3 Bivariate Transformations

Let (X, Y) be a bivariate random vector with a known probability distribution. Let $U=g_{1}(X, Y)$ and $V=g_{2}(X, Y)$, where $g_{1}(x, y)$ and $g_{2}(x, y)$ are some specified functions. If B is any subset of \mathbb{R}^{2}, then $(U, V) \in B$ if and only if $(X, Y) \in A$, where $A=\left\{(x, y):\left(g_{1}(x, y), g_{2}(x, y)\right) \in B\right\}$. Thus $P((U, V) \in B)=P((X, Y) \in A)$, and the probability of (U, V) is completely determined by the probability distribution of (X, Y).

If (X, Y) is a discrete bivariate random vector, then

$$
f_{U, V}(u, v)=P(U=u, V=v)=P\left((X, Y) \in A_{u, v}\right)=\sum_{(x, y) \in A_{u v}} f_{X, Y}(x, y),
$$

where $A_{u, v}=\left\{(x, y): g_{1}(x, y)=u, g_{2}(x, y)=v\right\}$.

Example 3.1 (Distribution of the sum of Poisson variables) Let X and Y be independent Poisson random variables with parameters θ and λ, respectively. Thus, the joint pmf of (X, Y) is

$$
f_{X, Y}(x, y)=\frac{\theta^{x} e^{-\theta}}{x!} \frac{\lambda^{y} e^{-\lambda}}{y!}, \quad x=0,1,2, \ldots, \quad y=0,1,2, \ldots
$$

Now define $U=X+Y$ and $V=Y$, thus,

$$
f_{U, V}(u, v)=f_{X, V}(u-v, v)=\frac{\theta^{u-v} e^{-\theta}}{(u-v)!} \frac{\lambda^{v} e^{-\lambda}}{v!}, \quad v=0,1,2, \ldots, \quad u=v, v+1, \ldots
$$

The marginal of U is

$$
\begin{aligned}
f_{U}(u) & =\sum_{v=0}^{u} \frac{\theta^{u-v} e^{-\theta}}{(u-v)!} \frac{\lambda^{v} e^{-\lambda}}{v!}=e^{-(\theta+\lambda)} \sum_{v=0}^{u} \frac{\theta^{u-v}}{(u-v)!} \frac{\lambda^{v}}{v!} \\
& =\frac{e^{-(\theta+\lambda)}}{u!} \sum_{v=0}^{u}\binom{u}{v} \lambda^{v} \theta^{u-v}=\frac{e^{-(\theta+\lambda)}}{u!}(\theta+\lambda)^{u}, \quad u=0,1,2, \ldots
\end{aligned}
$$

This is the pmf of a Poisson random variable with parameter $\theta+\lambda$.

Theorem 3.1 If $X \sim \operatorname{Poisson}(\theta)$ and $Y \sim \operatorname{Poisson}(\lambda)$ and X and Y are independent, then $X+Y \sim \operatorname{Poisson}(\theta+\lambda)$.

If (X, Y) is a continuous random vector with joint $\operatorname{pdf} f_{X, Y}(x, y)$, then the joint pdf of (U, V) can be expressed in terms of $F_{X, Y}(x, y)$ in a similar way. As before, let $A=\left\{(x, y): f_{X, Y}(x, y)>0\right\}$ and $B=\left\{(u, v): u=g_{1}(x, y)\right.$ and $v=g_{2}(x, y)$ for some $\left.(x, y) \in A\right\}$. For the simplest version of this result, we assume the transformation $u=g_{1}(x, y)$ and $v=g_{2}(x, y)$ defines a one-to-one transformation of A to B. For such a one-to-one, onto transformation, we can solve the equations
$u=g_{1}(x, y)$ and $v=g_{2}(x, y)$ for x and y in terms of u and v. We will denote this inverse transformation by $x=h_{1}(u, v)$ and $y=h_{2}(u, v)$. The role played by a derivative in the univariate case is now played by a quantity called the Jacobian of the transformation. It is defined by

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|,
$$

where $\frac{\partial x}{\partial u}=\frac{\partial h_{1}(u, v)}{\partial u}, \frac{\partial x}{\partial v}=\frac{\partial h_{1}(u, v)}{\partial v}, \frac{\partial y}{\partial u}=\frac{\partial h_{2}(u, v)}{\partial u}$, and $\frac{\partial y}{\partial v}=\frac{\partial h_{2}(u, v)}{\partial v}$.
We assume that J is not identically 0 on B. Then the joint pdf of (U, V) is 0 outside the set B and on the set B is given by

$$
f_{U, V}(u, v)=f_{X, Y}\left(h_{1}(u, v), h_{2}(u, v)\right)|J|,
$$

where $|J|$ is the absolute value of J.
Example 3.2 (Sum and difference of normal variables) Let X and Y be independent, standard normal variables. Consider the transformation $U=X+Y$ and $V=X-Y$. The joint pdf of X and Y is, of course,

$$
f_{X, Y}(x, y)=(2 \pi)^{-1} \exp \left(-x^{2} / 2\right) \exp \left(-y^{2} / 2\right), \quad-\infty<x<\infty,-\infty<y<\infty .
$$

so the set $A=\mathbb{R}^{2}$. Solving the following equations

$$
u=x+y \quad \text { and } \quad v=x-y
$$

for x and y, we have

$$
x=h_{1}(x, y)=\frac{u+v}{2}, \quad \text { and } \quad y=h_{2}(x, y)=\frac{u-v}{2} .
$$

Since the solution is unique, we can see that the transformation is one-to-one, onto transformation from A to $B=\mathbb{R}^{2}$.

