Algebraic surfaces

MINIMAL MODEL PROGRAM ON SURFACES

The previous result shows that a minimal model for surface always exists and that a surface X is minimal if and only if X has no (-1)curve. Hence we may and we usually do assume that X is minimal. However, the criterion by (-1) curve only valid for surface. We might prefer to have a criterion which is also valid for higher dimension.

If X has a (-1)-curve E, then $K_X \cdot E = -1 < 0$. Thus if K_X is nef then X has no (-1)-curve. Hence X is minimal. The minimal model program (or sometimes called *Mori's program* can be describe as a program to find minimal models. The important criterion is nefness of K_X . Let's start with a variety X, if K_X is nef, then we have a minimal model and stop here. If K_X is not nef, then there is a curve C such that $C \cdot K_X < 0$. Then one can produce a morphism $f : X \to Y$ contracting C (and possibly contracting more curves at the same time). If dim $Y < \dim X$, then the morphism has some special structure which is called *Mori's fibration*. And the program stop here.

If dim X = dim Y and f contracts a divisor (we called it *divisorial* contraction). Then $\rho(Y) < \rho(X) := rk(NS(X))$. We replace X by Y and start the program over again. By looking at $\rho(X)$, it can't be an infinite loop, that is, the program must stop.

The remaining is the subtle one. If $\dim X = \dim Y$ and f contracts a subvariety of codimension ≥ 2 . Then call it a *small contraction*. One needs *flips* to produce another birational model $f': X' \to Y$. However, there is no infinite sequence of flips. Thus one must stop at somewhere $f: \tilde{X} \to \tilde{Y}$ which doesn't allow flips. Thus replacing X by \tilde{X} then it must go to other cases.

For surface, we don't need to worry about small contraction. Therefore, by running the minimal model program, the resulting products are surfaces with K_X nef and Mori fibration over a curve or a point.

Theorem 0.1. Let X be a minimal surface, then either K_X is nef or X is a ruled surface or \mathbb{P}^2 . In fact, X is \mathbb{P}^2 when $\rho(X) = 1$ and X is ruled when $\rho(X) \ge 2$.

We need the following two highly non-trivial facts:

- (1) If K_X is not nef, then there exists a rational curve $C \cong \mathbb{P}^1$ such that $C.K_X < 0$.
- (2) Fix an ample divisor H, there is a rational curve C with $K_X C < 0$ such that $\frac{-K_X C}{HC}$ is maximal.

The point for the first fact is that if $K_X C < 0$ then by reduction to characteristic p, one sees that the curve C can be deformed (in char p). Thus one has a morphism $F : C \times \mathbb{A}^1 \to X$. The morphism extends to a rational map $\overline{F} : C \times \mathbb{P}^1 \dashrightarrow$. By rigidity lemma, one shows that \overline{F} can't be a morphism, i.e. must have point of indeterminacy. We then eliminate the indeterminacy by blowing-ups to get a morphism $\widetilde{F}: Y \to X$. The exceptional curve $E \cong \mathbb{P}^1$ then maps to a rational curve in X, we denote it by E. Moreover, $C \equiv C' + E$, thus either $E.K_X < 0$ or $C'.K_X < 0$. If $K_X.E < 0$ then we are done, otherwise, we replace C by C'. With arithmetic genus $p_a(C') < p_a(C)$, we must stop somewhere and get a rational curve.

The idea for proving the second fact is more subtle, it's basically the *rationality theorem*.

Before we get into the proof, we would like to define the *arithmetic* genus which will be useful in the sequel.

Definition 0.2. Let D be an effective divisor in a surface X, then we define the arithmetic genus

$$p_a(D) := \frac{1}{2}(D^2 + K_X.D) + 1.$$

Note that if D is a non-singular curve, then $p_a(D) = g(D)$.

Let $C \subset X$ be a possibly singular curve. By blowing-up on X along singularities of C, one has proper transform $\widetilde{C} \subset \widetilde{X} \to X$ which is nonsingular. We leave it as an exercise to show that $p_a(\widetilde{C}) \leq p_a(C)$ and < holds if C is singular. Nevertheless, $p_a(\widetilde{C}) = g(\widetilde{C}) \geq 0$. Therefore we have:

Proposition 0.3. Let $C \subset X$ be a possibly singular curve. Then $p_a(C) \ge 0$.

