
3 Bivariate Transformations

Let (X,Y ) be a bivariate random vector with a known probability distribution. Let U = g1(X,Y )

and V = g2(X,Y ), where g1(x, y) and g2(x, y) are some specified functions. If B is any subset of

R
2, then (U, V ) ∈ B if and only if (X,Y ) ∈ A, where A = {(x, y) : (g1(x, y), g2(x, y)) ∈ B}. Thus

P ((U, V ) ∈ B) = P ((X,Y ) ∈ A), and the probability of (U, V ) is completely determined by the

probability distribution of (X,Y ).

If (X,Y ) is a discrete bivariate random vector, then

fU,V (u, v) = P (U = u, V = v) = P ((X,Y ) ∈ Au,v) =
∑

(x,y)∈Auv

fX,Y (x, y),

where Au,v = {(x, y) : g1(x, y) = u, g2(x, y) = v}.

Example 3.1 (Distribution of the sum of Poisson variables) Let X and Y be independent Poisson

random variables with parameters θ and λ, respectively. Thus, the joint pmf of (X,Y ) is

fX,Y (x, y) =
θxe−θ

x!

λye−λ

y!
, x = 0, 1, 2, . . . , y = 0, 1, 2, . . .

Now define U = X + Y and V = Y , thus,

fU,V (u, v) = fX,V (u − v, v) =
θu−ve−θ

(u − v)!

λve−λ

v!
, v = 0, 1, 2, . . . , u = v, v + 1, . . .

The marginal of U is

fU (u) =

u
∑

v=0

θu−ve−θ

(u − v)!

λve−λ

v!
= e−(θ+λ)

u
∑

v=0

θu−v

(u − v)!

λv

v!

=
e−(θ+λ)

u!

u
∑

v=0

(

u

v

)

λvθu−v =
e−(θ+λ)

u!
(θ + λ)u, u = 0, 1, 2, . . .

This is the pmf of a Poisson random variable with parameter θ + λ.

Theorem 3.1 If X ∼ Poisson(θ) and Y ∼ Poisson(λ) and X and Y are independent, then

X + Y ∼ Poisson(θ + λ).

If (X,Y ) is a continuous random vector with joint pdf fX,Y (x, y), then the joint pdf of (U, V )

can be expressed in terms of FX,Y (x, y) in a similar way. As before, let A = {(x, y) : fX,Y (x, y) > 0}
and B = {(u, v) : u = g1(x, y) and v = g2(x, y) for some (x, y) ∈ A}. For the simplest version of

this result, we assume the transformation u = g1(x, y) and v = g2(x, y) defines a one-to-one

transformation of A to B. For such a one-to-one, onto transformation, we can solve the equations
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u = g1(x, y) and v = g2(x, y) for x and y in terms of u and v. We will denote this inverse

transformation by x = h1(u, v) and y = h2(u, v). The role played by a derivative in the univariate

case is now played by a quantity called the Jacobian of the transformation. It is defined by

J =

∣

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

∣

∣

,

where ∂x
∂u = ∂h1(u,v)

∂u , ∂x
∂v = ∂h1(u,v)

∂v , ∂y
∂u = ∂h2(u,v)

∂u , and ∂y
∂v = ∂h2(u,v)

∂v .

We assume that J is not identically 0 on B. Then the joint pdf of (U, V ) is 0 outside the set B

and on the set B is given by

fU,V (u, v) = fX,Y (h1(u, v), h2(u, v))|J |,

where |J | is the absolute value of J .

Example 3.2 (Sum and difference of normal variables) Let X and Y be independent, standard

normal variables. Consider the transformation U = X + Y and V = X − Y . The joint pdf of X

and Y is, of course,

fX,Y (x, y) = (2π)−1 exp(−x2/2) exp(−y2/2), −∞ < x < ∞,−∞ < y < ∞.

so the set A = R
2. Solving the following equations

u = x + y and v = x − y

for x and y, we have

x = h1(x, y) =
u + v

2
, and y = h2(x, y) =

u − v

2
.

Since the solution is unique, we can see that the transformation is one-to-one, onto transformation

from A to B = R
2.

