Algebraic Surfaces Homework 2

Let X be a non-singular surface. Recall that a divisor D on X is ample (resp. nef) if and only if D.C > 0 (resp. ≥ 0) and $D^2 > 0$ (resp. ≥ 0).

- (1) Let C be an irreducible curve and $D = \sum n_i D_i$ be an effective divisor. Prove that if C.D < 0 then $C = C_i$ for some i and $C^2 < 0$.
- (2) Let C be a singular curve in X. By blowing-up of X along singularities of C. One has $\pi : \widetilde{X} \to X$ such that the proper transform \widetilde{C} is non-singular. Prove that $p_a(\widetilde{C}) < p_a(C)$. (hint: $x \in C$ is singular if and only if $m_x(C) \ge 2$, where $m_x(C)$ is the multiplicity of C at x.
- (3) Let L be an ample divisor on X. And let $\pi : \widetilde{X} = Bl(X) \to X$ be a blowing-up. Show that π^*L is not ample but it's nef and big.
- (4) Let L be an ample divisor on X. Show that $|K_X + mL|$ is base point free for $m \gg 0$.

(hint: the inequality for any two effective divisor

$$C.D \ge \sum_{x \in C \cap D} m_x(C) m_x(D)$$

might be useful.)