And if $p_a(C) = 0$, then C is non-singular and $C \cong \mathbb{P}^1$.

proof of the theorem. Assume those facts, we have a a rational curve C with $K_X.C < 0$ such that $\frac{-K_X.C}{H.C}$ is maximal, where H is a fixed very ample divisor. Let $\frac{q}{p}$ be the maximal value. Let $D := pK_X + qH$, it's clear that D.C = 0 and $D.C' \ge 0$ for any irreducible curve C'. In particular, D is nef.

Remark. If D is a nef divisor on a surface, then $D.C \ge 0$ for all curves and $D^2 \ge 0$.

We first take care of the case that $\rho(X) \ge 2$. **Claim 1.** $h^0(X, \mathcal{O}_X(mD)) > 0$ for $m \gg 0$. **Claim 2.** |mD| is base point free for $m \gg 0$.

Grant these for the time being, we then fix an $m_0 \gg 0$ such that $|m_0 D|$ is free. We have a morphism

$$\varphi_{m_0D}: X \to \varphi(X) =: Y \subset \mathbb{P}^n.$$

Note that the restriction

$$H^0(X, \mathcal{O}(m_0D)) \to H^0(C, \mathcal{O}(m_0D|_C) = \mathcal{O}) \cong \mathbb{C},$$

gives constant functions. One concludes that the morphism φ maps C to a point.

Facts we need. Another fact we need is that Y is non-singular for $m \gg 0$. Then by minimality of X, dim $Y < \dim X$. If $\rho(X) \ge 2$, then one can conclude that there is a curve C' with D.C' > 0.

Claim 3. We may assume that the restriction

$$H^0(X, \mathcal{O}(mD)) \to H^0(C', \mathcal{O}(mD|_{C'}))$$

is non-constant.

As a result, the restriction of φ to C' is not constant and so φ is not constant. Hence $\dim Y \ge 1$. So $\dim Y = 1$. We may assume that $\varphi: X \to Y$ is a fibration, i.e. surjective with connected fibers. Moreover, a general fiber is a non-singular curve.

It remains to analyze the structure of φ . Especially, we wish to prove that the fiber is $\cong \mathbb{P}^1$. We need the famous

Zariski Lemma. Let $\pi : X \to B$ be a fibration from a surface to a curve. Let $F_s = \sum_i n_i C_i$ be a fiber and $D = \sum_i m_i D_i$ with $m_i \ge 0$ for all *i*. Then $D^2 \leq 0$. In particular, $C_i^2 \leq 0$ for all *i*.

Let's look at the fibration $\varphi: X \to Y$. We hope to prove that every fiber $F_s \cong \mathbb{P}^1$. Let $C_0 \subset F_s$ be an irreducible component. As we have seen, the curve C_0 contains in a fiber if and only if $D.C_0 = 0$. Hence $K_X.C_0 < 0$. Moreover, by Zariski Lemma, $C_0^2 \leq 0$. By adjunction formula,

$$-2 \le 2p_a(C_0) - 2 = K_X \cdot C_0 + C_0 \cdot C_0 < 0.$$

The only possibility is $C_0^2 = 0$, $K_X \cdot C_0 = -2$ since X has no (-1)-curve. Let $F_s := \varphi^*(s) = \sum_i n_i C_i$ be a fiber of φ . It's clear that $F_s^2 = 0$. And we have seen that $C_i^2 = 0$. It follows that

$$0 = F_s^2 = 2\sum_{i \neq j} n_i n_j C_i C_j \ge 0.$$

Since F_s is connected, if there are more than two components in F_s , then $C_i C_j > 0$ for some $i \neq j$ which is a contradiction. Therefore F_s is irreducible, i.e. say $F_s = n_s C_s$.

