Algebraic Surfaces
 Homework 1

We work on a non-singular projective variety X.
(1) Show that $D_{1}+D_{2}$ is ample if both D_{1}, D_{2} are ample.
(2) Show that for any divisor D and an ample divisor A, there is $n>0$ such that $D+n A$ is ample.
(One might consider divisors with \mathbb{Q} coefficient, then this is equivalent to $A+\epsilon D$ is ample. So ampleness is an open condition).
(3) We say a divisor D is nef ($=$ numerically effective $=$ numerically eventually free) if $D . C \geq 0$ for all irreducible curve C. Show that if D is nef and A is ample, then $D+A$ is ample.
(4) Let D be a nef divisor on a surface X. Suppose that $D . D>0$. Prove that $h^{0}(X, n D) \neq 0$ for some $n \gg 0$. And prove that $h^{0}(X, n D) \geq \frac{1}{2} D^{2} n^{2}+o(n)$ as $n \rightarrow \infty$

