Algebraic Surfaces Homework 1

We work on a non-singular projective variety X.

- (1) Show that $D_1 + D_2$ is ample if both D_1, D_2 are ample.
- (2) Show that for any divisor D and an ample divisor A, there is n > 0 such that D + nA is ample.

(One might consider divisors with \mathbb{Q} coefficient, then this is equivalent to $A + \epsilon D$ is ample. So ampleness is an open condition).

- (3) We say a divisor D is nef (= numerically effective= numerically eventually free) if $D.C \ge 0$ for all irreducible curve C. Show that if D is nef and A is ample, then D + A is ample.
- (4) Let *D* be a nef divisor on a surface *X*. Suppose that D.D > 0. Prove that $h^0(X, nD) \neq 0$ for some $n \gg 0$. And prove that $h^0(X, nD) \geq \frac{1}{2}D^2n^2 + o(n)$ as $n \to \infty$