For $s \neq t \in B$,

$$-2n_s = F_s \cdot K_X = F_t \cdot K_X = -2n_t \cdot$$

It turns out that $n_s = n_t$ for all $s, t \in B$. However, for general fiber F is a non-singular curve. One has $n_s = 1$ for all s. This completes the proof of the case that $\rho(X) > 2$.

proof of the claims. In order to prove the claims, we need Kodaira Vanishing Theorem. Let X be a non-singular projective variety over \mathbb{C} . Let L be an ample divisor, then

$$H^i(X, \mathcal{O}_X(K_X + L)) = 0 \quad \forall i > 0.$$

To prove the Claim 1, we consider

$$mD - K_X = (mp - 1)K_X + mqH \equiv \frac{mp - 1}{p}D + (mq - \frac{(mp - 1)q}{p})H.$$

Since D is nef and H is ample. It's clear that "nef+ample is ample". Hence $mD-K_X$ is ample for all m > 0. By Kodaira vanishing theorem, one has

$$\chi(X, \mathcal{O}(mD)) = h^0(X, \mathcal{O}(mD))$$

By Riemann-Roch,

$$h^0(X, \mathcal{O}(mD)) = \chi(X, \mathcal{O}_X) + \frac{1}{2}(mD - K_X).mD.$$

It suffices to prove that D.H > 0 for any ample divisor since $mD - K_X$ is ample.

Suppose on the contrary that D.H = 0, (recall that D.C' > 0 for some C', so $D \not\equiv 0$.) By Hodge Index Theorem, $D^2 < 0$. This contradicts to D being nef. (D is nef implies that $D^2 \ge 0$.) This completes the proof of Claim 1.

To prove the Claim 2. We remark that the following conditions are equivalent.

- (1) x is a base point of |D|.
- (2) Every section of $H^0(X, \mathcal{O}(D))$ vanishing at x.
- (3) The evaluation map $H^0(X, \mathcal{O}(D)) \to \mathbb{C}(p)$ is zero.
- (4) The natural map $H^0(X, \mathcal{O}(D) \otimes \mathcal{I}_x) \to H^0(X, \mathcal{O}(D))$ is an isomorphism.
- (5) $H^1(X, \mathcal{O}(D) \otimes \mathcal{I}_x) \neq 0$

Where \mathcal{I}_x denotes the ideal sheaf of x and $\mathcal{O}(D) \otimes \mathcal{I}_x$ is obtained by considering sections in $\mathcal{O}(D)$ vanishing along x. Therefore, in order to prove the base point freeness, it's enough to prove that $H^1(X, \mathcal{O}(mD) \otimes \mathcal{I}_x) =$ 0. One might want to apply Kodaira vanishing theorem to prove $H^1 = 0$, however, it only works for divisor. Therefore, we consider $\pi : X' = Bl_x(X) \to X$. It's not too difficult (but not trivial) to see that

$$H^1(X', \mathcal{O}(\pi^*mD - E)) \cong H^1(X, \mathcal{O}(mD) \otimes \mathcal{I}_x).$$

Consider now $L_m := \pi^* m D - E - K_{X'} = \pi^* (m D - K_X) - 2E$. We leave it as an exercise to show that L_m is ample for $m \gg 0$. Then by Kodaira vanishing theorem, we are done.

To prove the last claim, it suffices to prove that |mD| separate two general points on C'. To this end, we first fixed $x \in C' \subset X$. We consider the linear series $|mD \otimes \mathcal{I}_x|$ which is a subseries of |mD| consisting of those divisors passing through x. As long as dim $|mD \otimes \mathcal{I}_x| \ge 1$ then $Bs|mD \otimes \mathcal{I}_x|$ is finite. We pick any $y \notin Bs|mD \otimes \mathcal{I}_x|$. Therefore, a general member $D' \in |mD \otimes \mathcal{I}_x|$ passing through x but not y. Hence the corresponding section $s \in H^0(X, \mathcal{O}(mD))$ has the property that

4

 $s(x) = 0, s(y) \neq 0$. In particular, we have proved that Claim 3. It follows that $\varphi(x) \neq \varphi(y)$.

The remaining case is to show that a minimal surface with $\rho(X) = 1$ is \mathbb{P}^2 . This might require some characterization of \mathbb{P}^2 which we will prove later.