characterization of \mathbb{P}^{2} which we will prove later.