J =

∣

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1
2

1
2

1
2 −1

2

∣

∣

∣

∣

∣

∣

= −1

2
.

So the joint pdf of (U, V ) is

fU,V (u, v) = fX,Y (h1(u, v), h2(u, v))|J | =
1

2π
e−((u+v)/2)2/2e−((u−v)/2)2/2 1

2

for −∞ < u < ∞ and −∞ < v < ∞. After some simplification and rearrangement we obtain

fU,V (u, v) = (
1√

2p
√

2
e−u2/4)(

1√
2p

√
2
e−v2/4).

The joint pdf has factored into a function of u and a function of v. That implies U and V are

independent.
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Theorem 3.2 Let X and Y be independent random variables. Let g(x) be a function only of x and

h(y) be a function only of y. Then the random variables U = g(X) and V = h(Y ) are independent.

Proof: We will prove the theorem assuming U and V are continuous random variables. For any

u ∈ mR and v ∈ R, define

Au = {x : g(x) ≤ u} and Bu = {y : h(y) ≤ v}.

Then the joint cdf of (U, V ) is

FU,V (u, v) = P (U ≤ u, V ≤ v)

= P (X ∈ Au, Y ∈ Bv)

P (X ∈ Au)P (Y ∈ Bv).

The joint pdf of (U, V ) is

fU,V (u, v) =
∂2

∂u∂v
FU,V (u, v) = (

d

du
P (X ∈ Au))(

d

dv
P (Y ∈ Bv)),

where the first factor is a function only of u and the second factor is a function only of v. Hence,

U and V are independent. �

In many situations, the transformation of interest is not one-to-one. Just as Theorem 2.1.8

(textbook) generalized the univariate method to many-to-one functions, the same can be done

here. As before, A = {(x, y) : fX,Y (x, y) > 0}. Suppose A0, A1, . . . , Ak form a partition of A
with these properties. The set A0, which may be empty, satisfies P ((X,Y ) ∈ A0) = 0. The

transformation U = g1(X,Y ) and V = g2(X,Y ) is a one-to-one transformation from Ai onto B for

each i = 1, 2, . . . , k. Then for each i, the inverse function from B to Ai can be found. Denote the

ith inverse by x = h1i(u, v) and y = h2i(u, v). Let Ji denote the Jacobian computed from the ith

inverse. Then assuming that these Jacobians do not vanish identically on B, we have

fU,V (u, v) =
k

∑

i=1

fX,Y (h1i(u, v), h2i(u, v))|Ji|.

Example 3.3 (Distribution of the ratio of normal variables) Let X and Y be independent N(0, 1)

random variable. Consider the transformation U = X/Y and V = |Y |. (U and V can be defined

to be any value, say (1,1), if Y = 0 since P (Y = 0) = 0.) This transformation is not one-to-one,

since the points (x, y) and (−x,−y) are both mapped into the same (u, v) point. Let

A1 = {(x, y) : y > 0}, A2 = {(x, y) : y < 0}, A0 = {(x, y) : y = 0}.
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A0, A1 and A2 form a partition of A = R
2 and P (A0) = 0. The inverse transformations from B

to A1 and B to A2 are given by

x = h11(u, v) = uv, y = h21(u, v) = v,

and

x = h12(u, v) = −uv, y = h22(u, v) = −v.

The Jacobians from the two inverses are J1 = J2 = v. Using

fX,Y (x, y) =
1

2π
e−x2/2e−y2/2,

we have

fU,V (u, v) =
1

2π
e−(uv)2/2e−v2/2|v| + 1

2π
e−(−uv)2/2e−(−v)2/2|v|

=
v

π
e−(u2+1)v2/2, −∞ < u < ∞, 0 < v < ∞.

From this the marginal pdf of U can be computed to be

fU(u) =

∫ ∞

0

v

π
e−(u2+1)v2/2dv

=
1

2π

∫ ∞

0
e−(u2+1)z/2dz (z = v2)

=
1

π(u2 + 1)

So we see that the ratio of two independent standard normal random variable is a Cauchy random

variable.
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