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right|=-\frac{1}{2} .
$$

So the joint pdf of (U, V) is

$$
f_{U, V}(u, v)=f_{X, Y}\left(h_{1}(u, v), h_{2}(u, v)\right)|J|=\frac{1}{2 \pi} e^{-((u+v) / 2)^{2} / 2} e^{-((u-v) / 2)^{2} / 2} \frac{1}{2}
$$

for $-\infty<u<\infty$ and $-\infty<v<\infty$. After some simplification and rearrangement we obtain

$$
f_{U, V}(u, v)=\left(\frac{1}{\sqrt{2 p} \sqrt{2}} e^{-u^{2} / 4}\right)\left(\frac{1}{\sqrt{2 p} \sqrt{2}} e^{-v^{2} / 4}\right) .
$$

The joint pdf has factored into a function of u and a function of v. That implies U and V are independent.

Theorem 3.2 Let X and Y be independent random variables. Let $g(x)$ be a function only of x and $h(y)$ be a function only of y. Then the random variables $U=g(X)$ and $V=h(Y)$ are independent.

Proof: We will prove the theorem assuming U and V are continuous random variables. For any $u \in m R$ and $v \in \mathbb{R}$, define

$$
A_{u}=\{x: g(x) \leq u\} \quad \text { and } \quad B_{u}=\{y: h(y) \leq v\}
$$

Then the joint cdf of (U, V) is

$$
\begin{aligned}
F_{U, V}(u, v) & =P(U \leq u, V \leq v) \\
& =P\left(X \in A_{u}, Y \in B_{v}\right) \\
& P\left(X \in A_{u}\right) P\left(Y \in B_{v}\right)
\end{aligned}
$$

The joint pdf of (U, V) is

$$
f_{U, V}(u, v)=\frac{\partial^{2}}{\partial u \partial v} F_{U, V}(u, v)=\left(\frac{d}{d u} P\left(X \in A_{u}\right)\right)\left(\frac{d}{d v} P\left(Y \in B_{v}\right)\right)
$$

where the first factor is a function only of u and the second factor is a function only of v. Hence, U and V are independent.

In many situations, the transformation of interest is not one-to-one. Just as Theorem 2.1.8 (textbook) generalized the univariate method to many-to-one functions, the same can be done here. As before, $\mathcal{A}=\left\{(x, y): f_{X, Y}(x, y)>0\right\}$. Suppose $A_{0}, A_{1}, \ldots, A_{k}$ form a partition of \mathcal{A} with these properties. The set A_{0}, which may be empty, satisfies $P\left((X, Y) \in A_{0}\right)=0$. The transformation $U=g_{1}(X, Y)$ and $V=g_{2}(X, Y)$ is a one-to-one transformation from A_{i} onto B for each $i=1,2, \ldots, k$. Then for each i, the inverse function from B to A_{i} can be found. Denote the i th inverse by $x=h_{1 i}(u, v)$ and $y=h_{2 i}(u, v)$. Let J_{i} denote the Jacobian computed from the i th inverse. Then assuming that these Jacobians do not vanish identically on B, we have

$$
f_{U, V}(u, v)=\sum_{i=1}^{k} f_{X, Y}\left(h_{1 i}(u, v), h_{2 i}(u, v)\right)\left|J_{i}\right|
$$

Example 3.3 (Distribution of the ratio of normal variables) Let X and Y be independent $N(0,1)$ random variable. Consider the transformation $U=X / Y$ and $V=|Y|$. (U and V can be defined to be any value, say $(1,1)$, if $Y=0$ since $P(Y=0)=0$.) This transformation is not one-to-one, since the points (x, y) and $(-x,-y)$ are both mapped into the same (u, v) point. Let

$$
A_{1}=\{(x, y): y>0\}, \quad A_{2}=\{(x, y): y<0\}, \quad A_{0}=\{(x, y): y=0\}
$$

A_{0}, A_{1} and A_{2} form a partition of $\mathcal{A}=\mathbb{R}^{2}$ and $P\left(A_{0}\right)=0$. The inverse transformations from B to A_{1} and B to A_{2} are given by

$$
x=h_{11}(u, v)=u v, \quad y=h_{21}(u, v)=v,
$$

and

$$
x=h_{12}(u, v)=-u v, \quad y=h_{22}(u, v)=-v .
$$

The Jacobians from the two inverses are $J_{1}=J_{2}=v$. Using

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi} e^{-x^{2} / 2} e^{-y^{2} / 2}
$$

we have

$$
\begin{aligned}
f_{U, V}(u, v) & =\frac{1}{2 \pi} e^{-(u v)^{2} / 2} e^{-v^{2} / 2}|v|+\frac{1}{2 \pi} e^{-(-u v)^{2} / 2} e^{-(-v)^{2} / 2}|v| \\
& =\frac{v}{\pi} e^{-\left(u^{2}+1\right) v^{2} / 2}, \quad-\infty<u<\infty, \quad 0<v<\infty .
\end{aligned}
$$

From this the marginal pdf of U can be computed to be

$$
\begin{aligned}
f_{U}(u) & =\int_{0}^{\infty} \frac{v}{\pi} e^{-\left(u^{2}+1\right) v^{2} / 2} d v \\
& =\frac{1}{2 \pi} \int_{0}^{\infty} e^{-\left(u^{2}+1\right) z / 2} d z \quad\left(z=v^{2}\right) \\
& =\frac{1}{\pi\left(u^{2}+1\right)}
\end{aligned}
$$

So we see that the ratio of two independent standard normal random variable is a Cauchy random variable.

