3 Bivariate Transformations

Let (X,Y) be a bivariate random vector with a known probability distribution. Let U = ¢1(X,Y")
and V = ¢o(X,Y), where g1(z,y) and go(z,y) are some specified functions. If B is any subset of
R?, then (U,V) € B if and only if (X,Y) € A, where A = {(2,9) : (g1(z,9),92(2,y)) € B}. Thus
P((U,V) € B) = P((X,Y) € A), and the probability of (U, V) is completely determined by the
probability distribution of (X,Y).

If (X,Y) is a discrete bivariate random vector, then
fuvw,v) =PU=uV=0v)=P(X,Y)€Ay)= > fxy(y)
(xvy)eAuv
where Au,v = {(:E,y) : gl('l'vy) = U,gg(l‘,y) = U}'
Example 3.1 (Distribution of the sum of Poisson variables) Let X and'Y be independent Poisson
random variables with parameters 6 and X, respectively. Thus, the joint pmf of (X,Y) is

fre=0 Ve~
x! y!

fX,Y(‘Tvy): ) $:0,1,2,..., y2071727"'

Now defineU = X +Y and V =Y, thus,

Gu—ve=0 \ve—A
foy(u,v) = fxy(u—vv) = (u—v)!

, v=0,1,2,..., u=v,0+1,...
v!

The marginal of U is

u

=
v=0

2 =) (u—
—(0+2) _u —(0+))
e u e
= E AVOYTY = 0+ A =0,1,2,...
’LL' » 0<U> u. ( + ) U 07 ) 4y

This is the pmf of a Poisson random variable with parameter 6 + .

Theorem 3.1 If X ~ Poisson(0) and Y ~ Poisson(\) and X and Y are independent, then
X +Y ~ Poisson(0 + \).

If (X,Y) is a continuous random vector with joint pdf fx y(z,y), then the joint pdf of (U, V)
can be expressed in terms of F'x y (z,y) in a similar way. As before, let A = {(z,y) : fxy(z,y) > 0}
and B = {(u,v) : u= g1(x,y) and v = ga(x,y) for some (z,y) € A}. For the simplest version of
this result, we assume the transformation u = gi(x,y) and v = go(x,y) defines a one-to-one

transformation of A to B. For such a one-to-one, onto transformation, we can solve the equations
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u = ¢g1(z,y) and v = go(x,y) for z and y in terms of u and wv.

We will denote this inverse

transformation by z = hy(u,v) and y = ha(u,v). The role played by a derivative in the univariate

case is now played by a quantity called the Jacobian of the transformation. It is defined by

oz

— 8h1(u,v)
Where ou - ou

ou

or __

Oz Oh1(u,v)
> ov

ov

Oy _

’ Ou

ox o
J = ou  Ov 7
dy oy
ou  Ov
Oha(u,v) dy __ Oha(u,v)
ou and ov ov

We assume that J is not identically 0 on B. Then the joint pdf of (U, V) is 0 outside the set B

and on the set B is given by

fov(u,v) = fxy(hi(u,v), ha(u,v))]J]|,

where |J| is the absolute value of J.

Example 3.2 (Sum and difference of normal variables) Let X and Y be independent, standard

normal variables. Consider the transformation U = X +Y and V = X — Y. The joint pdf of X

and Y s, of course,

Fry(,y) = (2m) " exp(—a®/2) exp(—y?/2), —00 < & < 00,00 < y < o0

so0 the set A =R2. Solving the following equations

u=zcz+y and v=x—y
for x and y, we have
u—+v uU—v
l‘:hl(l‘,y): 9 and y:h2($?y): 9

Since the solution is unique, we can see that the transformation is one-to-one, onto transformation

from A to B = R2.

oz
ou
Oy
ou

So the joint pdf of (U, V) is

fov(u,v) = fxy(hi(u,v), ha(u,v))|J| = 2ie—((u+v)/2)2/26—((u—v)/2)2/2}
Y[

Oz 1
ov _ |2
(6] 1
ov 2

2

for —oo <u < o0 and —oco < v < 00. After some simplification and rearrangement we obtain

fU,V(ua U) = (

independent.

V2pV2

The joint pdf has factored into a function of u and a function of v.
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Theorem 3.2 Let X andY be independent random variables. Let g(x) be a function only of v and
h(y) be a function only of y. Then the random variables U = g(X) and V = h(Y") are independent.

ProOOF: We will prove the theorem assuming U and V are continuous random variables. For any

u € mR and v € R, define
Ay, ={z:g9(x) <u} and B, ={y:h(y) <v}.
Then the joint cdf of (U, V) is
Fyv(u,v) =PU <u,V <w)
=P(Xe€A,Y €eB,)
P(X € A,)P(Y € By).

The joint pdf of (U, V) is

2

5o Fu (u,0) = (%P(X € Au))(d%P(Y € By)),

fov(u,v) =

where the first factor is a function only of v and the second factor is a function only of v. Hence,

U and V are independent. ]

In many situations, the transformation of interest is not one-to-one. Just as Theorem 2.1.8
(textbook) generalized the univariate method to many-to-one functions, the same can be done
here. As before, A = {(z,y) : fxy(z,y) > 0}. Suppose Ag, Ai,...,A; form a partition of A
with these properties. The set Ay, which may be empty, satisfies P((X,Y) € Ap) = 0. The
transformation U = ¢1(X,Y) and V' = go(X,Y) is a one-to-one transformation from A; onto B for
each ¢ = 1,2,...,k. Then for each i, the inverse function from B to A; can be found. Denote the
ith inverse by x = hy;(u,v) and y = hg;(u,v). Let J; denote the Jacobian computed from the ith
inverse. Then assuming that these Jacobians do not vanish identically on B, we have

k

fov(u,0) =" fxy(hi(u, v), hoi(u,v))| .

i=1
Example 3.3 (Distribution of the ratio of normal variables) Let X and Y be independent N (0,1)
random variable. Consider the transformation U = XY and V = |Y|. (U and V can be defined
to be any value, say (1,1), if Y = 0 since P(Y = 0) = 0.) This transformation is not one-to-one,

since the points (z,y) and (—x,—y) are both mapped into the same (u,v) point. Let

Ay ={(z,y) 1y >0}, Ax={(z,y):y<0}, Ag={(z,y):y=0}
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Ao, Ay and A form a partition of A = R? and P(Ag) = 0. The inverse transformations from B

to A1 and B to Ay are given by
x = hy1(u,v) =wv, y = ho(u,v) =m0,

and

x = hia(u,v) = —uv, y= ha(u,v) =—wv.

The Jacobians from the two inverses are J; = Jo = v. Using

1
fxy(z,y) = %e_m2/2e_y2/27
we have
1 1
Jov(u,v) = goe™ (2R y] 4 e e 2Oy
_ U _(u241)02/2
= —e , —oo<u<oo, 0<wv<oo.
v

From this the marginal pdf of U can be computed to be
Y A
fu(u) = —e dv
0 e
B i 00 e_(u2+1)z/2dz (Z — U2)
2T 0
1
m(u? +1)

So we see that the ratio of two independent standard normal random variable is a Cauchy random

variable.
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